Investigating Welfare Dynamics with Repeated Cross Sections: A Copula Approach

Francois Bourguignon and Hai-Anh Dang

IARIW-WB Conference Washington DC, November 2019

I. Introduction/ Motivation (1)

Panel data

- often unavailable for developing countries
- if available, affected with various issues, incl. representativeness, attrition, measurement error
- Vietnam Household Living Standards Survey (VHLSS) for validation
 - 2006- 2008 rounds
 - ✓ high-quality survey data
 - ✓ rotating panel design, with 50% being refreshed each round
 - ✓ approx. 9,200 households, incl. 4,500 panel households, each round

I. Introduction/ Motivation (2)

Synthetic panels

- builds on pseudo-panel literature
- recent statistical techniques to construct "panel" data from <u>two</u> (or more) rounds of repeated cross sections
- absent panel data, provide estimates for poverty mobility and vulnerability dynamics

I. Introduction/ Background (3)

Previous literature

- seminal work by Deaton (1985, JoE) constructs pseudo-panels
- subsequent work by Bourguignon et al. (2004), Güell and Hu (2006, JoE)
- Dang et al. (2014, JDE), Dang and Lanjouw (2013), Bourguignon, Moreno, and Dang (2019)

Recent validations/ applications

- Bosnia-Herzegovina, Indonesia, Lao PDR, Peru, the US and Vietnam Indonesia (IFLS) and Vietnam (VHLSS) (Dang and Lanjouw, 2013 & 2018)
- EAP: Martinez et al (PS, 2013), Garbero (JDef, 2014), Dang & Lanjouw (RIW, 2017), Urzanqui (2017), Jha et al. (2018)
- ECA: Bierbaum and Gassmann, (2012); Davalos and Sanchez-Paramo (2014); Cancho et al. (2015)
- LAC: Ferreira et al. (2013); Cruces et al. (JoEl, 2015); Vakis et al. (2015), Perez (2016), Balcazar et al. (2018); Winkelried & Torres (AE, 2019)
- SAS-MENA: Dang & Ianchovichina (RIW, 2018); Dang & Lanjouw (EDCC, 2018; UNU-WIDER working paper, 2018; OUP book chapter, forthcoming) for India
- SSA: Dang, Lanjouw & Swinkels (OUP book chapter, 2017); Dang & Dabalen (JDS, 2019)
- and other flagship reports, including OECD (2015, 2018), UNDP (2016)
- Recent reviews by Dang, Joliffe and Carletto (JES, 2019), Dang (DPR, 2020)

II. Synthetic Panels / Technique (1)

Let x_{ij} be a vector of time-invariant household characteristics (e.g, ethnicity, religion, language) observed in both survey round *j*, *j*= 1, 2; *i*= 1,..., N. Assume

$$y_{(i)j} = \beta'_j x_{(i)j} + \varepsilon_{(i)j}$$
 (1)

Model assumptions:

- Underlying populations (ie, xi's) being sampled in survey rounds 1 and 2 are the same.
- 2. ϵ_{i1} and ϵ_{i2} can be linked together using a specific copula function C.

II. Synthetic Panels / Technique (2)

The synthetic panels are constructed as follows

$$\hat{y}_{ik} = \hat{\beta}'_k x_{ij} + \tilde{\varepsilon}_{ik}$$

(2)

where k = 1 or 2.

• $\tilde{\varepsilon}_{ik}$ is simulated from the copula function $C(\varepsilon_{(i)1}, \varepsilon_{(i)2}, \theta)$.

• We employ the Gaussian copula, the Clayton copula, the Frank copula, the Farlie-Gumbel-Morgenstern (FGM) copula, and the Gumbel copula.

• We convert the Pearson correlation coefficient (ρ_p) to the Spearman's rank correlation coefficient (ρ_s) (following Kendall and Gibbons, 1990)

$$\rho_s = \frac{6}{\pi(n+1)} \left(\sin^{-1} \rho_p \right) + (n-2) \sin^{-1} \frac{\rho_p}{2} \tag{3}$$

where *n* represents the sample size.

II. Synthetic Panels/ Technique (3)

- Further details on
 - copula functions
 - mobility measures
 - ✓ poverty/ quintile transitions

✓ mobility measures

III. Estimation Results (1)

	2006	2008	T-test
Log of expenditure per capita	8.45	8.73	
	(0.64)	(0.62)	
Age	42.93	43.76	
	(7.14)	(7.69)	
Female	0.17	0.17	0.0
	(0.38)	(0.38)	
Years of schooling	7.79	7.86	0.07
	(3.69)	(3.71)	
Ethnic majority group	0.85	0.86	0.01
	(0.36)	(0.35)	
Urban	0.26	0.28	0.01
	(0.44)	(0.45)	
N	3596	3701	

Table 2.1. Summary Statistics for the Cross Sections, Vietnam 2006-2008

Note: *p<0.1, **p<0.05, ***p<0.01. Standard errors are in parentheses. Household heads' ages are restricted to between 25 and 55 for the first survey round and adjusted accordingly with the year difference for the second survey round. T-tests are obtained adjusting for complex survey design.

III. Estimation Results (2)

Figure 1. Density Graphs for Actual Panels vs. Synthetic Panels, Vietnam 2006-2008

kernel = epanechnikov, bandwidth = 0.1078

kernel = epanechnikov, bandwidth = 0.1089

III. Estimation Results (3)

Table 1. Testing	Copulas	against the	Original	Cross Sections ,	Vietnam	2006-2008

Vintilo —		2006	Stall the Le	2008			
vintile	Gaussian	Clayton	Frank	Gaussian	Clayton	Frank	
1	N	N	N	N	N	N	
2	N	S	N	N	Ν	Ν	
3	S	S	S	N	N	Ν	
4	S	S	S	N	Ν	N	
5	S	S	S	N	Ν	N	
6	S	S	S	N	N	N	
7	S	S	S	N	Ν	N	
8	S	S	S	N	N	N	
9	S	S	S	N	S	N	
10	S	S	S	N	S	S	
11	S	S	S	N	S	S	
12	S	S	S	N	S	S	
13	S	S	S	N	S	N	
14	S	S	S	N	Ν	N	
15	S	S	S	N	N	N	
16	S	S	S	N	Ν	N	
17	S	S	S	N	N	N	
18	N	N	N	S	N	Ν	
19	N	N	N	S	N	N	
20	N	Ν	N	N	Ν	N	
Summary	and an and a super-	C I I I I I I I I I I I I I I I I I I I	Second	and more paints		Bonniter	
Not significant	5	4	5	18	15	17	
Significant	15	16	15	2	5	3	
Total	20	20	20	20	20	20	

III. Estimation Results (4)

Table 2. Unconditional Poverty Transitions Based on Synthetic Data for Two Periods, Vietnam 2006-2008 (Percentage)

Poverty Status						
First Period & Second Period	Actual Panel	Synthetic Panel				
Poor, Poor	9.9	8.4				
	(0.8)	(0.5)				
Poor, Nonpoor	5.9	6.1*				
	(0.5)	(0.4)				
Nonpoor, Poor	4.9	6.3				
	(0.5)	(0.5)				
Nonpoor, Nonpoor	79.3	79.1*				
	(1.0)	(0.7)				
Ν	2723	3701				

III. Estimation Results (5)

Table 3. Conditional Poverty Transitions Based on Synthetic Data for Two Periods, Vietnam 2006-2008 (Percentage)

Poverty Status						
First Period & Second Period	Actual Panel	Synthetic Panel				
Poor> Poor	62.8	57.9				
	(2.8)	(2.3)				
Poor> Nonpoor	37.2	42.1				
	(2.8)	(2.3)				
Nonpoor> Poor	5.9	7.4				
	(0.6)	(0.5)				
Nonpoor> Nonpoor	94.1	92.6				
	(0.6)	(0.5)				
Ν	2723	3701				

III. Estimation Results (6)

 Table 4: Consumption Dynamics for Two Periods, Using Gaussian Copula, Vietnam 2006-2008 (Percentage)

			2008					
			Poorest	Quintile 2	Quintile 3	Quintile 4	Richest	Total
		Poorest	12.7	4.7	1.7	0.6	0.2	20
			(0.8)	(0.4)	(0.3)	(0.2)	(0.1)	(0.9)
		Quintile 2	4.8	7.5	4.6	2.0	0.6	20
Donal A.			(0.4)	(0.6)	(0.5)	(0.3)	(0.1)	(0.9)
ranel A:		Quintile 3	1.8	5.2	6.9	4.6	1.5	20
Panals	2006		(0.3)	(0.5)	(0.5)	(0.5)	(0.2)	(0.9)
1 and 15	2000	Quintile 4	0.6	2.0	5.0	7.8	4.8	20
			(0.2)	(0.3)	(0.5)	(0.6)	(0.5)	(0.9)
		Richest	0.1	0.6	1.8	4.9	12.9	20
			(0.1)	(0.2)	(0.3)	(0.5)	(0.7)	(0.8)
		Total	20	20	20	20	20	100
			(1.0)	(0.9)	(0.9)	(0.9)	(0.9)	1.5511-13
				1717 222	20	08		
			Poorest	Quintile 2	Quintile 3	Quintile 4	Richest	Total
		Poorest	12.3*	4.9*	2.1	0.6*	0.1*	20
			(0.3)	(0.3)	(0.3)	(0.2)	(0.0)	(0.0)
		Quintile 2	5.0*	6.8	5.1*	2.6	0.6*	20
Donal D.			(0.3)	(0.3)	(0.3)	(0.3)	(0.1)	(0.0)
Fallel D:		Quintile 3	2.0*	5.1*	6.0	5.0*	1.8	20
Panels	2006		(0.2)	(0.3)	(0.3)	(0.3)	(0.2)	(0.0)
1 and 15	2000	Quintile 4	0.6*	2.7	4.9*	6.9	4.9*	20
			(0.1)	(0.3)	(0.3)	(0.3)	(0.3)	(0.0)
		Richest	0.1*	0.6*	1.8*	4.9*	12.6*	20
			(0,0)	(0,1)	(0.2)	(0.3)	(0.3)	(0.0)
			(0.0)	(0)		. ,	. ,	< /
		Total	20	20	20	20	20	100

Other variants

III. Estimation Results (7)

Figure 2. Non-anonymous Growth Incidence Curve, Vietnam 2006-2008

III. Estimation Results (8)

Poverty Status

 Table 5. Median Consumption Growth for Two Periods, Vietnam 2006-2008 (Percentage)

First Period & Second Period	Actual Panel	Synthetic Panel
Poor, Poor	3.6	3.6*
	(0.3)	(0.3)
Poor, Nonpoor	9.1	9.7
	(0.4)	(0.3)
Nonpoor, Poor	-1.5	-2.5
	(0.3)	(0.3)
Nonpoor, Nonpoor	3.1	2.8
	(0.1)	(0.1)
N	2723	3701

III. Estimation Results (9)

Table 6. Mobility Indexes for Two Periods, Vietnam 2006-2008

First Period & Second Period	Actual Panel	Synthetic Panel
Fields-Ok index	1629.9	1689.53*
	(72.7)	(44.1)
Fields-Ok index (log)	0.27	0.24
	(0.01)	(0.01)
Absolute Fields-Ok index (log)	0.32	0.33*
	(0.01)	(0.01)
Share movement index	0.03	0.03*
	(0.00)	(0.00)

IV. Conclusion & Next Steps

- Copula-based synthetic panels allow us to study various measures of consumption mobility and other mobility indexes that are not available with current techniques.
- Validation results using both actual panels and repeated cross sections from Vietnam suggest that synthetic panels may not provide the perfect substitute for actual panels.
- But in contexts where actual panel data are not available, synthetic panels can offer a promising alternative.
- We plan to add more recent data for validation.

Thank you

1. Copula Functions

The copula $C(u_1, u_2)$ associated with the distribution function $F(y_1, y_2)$ is often written as follows

$$F(y_1, y_2) = C(F_1(y_1), F_2(y_2); \theta)$$
(1.2)

which emphasizes the role of θ as the dependence parameter that measures the dependence between the two marginals. If the marginals $F_1(y_1)$, $F_2(y_2)$ are continuous, the copula function is unique.

Copula	Functional form	Domain for θ	Main Properties
Clayton	$(u_1^{-\theta} + u_2^{-\theta} - 1)^{-1/\theta}$	(0,∞)	Strong left tail dependence and weak right tail dependence
Frank	$-\frac{1}{\theta} \log \left(1 + \frac{(e^{-\theta u_1} - 1)(e^{-\theta u_2} - 1)}{e^{-\theta} - 1} \right)$	(-∞,∞)	Symmetric dependence, but with weak tail dependence
FGM	$u_1 u_2 (1 + \theta (1 - u_1)(1 - u_2))$	[-1,1]	Symmetric dependence, but with weak magnitude of dependence
Gaussian	$\Phi_G(\Phi^{-1}(u_1),\Phi^{-1}(u_2);\theta)$	(-1,1)	Symmetric dependence
Gumbel	$e^{-\left((-logu_1)^{\theta}+(-logu_2)^{\theta}\right)^{1/\theta}}$	[1,∞)	Weak left tail dependence and strong right tail dependence

Table 1.1: Commonly Used Copulas

Note: Φ is the cdf of the standard normal distribution, and ΦG is the standard bivariate normal distribution with the dependence parameter θ .

Back

1a. Validation for other countries

Table 5: Poverty Dynamics Based on Synthetic Panel Data for Two Periods, Conditional Probabilities (Percentage)										
Poverty Status	Bosnia- H	erzegovina	Lao	PDR	Р	eru	Unite	d States	Vie	etnam
First Daried & Coord	2001	- 2004	2002/03	- 2007/08	200)5-06	200)7-09	200	06-08
First Period> Second	Actual	Synthetic	Actual	Synthetic	Actual	Synthetic	Actual	Synthetic	Actual	Synthetic
renou	panel	panel	panel	panel	panel	panel	panel	panel	panel	panel
Poor> Poor	45.0	39.4	49.0	50.0	72.0	71.5	61.2	65.5	62.8	66.0
	(4.6)	(1.2)	(3.0)	(1.6)	(1.9)	(1.0)	(2.2)	(2.0)	(2.8)	(1.5)
Poor> Nonpoor	55.0	60.6	51.0	50.0	28.0	28.5	38.8	34.5	37.2	34.0
	(4.6)	(1.7)	(3.0)	(1.1)	(1.9)	(0.3)	(2.2)	(0.9)	(2.8)	(0.6)
Nonpoor> Poor	13.6	15.3	15.2	15.5	15.1	17.6	5.0	4.4	5.9	5.9
	(1.8)	(0.2)	(1.3)	(0.3)	(1.3)	(0.2)	(0.4)	(0.1)	(0.6)	(0.1)
Nonpoor> Nonpoor	86.4	84.7	84.8	84.5	84.9	82.4	95.0	95.6	94.1	94.1
	(1.8)	(0.7)	(1.3)	(0.8)	(1.3)	(0.7)	(0.4)	(0.3)	(0.6)	(0.3)
Goodness-of-fit Tests										
Within 95% CI	4	-/4	4	l/4	4	1/4	2	2/4	4	4/4
Within 1 standard error	2	2/4	4	ŀ/4	2	2/4	()/4	2	2/4
Mean coverage (percent)	1	00	1	00	7	9.5	6	6.6	9	6.8
Coverage of 100%	4	-/4	4	l/4	2	2/4	2	2/4		3/4
Ν	1342	1342	1989	3215	2250	9084	3368	3368	2723	3701

Source: Dang and Lanjouw (2013)

1b. Validation using India Human Development Survey

Panel	A: Vulnerability line equals twice		2011	the second second second	- ARTING -
pover	ty line, IHDS actual panels	Poor	Vulnerable	Secure	Total
	Poor	12.7	18.6	6.1	37.4
		(0.5)	(0.5)	(0.3)	(0.8)
	Vulnerable	6.9	21.0	15.1	43.0
2004		(0.4)	(0.5)	(0.5)	(0.7)
2004	Secure	1.2	6.2	12.1	19.6
		(0.1)	(0.3)	(0.4)	(0.6)
	Total	20.8	45.8	33.4	100
		(0.7)	(0.7)	(0.7)	
Panel	B: Vulnerability line equals twice		2011		
pover	ty line, IHDS synthetic panels	Poor	Vulnerable	Secure	Total
	Poor	15.4			
	FUUI	15.1	16./	5.9*	37.7*
		(0.2)	16.7 (0.2)	5.9 * (0.1)	37.7 * (0.4)
	Vulnerable	(0.2) 7.1*	16.7 (0.2) 19.3	5.9* (0.1) 15.9	37.7 * (0.4) 42.3
2004	Vulnerable	(0.2) 7.1* (0.0)	16.7 (0.2) 19.3 (0.1)	5.9* (0.1) 15.9 (0.1)	37.7 * (0.4) 42.3 (0.2)
2004	Vulnerable Secure	(0.2) 7.1* (0.0) 1.1	16.7 (0.2) 19.3 (0.1) 6.1*	5.9* (0.1) 15.9 (0.1) 12.9	37.7 * (0.4) 42.3 (0.2) 20.0 *
2004	Vulnerable Secure	15.1 (0.2) 7.1* (0.0) 1.1 (0.0)	16.7 (0.2) 19.3 (0.1) 6.1* (0.1)	5.9* (0.1) 15.9 (0.1) 12.9 (0.2)	37.7 * (0.4) 42.3 (0.2) 20.0 * (0.3)
2004	Vulnerable Secure Total	15.1 (0.2) 7.1* (0.0) 1.1 (0.0) 23.3	16.7 (0.2) 19.3 (0.1) 6.1* (0.1) 42.1	5.9* (0.1) 15.9 (0.1) 12.9 (0.2) 34.6	37.7 * (0.4) 42.3 (0.2) 20.0 * (0.3) 100

Note: Bold font indicates the estimate falls within the 95% CI of the actual estimate; a start ("*") indicates the estimate falls within one standard error of the actual estimate. Standard errors in parentheses are estimated with 500 bootstraps for the synthetic panels, and with adjustment for the complex survey design for both the actual and synthetic panels.

Back

Source: Dang and Lanjouw (2018)

2. Poverty/ Quintile Transitions

The unconditional poverty transitions are defined as

$$P(y_1 \sim z_1 \text{ and } y_2 \sim z_2)$$
 (1.3)

and the conditional poverty transitions are defined as

$$P(y_1 \sim z_1 | y_2 \sim z_2)$$
 (1.4)

where y_j and z_j are respectively household consumption and the poverty line in period j, j=1, 2. The relation sign (~) indicates either the larger sign (>) or smaller or equal sign (\leq). For example, $P(y_{i2} > z_2 | y_{i1} \leq z_1)$ correspond to the percentage of the poor population in the first period that escape poverty in the second period.

The quintile transitions are defined more generally but in a similar way. The percentage of the population that move from consumption group 1 in period 1 to consumption group m in period 2 is defined as

$$P^{lm} = P(z_1^{l-1} < y_1 \le z_1^l \text{ and } z_2^{m-1} < y_2 \le z_2^m)$$
(1.5)

where *l*, m=1,..., 5, and the z_j are the thresholds that separate the different consumption groups, with $z_j^{0j} = -\infty$ and $z_j^5 = \infty$, for period *j*, *j*=1, 2.

Back

3. Mobility Measures

The Fields-Ok index is defined as $M^F = |y_2 - y_1|$ (1.6) the log Fields-Ok index is defined as $M^F_{log} = lny_2 - lny_1$ (1.7) and the absolute log Fields-Ok index is defined as $M^F_{log} = |lny_2 - lny_1|$ (1.8)

The share movement index is defined as

$$M^{S} = \left| \frac{lny_{2}}{\bar{y}_{2}} - \frac{lny_{1}}{\bar{y}_{1}} \right|$$
(1.9)

where \bar{y}_j is the mean consumption in period *j*.

The non-anonymous growth incidence curve is defined as

$$g(p_1) = \frac{y_2(p_1) - y_1(p_1)}{y_1(p_1)}$$
(1.10)

which provides the consumption growth rate between period 1 and 2 of the population initially in position p_1 of the consumption distribution in period 1.

4. Household Consumption Model

Table 2.3. Estimated Parameters of H	Iousehold Consumption Using C	ross Sections, Vietna	m 2006-2008
	2006	2008	
Age	0.011***	0.009***	
	(0.001)	(0.001)	
Female	0.084***	0.113***	
	(0.022)	(0.022)	
Years of schooling	0.053***	0.056***	
	(0.003)	(0.003)	
Ethnic majority group	0.361***	0.383***	
	(0.026)	(0.026)	
Urban	0.433***	0.310***	
	(0.024)	(0.023)	
Constant	7.166***	7.492***	
	(0.051)	(0.050)	
σ _v	0.485	0.489	
Adjusted R ²	0.407	0.370	
N	3596	3701	

5. Results with Other Copulas

	Fable 2.4. Unconditional Povert	y Transitions Based on	Synthetic Data for Two Pe	eriods, Vietnam	2006-2008 (Percentage)
--	--	------------------------	---------------------------	-----------------	------------------------

Gaussian	Clayton	Frank	FGM	Gumbel
8.4	10.3	8.1	6.4	8.0
(0.5)	(0.3)	(0.3)	(0.3)	(0.3)
6.1*	4.4	6.3*	7.8	6.5
(0.4)	(0.3)	(0.4)	(0.4)	(0.4)
6.3	4.8*	7.0	8.7	7.2
(0.5)	(0.3)	(0.3)	(0.3)	(0.3)
79.1*	80.5	78.6*	77.1	78.4*
(0.7)	(0.3)	(0.4)	(0.4)	(0.4)
3701	3701	3701	3701	3701
	Gaussian 8.4 (0.5) 6.1* (0.4) 6.3 (0.5) 79.1* (0.7) 3701	Gaussian Clayton 8.4 10.3 (0.5) (0.3) 6.1* 4.4 (0.4) (0.3) 6.3 4.8* (0.5) (0.3) 6.3 4.8* (0.5) (0.3) 79.1* 80.5 (0.7) (0.3) 3701 3701	Gaussian Clayton Frank 8.4 10.3 8.1 (0.5) (0.3) (0.3) 6.1* 4.4 6.3* (0.4) (0.3) (0.4) 6.3 4.8* 7.0 (0.5) (0.3) (0.3) 79.1* 80.5 78.6* (0.7) (0.3) (0.4) 3701 3701 3701	Gaussian Clayton Frank FGM 8.4 10.3 8.1 6.4 (0.5) (0.3) (0.3) (0.3) 6.1* 4.4 6.3* 7.8 (0.4) (0.3) (0.4) (0.4) 6.3 4.8* 7.0 8.7 (0.5) (0.3) (0.3) (0.3) 79.1* 80.5 78.6* 77.1 (0.7) (0.3) (0.4) (0.4) 3701 3701 3701 3701

6. Fixing Quintile Thresholds in 2nd Period

Table 2.5 Consumption Dynamics for Two Dariads with Quintile Thresholds Fixed in 2nd Veer Vietnem 2006 2008 (I

and the second	STATISTICS.	in the second se	2008						
			Poorest	Quintile 2	Quintile 3	Quintile 4	Richest	Total	
		Poorest	17.4	12.1	6.0	2.6	0.8	38.8	
			(0.9)	(0.7)	(0.5)	(0.3)	(0.2)	(1.1)	
		Quintile 2	1.9	5.4	7.2	4.7	1.5	20.6	
			(0.3)	(0.5)	(0.6)	(0.5)	(0.2)	(0.9)	
Panel A:		Quintile 3	0.5	1.8	4.4	6.4	3.5	16.5	
Donola	2006		(0.1)	(0.3)	(0.4)	(0.5)	(0.4)	(0.8)	
I alle is	2006	Quintile 4	0.2	0.7	2.0	5.0	5.7	13.6	
			(0.1)	(0.2)	(0.3)	(0.5)	(0.5)	(0.8)	
		Richest	0.0	0.2	0.4	1.4	8.6	10.5	
			(0.0)	(0.1)	(0.1)	(0.3)	(0.6)	(0.7)	
		Total	20.0	20.0	20.0	20.0	20.0	100	
			(1.0)	(0.1) (0.1) (0.3) (0.6) 20.0 20.0 20.0 20.0 (0.9) (0.9) (0.9) (0.9) 2008					
				2008					
Panel B: Synthetic Panels			Poorest	Quintile 2	Quintile 3	Quintile 4	Richest	Total	
	2006	Poorest	16.7*	10.6	6.3*	2.6*	0.5	36.7	
			(0.3)	(0.5)	(0.5)	(0.3)	(0.1)	(1.0)	
		Quintile 2	2.3	5.2*	5.6	4.2	1.4*	18.7	
			(0.3)	(0.5)	(0.4)	(0.4)	(0.2)	(1.0)	
		Quintile 3	0.8	3.0	4.8*	5.6	3.2*	17.3*	
			(0.2)	(0.3)	(0.4)	(0.4)	(0.3)	(0.9)	
		Quintile 4	0.2*	1.1	2.7	5.3*	6.1*	15.5	
			(0.1)	(0.2)	(0.3)	(0.4)	(0.5)	(0.9)	
		Richest	0.0	0.1*	0.6	2.2	8.8*	11.8	
			(0.0)	(0.1)	(0.2)	(0.3)	(0.5)	(0.6)	
		Total	20.0	20.0	20.0	20.0	20.0	100	
			(0.0)	(0.1)	(0.1)	(0.1)	(0.0)		

7. Fixing Quintile Thresholds in 1st Period

Table 2.6. Consumption Dynamics for Two Periods, with Quintile Thresholds Fixed in 1st Year, Vietnam 2006-2008 (P

		and the second second	2008						
			Poorest	Quintile 2	Quintile 3	Quintile 4	Richest	Total	
		Poorest	7.6	5.3	4.4	1.9	0.5	19.7	
			(0.7)	(0.5)	(0.4)	(0.3)	(0.2)	(0.9)	
	2006	Quintile 2	1.1	3.9	7.3	5.4	1.9	19.6	
			(0.2)	(0.4)	(0.6)	(0.5)	(0.3)	(0.9)	
Panel A:		Quintile 3	0.2	1.6	5.2	8.5	4.5	20.0	
I rue Donala			(0.1)	(0.3)	(0.5)	(0.6)	(0.4)	(0.9)	
Pallels		Quintile 4	0.0	0.8	1.8	7.2	10.4	20.2	
			(0.0)	(0.2)	(0.3)	(0.6)	(0.6)	(0.9)	
		Richest	0.0	0.1	0.6	2.5	17.2	20.5	
			(0.0)	(0.1)	(0.2)	(0.3)	(0.8)	(0.8)	
		Total	9.1	11.7	19.2	25.5	34.5	100	
			(0.7)	(0.7)	(0.9)	(1.0)	(1.0)		
Panel B: Synthe tic Panels			2008						
			Poorest	Quintile 2	Quintile 3	Quintile 4	Richest	Total	
	2006	Poorest	7.8*	5.8	4.4*	1.7*	0.3	20.0	
			(0.4)	(0.5)	(0.5)	(0.3)	(0.1)	(0.0)	
		Quintile 2	1.9	4.6	6.9*	4.8	1.7*	20.0	
			(0.3)	(0.5)	(0.6)	(0.4)	(0.3)	(0.0)	
		Quintile 3	0.6	2.4	5.9	6.8	4.4*	20.0	
			(0.2)	(0.4)	(0.5)	(0.5)	(0.4)	(0.0)	
		Quintile 4	0.1	0.9*	3.4	6.6	9.0	20.0	
			(0.1)	(0.2)	(0.4)	(0.5)	(0.5)	(0.0)	
		Richest	0.0*	0.1*	0.8	3.0	16.1	20.0	
			(0.0)	(0.1)	(0.2)	(0.3)	(0.3)	(0.0)	
		Total	10.4	13.8	21.3	22.9	31.6	100	
			(0.5)	(1.3)	(1.3)	(1.1)	(0.8)		

Back