Using Satellite Data to Guide Urban Poverty Reduction

Peter Fisker (University of Copenhagen)

David Malmgren-Hansen (Technical University of Denmark)

Thomas Sohnesen (Consultant/Advisor World Bank, UNICEF, University of Copenhagen, UNU-WIDER)

The output: Average Poverty Score (PMT score) in a resolution of 115mx115m for all major cities

How did we get there?

We empirically test two different approaches:

Method 1:

• Using convolution neural networks (CNN) to estimate Poverty Scores directly from satellite images

Method 2:

- Using machine learning based Random Forest prediction model based on the following inputs:
 - Density and quality of building structures, extracted from satellites images using a Convolutional Neural Network (CNN).
 - Distance to center of city and nearest road of various quality, extracted from OpenStreetMaps

- Convolutional Neural Networks (CNN) has gained popularity in recent years for a range of computer vision tasks.
- They excel in image related tasks such as classification, object detection and segmentation.
- They work by applying a set of filtering operations to an image which enhance different features of the image context. Optimal feature filters are then found by optimizing the model over a set of training data samples rather than previous approaches where the filters were manually engineered.
- Pros: Many new and interesting applications.
- Con: Needs large amount of training data.
 - Transfer learning is allowing application for smaller data sets.

- Random forest is a widely applied prediction method.
- The random forest method is part of the machine learning literature and utilized for predictions in a wide range of research fields, including medical.
- The application of random forest is recent and still scant for poverty predictions, though evaluations of the method compared to alternatives have been found favorable.
- Predictions rely on a large number of prediction models, each model based on subsets of observations and a subset of predictors.
- Pros: better at predictions, more robust and less prone to overfitting.
- Cons: Less of a theoretical framework, not able to do hypothesis testing.

Method 1

115m x 115m cells

CNN regressor estimation of Poverty Scores (PMT scores)

- Target data is PMT scores for 14.252 urban households in IOF and PASP surveys.
- Images for these 14.252 households were downloaded from Google Maps based on GPS.
- Training a CNN from scratch on these 14.252 images was unsuccessful, due to too little data.
- Using transfer learning from an existing CNN architecture, pre-trained to classify images in ImageNet, combined with cropping and data augmentations, gave notable better results.

Method 2

Training of CNN for structure detection

Raw data:

- 107,507 tagged structures in the following categories:
 - 1. House with colored roof

 - House with grey roof
 House with palm roof
 Non-residential structure
 - 5. Structure under construction
 - 6. Apartment building
- 100,000 non-structures center points with at least 20 meters to the nearest structure.
- Images of the 207,000 locations with structures and no structures, downloaded from Google Maps API.

• In final training

- Palm roof and Apartment had too few observations and were excluded.
- Grey roof" category is largely overrepresented (92% of the 107 507 houses) only a subset of 10 000 images from this group was used.

Example structure detection

 By applying the CNN-detector in a sliding window approach over each of the 400x400 pixel cell images, the CNN-detector provides a count for number of windows with more than 50% probability for a structure, leading to an estimate of structure density.

Accuracy of CNN structure estimates

- Within test set accuracy of structure detection was 97 percent
- Within test set accuracy of type of structure was 67 percent, with this distribution:

	Grey roof	Painted roof	Non- residential	Under constr.
Grey roof	79%	3%	3%	15%
Painted roof	11%	73%	3%	13%
Non- res.	22%	24%	50%	4%
Under constr.	23%	7%	1%	69%

Accuracy of prediction models at cell level

Accuracy of prediction models at Bairro level

Importance scores for method 2

Further results and observations

- The models are not transferable, as predicting a city excluded from training was unsuccessful.
- There is room for improvement in raw data, as we have noise due to:
 - Data is imperfectly aligned across time
 - The quality of structure tagging could be better

Moving forward we would like to:

- Do further testing of accuracy and robustness of results, and develop standard errors, utilizing known data.
- Gain more experience with sample size and city variation, exploring
 - Other countries with geo referenced data
 - Application to multicounty settings
 - Model transferability across cities and countries
- Test application of method on other areas: population, health, education, transport, infrastructure.
- Test potential use of CNN structure estimator for impact assessments, for instance road construction and disaster.

Thank you

How expensive is this?

- The tagging of images was USD 4.800.
 - Based on gained experience, we believe it can be done of higher quality at lower costs.
- Updating predictions for Mozambique based on new Google Map images cost very little.
 - Issue: Google maps images are not dated, and the date of current images is unknown, as is the date of next update.
 - Cost of purchasing images vary notably and must be assessed on a case by case basis.