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Abstract 

Poverty reduction is increasingly an urban challenge, and a challenge that continues to be hampered by 

lack of data. One such example is the urban social safety net program implemented by the Government of 

Mozambique, that is spatial in nature, but works without any data on the within-city spatial distribution of 

poverty. The lack of detailed data on poverty is common in many developing as well as middle-income 

countries. This study applies Convolutional Neural Networks on high-resolution satellite images of cities in 

Mozambique, and combines their outputs with household level geo-referenced survey data. The results show 

that readily available data sources can generate detailed neighborhood-level poverty maps, providing key 

operational guidance for implementation of the urban social safety net. Importantly, the approach is highly 

automatic, applicable at scale, and cost-effective. It is thus a key step forward in the application of remote 

sensing image recognition for urban poverty reduction.  

 

Keywords: Poverty, Social protection, Remote sensing, Convolutional neural networks, image recognition. 
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Introduction  
As stated by the UN in their Sustainable Development Goals, poverty reduction is a key global challenge. 

Poverty reduction requires sustained efforts and often the combination of multiple policies. In the poorest 

countries, the challenge is especially difficult as policies are designed with very limited available data. The 

second-best solution is often to fill the information gap through household surveys. Unfortunately, such 

surveys are too expensive to be a general solution. The World Bank estimates that monitoring and tracking 

poverty in the poorest countries will cost USD 945 million between 2016 and 2030 (1), while they rarely 

provide current and continuous data. Further, such surveys normally estimate vital statistics at urban/rural 

and regional levels, while they provide no guidance on planning or differences within specific urban 

environments. This paper’s approach provides key insights at within-city level, but also illustrates a potential 

for much wider use.   

The rapid expansion of available high-resolution satellite images provides an opportunity to close some 

of this information and data gap. Satellite images of cities by themselves, as seen by the human eye, are often 

very informative of the general living situation in any given location. Human observations are an insufficient 

tool for policy development, but satellite images combined with image recognition and machine learning 

methods do have potential to reduce the data gap and thereby pave the road for more efficient anti-poverty 

policies. Recent progress in the use of images for prediction of poverty includes the use of nighttime light 

data and daytime images to estimate village poverty rates in five African countries(2). Object identification 

of buildings and their quality as well as cars, combined with geospatial data on roads and farmland, are used 

to predict municipal poverty rates in Sri Lanka (3). Similarly, object identification of water source, roof quality 

and lighting source are used to predict poverty at sub-district levels in Uttar Pradesh, India(4). Object 

identification of roof quality, but not poverty itself, also provides the basis of allocation of anti-poverty 

transfers in some villages in Uganda and Tanzania(5). Prediction of municipal poverty rates in Mexico, on the 

other hand, is done by relating poverty rates directly to images without specifying any objects (6). Even single 

households’ poverty status are predicted using remote sensing data (7). 

This study contributes to the nascent literature by estimating poverty scores for locations smaller than 

115m x 115m, which is an improvement on most previous studies that estimate poverty rates of larger areas. 

To the authors’ knowledge, this is also the first study that provides a comparison of the direct approach, 

relating poverty directly to images, and the indirect approach of prediction poverty based on identified 

objects correlated with poverty. Importantly, unlike the estimates at household level (7), that rely on 

manually measured structure footprints as a predictor, this study employs methods that run automatically 

and can be applied at large scale, utilizing data available in most countries. 

Continuous urbanization amplifies the need for new and detailed urban data. For instance, in 

Mozambique, the urban population grew by more than 50 percent during the last decade, and is expected 

to grow roughly another 50 percent every decade for the next three decades (8).  This trend is similar to 

many other developing countries, leading to a general urbanization of poverty(9). As in many other countries, 

there is no or very limited detailed data on where and how this urban growth is changing the city landscapes 

in-between the decennial censuses. In many cases, the extent of cities and the relative quality of 

neighborhoods are not recorded in systematic ways. Such shortages impede efficient social policies targeting 

those most in need, as well as other public policies. Standard household surveys, that are used for collection 

of many other vital statistics, do not cover cities in sufficient detail to provide much guidance on planning, 

and for most areas there is very limited administrative data available. 
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To address urban poverty, the Government of Mozambique is expanding an incipient urban social safety 

net program. In the Productive Safety Net Program (PASP), beneficiaries receive a small subsidy for supplying 

their labor to the production of a public good for the benefit of the local community. Hence, the program 

both aims to improve the livelihood of poor households as well as improve poor neighborhoods. Households 

are eligible to join the program based on a number of observable characteristics that result in a poverty score, 

also known as Proxy Mean Test (PMT) score. Households with a poverty score below a certain threshold are 

eligible to participate in the program.  In order to facilitate a rapid scale-up this program, the government 

wishes to rank neighborhoods according to average poverty scores; however, they have no current data to 

base such a priority on. 

Data and Methods 
To estimate the neighborhood poverty scores, two different methods are tested. The first method directly 

combines households’ poverty scores and the images of households’ location using a Convolutional Neural 

Network (CNN). The second method extract information about each location from GIS data and from a CNN 

object detection detecting density and quality of structures, which is combined in a Random Forest model to 

predict poverty scores. 

Data 

Unit of analysis. All predictions and most of the analysis are based on a grid of 115 m x 115 m cells. The 

image size is 400 x 400 pixels, which measured in meters at surface level varies with a negligible amount due 

to the curvature of the earth. After filtering out areas with no residential buildings, the sample of interest 

has 57,540 cells covering five cities in Mozambique. 

Poverty score (PMT) from survey data. The latest nationally representative household survey(10) as well 

as observations from the first round of interviews for the social protection program(11) are used to capture 

households’ poverty scores. In both sources, the poverty score is calculated from survey questions on 

ownership of durable assets and other household characteristics, and both data sources include households’ 

locations measured by latitude and longitude.  

Geospatial data. The following spatial data are utilized: a) Road data from Open Street Map (OSM), a 

volunteer-driven platform for creation of open access map data (12). This data includes the total length of - 

and distance to - primary, residential and other roads at the cell level. b) Distance to city center. To capture 

remoteness, the distance from the center point of each cell to the city center (as birds fly) was calculated 

using GIS software. c) Estimates of structure density and quality (13). Based on tagged images of building 

structures, a Convolutional Neural Network produced estimates of structure density and quality of buildings 

for each cell across cities in Mozambique. See SI Appendix 2 for more details. 

Images. Satellite images of each cell were downloaded using Google Maps’ API. Each image covers one 

unit of analysis aligning estimation and predictions into to the cell grid. 

Methods 

To estimate the neighborhood poverty score, two different methods are tested. The first method directly 

combines households’ poverty scores and images of all households’ locations using a CNN regression model 

(Fig 1). The CNN uses an architecture pre-trained to classify images in the ImageNet dataset(14, 15) and is 

adjusted to the images centered on the household locations. See further details in SI Appendix 2. Training of 
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the CNN is not yet standardized, but programs facilitating easier access and applications are developing 

quickly, making the approach more and more accessible.  The training and validation (10 percent of cells 

excluded sample) utilize all urban households from the two surveys (15,033 households in total) and make 

predictions for the 57,540 cells covering five cities of interest.  

The second method predicts poverty scores from the available geospatial data; structure density and 

quality, the distance to city center, and length of/distance to roads using a Random Forest model (Fig 2). 

Capturing that not only the immediate surroundings can be important for the poverty score, spatial lags of 

all variables are included with weight given up to 500 meters from each neighborhood center point. 

The first method is the least data demanding method, as it only relies on household survey data with 

information of households’ poverty status and its GPS location. Such data is available in a large majority of 

developing countries. However, in most cases the approach requires datasets with many observations, in 

excess of the number of households often found in standard surveys. Further, the method, as applied here, 

could also be challenged in that two similar in appearance locations could have different associations to 

poverty. Imagine two similar locations, one close to downtown, another far from the city center. Such two 

locations are likely to have different associations to poverty, which is unknown to the CNN. The second 

method utilize data from several sources, and is more demanding on required data.  

Both methods predict the cell poverty score. For both methods, the same 10 percent of the cells are 

excluded from modelling and used to evaluate out-of-sample prediction accuracy. The excluded sample is 

stratified over cities, with 10 percent randomly selected within each city. 

 

 

Fig 1: Figure shows the data flow of method 1. The target variable for training of the CNN is the household poverty score. See further 

details in S1 Appendix 2 



6 
 

 

Fig 2: Figure shows the data flow of method 2. The target variable for training of the CNN is the presence and quality of structures. 

See further details in S1 Appendix 2. 

 

Results  

Using the direct approach and predicting poverty score only based on household survey poverty scores 

and images of the neighborhood in which the households are located (Fig 1), does provide insights into spatial 

distribution of the poverty score. The out-of-sample Spearman rank coefficient and r-square are 0.62 and 

0.36, respectively (Table 1). Though not a great prediction model, this can be seen as a breakthrough for the 

approach, especially considering that several challenges are hampering the application. To the authors’ 

knowledge, such direct estimation of poverty, based on images and survey data only, has only been 

attempted by one previous study (6). Their attempt at estimating poverty rates at sub municipal level was 

unsuccessful and they concluded that “the algorithm did not learn a meaningful representation of poverty”. 

Further, one should expect even better results if raw data was better, for example multi-band satellite images 

in higher resolution than used here. In this application, additional noise is expected as there is a time gap 

between observing the poverty score and the neighborhood image. Some inaccuracies were also detected in 

the households’ location data, which likely led to additional noise in the model. Finally, image recognition 

relies heavily on large datasets, and this application succeeded with 14,252 training images.  

Poverty score predictions based on geospatial data (Fig 2) are notably more accurate than those based 

on image recognition only (out-of-sample r square of 0.58 compared to 0.38) (Table 1). The model predictions 

reveal that the city variable for Maputo is the most important variable, next is distance to city center, and 

the share of high-quality roofs. In general, the estimates of structure density and quality of structures (and 

their spatial lags capturing the wider area) are prominent among the geospatial variables most important for 

poverty score predictions, while the road data is less prominent (SI Appendix 1, Fig A1-1). The geospatial 

model (Fig 2) highlights that information unavailable to the CNN model (Fig 1), like city and distance to city 

center, are important for predictions of poverty scores. 

Operationally, the PASP program is implemented through Bairros, a low-level administrative unit within 

cities in Mozambique. In fact, the original request from the Government was on assistance in ranking Bairros 

according to the poverty score. A Bairro ranking can be obtained by averaging cell estimates for within each 

Bairro. Evaluating model accuracy at Bairro level shows a remarkable out-of-sample r-square of 0.66 for 

method 2 (Table 1). The CNN poverty score predictions (Method 1), at this aggregated level, also have a 
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remarkable r square of 0.58 (Table 1). Fig 3 illustrates the correlation between predicted and observed 

poverty scores at cell and Bairro level, including Method 2s better performance. Figure A1_3 in SI Appendix 

1 exemplifies the different outputs of a cell-level and Bairro-level approach.  

  

Method 1, Bairros Method 1, Cells 

  

Method 2, Bairros Method 2, Cells 

Fig 3 shows predicted and observed poverty score in Bairros and cells from method 1 and method 2  

 

      R square Spearman rank correlation 

Data Method   
Within  Out of Within  Out of  

sample  sample sample sample 

Cells (115x115m)           

Survey, images CNN  0.361 0.384 0.597 0.619 

Survey, geospatial Random Forest  0.750 0.576 0.886 0.757 

Aggregation of cell results to Bairro level  

Survey, images CNN  0.691 0.576 0.797 0.763 

Survey, geospatial  Random Forest   0.918 0.661 0.956 0.834 

Table 1 shows accuracy of predictions from three main models as defined in Fig 2. HH Survey is the household poverty surveys 

explained in section Data and Methods. R square is explained variance and is based on the 115m x 115m neighborhood estimates 

irrespective of training set. The Random Forest model is based on 150 trees and have an out-of-bag r square of 0.58. 

Illustrating how this approach can provide support for the Government of Mozambique, Fig 4 shows 

predicted poverty scores at the cell level for the city of Maputo. The highlighted extract shows an overlay of 

predictions in Google Earth, illustrating the differences between relatively poor and affluent areas. It’s 
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notable that the method is capable of categorizing cells by average poverty score, even when in close spatial 

proximity. Maps like Fig 4 for all five cities provide easy and efficient operational support for the Government 

of Mozambique as they expand the urban social safety net program (PASP).  

   

 

 Fig 4: Left image shows poverty scores in the city Maputo based on predictions from Model 3 colored from red, poor, to blue, rich. 

Right image shows enlargement of section of city, illustrating the poverty score predictions for cells (115x115 meters). 

Of general interest is the degree to which models are transferable, i.e. whether a model trained on one 

city can be applied in a different city. If not, the model would not be applicable to cities not included in the 

household surveys. Testing this, by excluding a full city from the training data and predicting the poverty 

score for the excluded city, utilizing Method 2, reveals that the models are not transferable. Predictions for 

the excluded city are poor. This is consistent with the city variables being prominent among most important 

variables (SI Appendix 1 Fig A1-1), and indicates that each city has different prediction models. For utilization 

on the urban social program in Mozambique, this is not a problem as the household survey covers all major 

cities and the model accuracy is similar in all cities, but it does reveal a current limitation of the approach. 

The limitation might be an artefact of having insufficient training data and is therefore surmountable.  

Future Use 
The core results are both a significant step forward in application of image recognition in urban settings 

and in use of machine learning methods, showing that they can provide key support to the Government of 

Mozambique and their poverty reducing operations. This is despite several data challenges, with imperfect 

alignment of data across time and poor quality of household tagging, leading to noise.  

The frequency and quality of satellite images are increasing rapidly, leading to a large potential for 

continuous update of the poverty scores maps. Applying the same model based on new images, implicitly 

assumes that the same model is applicable over time. Though critical to the possibility of tracking SDGs and 

other data relevant for social targeting and planning, with such methods, this assumption has never, to the 

authors’ knowledge, been tested empirically in the context of poverty predictions using geospatial data or 

image recognition.  There is some experience on model stability across time from prediction of poverty based 

on household characteristics across surveys. Such models rely on richer data from each household including 

asset ownership, location, family composition and other characteristics. The experiences are mixed with 
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some successful applications as well as failures, with little clarity on why some succeed while others fail (16, 

17). Unlike survey data that can be susceptible to systematic variation in reporting over time due to variations 

in design and implementation(18), satellite data is generally less susceptible to such biases, though cloud 

cover and seasonality are potential challenges.   
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SI Appendix 1 Additional tables and figures 
 

 
Fig A1_1. Importance scores for method 2 

 

 

Fig A1_3: Comparison of cell-level and bairro-level outputs using the city of Beira as example 

SI Appendix 2 Details on method and data 
 

The paper utilizes two different CNN estimation models, and a Random Forest for the following purposes: 

1. CNN estimation of structure density and quality.  

2. CNN estimation of poverty scores. 

3. Random Forest estimation of poverty scores. 

The three models are described in more detail below. 

CNN estimation of structures and their quality and use 

Data   

The training data for the CNN prediction model consist of 107.507 structures tagged into seven categories 

(house colored roof, house grey roof, house palm roof, non-residential structure, small non-residential 

structure, structure under construction, apartment). The data cover the entire city of Tete and some sections 

of the cities Maputo, Beira, Nampula and Quelimane. Each structure’s location and type were tagged by 
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Cloud Factory in Google Earth in September 2016. To train an algorithm to detect structures you need both 

images of structures and non-structures. Based on all the identified structures in Tete, an additional 100.000 

center points were identified with at least 20 meters to the nearest structure, completing the sample with 

locations with structures and no-structures. This is possible as all structures in Tète had been tagged.  

Subsequently, an image of the location for each structure and no-structure’s location was downloaded 

using Google Maps API in November, 2018. Images for training and predictions are from Google Maps and 

were accessed for free for non-commercial use, according to Google’s ”Fair use” agreement. The time gap 

was due to a gap in funding. The tagged structure data is (Tagged Structures in Mozambique(TASIM)) 

available online(13). 

CNN model 

The data is utilized for two separate CNN models; first a CNN-detector estimating if a structure is present or 

not, and secondly, if a structure is present, a CNN classifier predicting the type of structure (see Figure A2- 

1). The data are split into two CNN algorithms, as it allows a more optimal use of data than a combined model.  

The CNN detector is trained on the center 50x50 pixels in the approximate 200.000 images with structures 

and non-structures.  

The CNN-detector covering 50x50 pixels is applied on the 400x400 cell images in a sliding window 

approach, with each window being classified as structure or no-structure. The sliding window has 75% 

overlap between windows, leading to 900 windows per 400x400 pixel cell. An attempt to train the CNN-

detector to only detect a structure if the window is perfectly aligned over the structure, i.e. giving one 

detection per structure, was unsuccessful. The lack of success was likely because the TASIM geo-coordinate 

tags were too imprecise. Hence, the CNN detector does not provide estimates of number of observed 

structures as the original data, but rather the share of area covered by structures. This is referred to as 

structure density.  

The second algorithm is a CNN-classifier that classifies windows of 50x50 pixels in 4 categories: Grey roof, 

painted roof, non-residential, under construction. Two categories - “Palm roof” and “Apartment” are 

excluded. The latter was excluded due to too few observations (192), while initial experiments with the 

category “Palm roof” was unsuccessful, most likely due to too many incorrect tags. To keep a balanced 

sample across categories, only 10 percent of the “grey roof” category was included, as this category was 

overrepresented (92% of the 107 507 houses). For the other categories, all available observations are used; 

1267 for non-residential, 6027 for under-construction and 3648 for painted-roof.  
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Figure A2- 1 -Results of applying the CNN model over a cell image. First the CNN Detector predicts if partial image has a structure or 

not. While the model is not 100% correct is has a high accuracy in detecting the structures marked by blue squares. Secondly, for each 

blue square the CNN classifier assigns a probability of structure type (Grey roof, painted roof, non-residential, under construction). 

Both the CNN-detector and CNN-classifier were trained with the RMSprop weight update scheme for 80 

and 200 epochs respectively. For the CNN-detector data augmentation was applied with 10% random shift 

in width or height, random rotation within 15 degree and a horizontal flip. The learning rate was initialized 

at 0.001 and reduced to 0.0005 after 10 epochs and to 0.0003 after 60 epochs. Data augmentation did not 

improve the CNN-classifier training and were therefore not used but a learning rate decay scheme like the 

one for the CNN-detector was used. The reduction was from 0.001 to 0.0005 happened after 75 epochs and 

from 0.0005 to 0.0003 after 100 epochs.  

For each cell of 400x400 pixels the following parameters are derived: 

1. Constructions density.  The number of windows with detected structure divided by the total 

amount of windows per cell. 

2. Model Confidence in Structure detection. The sum of the probabilities of all windows with higher 

than 50% probability of a structure. 

3. Ratio of structures in category: 

a. Grey roof.  

b. Painted roof  

c. Non-residential 

d. Under construction 

In the 10 percent of observations excluded for evaluation, the CNN detector has an accuracy of 97% in 

detecting structures, while the CNN classifier has an out-of-sample test accuracy of 69%. The confusion 

matrix in Table A2-1 shows the accuracy for each class, while Figure A2-2 shows that there is a high 

correlation between predicted structure density and the number of tagged structures within each cell. Note 

that the latter are two different variables and not a prediction of the same variable. 

The CNN detector and classifier is implemented in Python using the Keras  library.  
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 Grey roof Painted roof Non-residential Under constr. 

Grey roof 79% 3% 3% 15% 

Painted roof 11% 73% 3% 13% 

Non-res. 22% 24% 50% 4% 

Under constr. 23% 7% 1% 69% 

Table A2-1 – Confusion matrix on the performance on the CNN-classifier. Percentage correctly classified. 

 

 
Figure A2-2 - Plot of structure density parameter from CNN algorithm vs. the tagged 

structures in each cell in Tete. 

 

CNN estimation of poverty scores 

Data   

The training data for the CNN model of poverty scores is based on the IOF and PASP surveys (10, 11). Both 

surveys have data on each households poverty score as well as their geo-coordinates and combined they 

have 14.252 urban household observations. For the training, all urban households are included, including 

observations outside the five cities of interest.   

An image of the location for each household was downloaded using Google Maps API in November, 2018. 

Images for training and predictions are from Google Maps and were accessed for free for non-commercial 

use, according to Google’s ”Fair use” agreement. 

CNN model 

Estimates of poverty scores directly from images is based on a CNN designed for regression (referred to 

here as the CNN-regressor). Training a CNN from scratch with 14.252 images gave unsatisfactory error rates. 

Evaluation led to the conclusion that lack of data was the reason.  
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To overcome the small sample, the following steps were taken:  

1. Transfer Learning: The CNN architecture Xception(15) which is  pre-trained to classify images in the 

ImageNet (14) dataset was used as the basis for training. 

2. Cropping: Five crops of each image were used, top-left, top-right, bottom-left, bottom-right and 

center. 

3. Data augmentations: each image was flipped, and a random scaling of its’ brightness level of +/-

15% were applied.  

The CNN-regressor was trained with the ADAM weight update scheme with parameters as recommended 

in Kingma and Ba (19) for 20 epochs. A learning rate decay was also applied reducing the learning rate with 

2% for each epoch. The CNN-regressor minimizes the Mean-Square-error of the difference between the 

predicted and recorded poverty scores. 

Final CNN-regressor predictions in cells are based on five crops and take the mean of these five predictions 

as the final prediction for each cell. This is in order to cover the whole area of the 400x400 pixel cells as the 

pretrained CNN was designed for images of 299x299 pixels. Figure A2-3 illustrates the cropping. 

 

 

Figure A2-3 - Applying the CNN-regressor for poverty score prediction over cell level images. White dashed lines indicate the 5 crops 

from which an average poverty score is taken. 

This yielded a Mean-Square-Error (MSE) on the training dataset of 0.02 and an out-of-sample MSE of 0.35. 

The test accuracy is calculated on 10% of the cells with poverty scores. Test set cells was selected in a 

stratified manner over the five cities of interest. 

 See also Figure A1-2 and Table 1 for further results on model prediction accuracy on cell level. Note the 

excluded sample is based on cell level, but data set vary between training and predictions.  

The CNN regressor is implemented in Python using the Keras library.  

Random Forest estimation of poverty scores 

Data 
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The Random Forest model prediction models are based on the 115x115 m cells defined for the five cities 

covered. The average poverty score from IOF and PASP households in each cell is the target variable the 

models. The full sample is 3,927cells, of which 10 percent (392 observations) is excluded for evaluation, 

leaving 3,535 cells for training of the models. The excluded sample is stratified over the five cities. 

Features, at cell level, for the model include: 

 Length and distance to nearest primary, residential and other road from OSM. 

 Distance to city center.  

 CNN Estimates of structure density and quality and use, as described above. 

 CNN estimates of poverty score, as described above. 

 Spatial lag of above features with exponential distance decay parameter of 1.5 including up to 

500 meters from center points of each cell. 

Random Forest prediction of poverty score 

Application of Random Forest is recent and still scant for poverty predictions, though evaluation of the 

method compared to alternatives have been found favorable (17, 20). 

The predictions were implemented in the Python anaconda package using the RandomForestRegressor 

module from sklearn.ensemble. Mean square errors was used as decision criteria, minimum leaf size was set 

at 10, and predictions are based on 150 trees. 


