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The output: Average Poverty Score (PMT score) in a resolution of

115mx115m for all major cities
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We empirically test two different approaches:

e Using convolution neural networks (CNN) to estimate
Poverty Scores directly from satellite images

How did we

get th ere ? e Using machine learning based Random Forest prediction
model based on the following inputs:

e Density and quality of building structures, extracted
from satellites images using a Convolutional Neural
Network (CNN).

e Distance to center of city and nearest road of various
qguality, extracted from OpenStreetMaps




Short on Convolutional Neural Network (CNN)

e Convolutional Neural Networks (CNN) has gained popularity in recent years
for a range of computer vision tasks.

* They excel in image related tasks such as classification, object detection
and segmentation.

* They work by applying a set of filtering operations to an image which
enhance different teatures of the image context. Optimal feature filters are
then found by optimizing the model over a set of training data samples
rather than previous approaches where the filters were manually
engineered.

* Pros: Many new and interesting applications.

e Con: Needs large amount of training data.
* Transfer learning is allowing application for smaller data sets.



Short on Random Forest

 Random forest is a widely applied prediction method.

* The random forest method is part of the machine learning literature and
utilized for predictions in a wide range of research fields, including medical.

* The application of random forest is recent and still scant for poverty
predictions, though evaluations of the method compared to alternatives
have been found favorable.

* Predictions rely on a large number of prediction models, each model based
on subsets of observations and a subset of predictors.

* Pros: better at predictions, more robust and less prone to overfitting.

* Cons: Less of a theoretical framework, not able to do hypothesis testing.
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CNN regressor estimation of Poverty Scores (PMT scores)

* Target data is PMT scores for 14.252 urban households in IOF and
PASP surveys.

* Images for these 14.252 households were downloaded from Google
Maps based on GPS.

* Training a CNN from scratch on these 14.252 images was
unsuccessful, due to too little data.

* Using transfer learning from an existing CNN architecture, pre-trained
to classify images in ImageNet, combined with cropping and data
augmentations, gave notable better results.
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Method 2
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Raw data:
* 107,507 tagged structures in the following

categorles:

House with colored roof
House with grey roof

House with palm roof
Non-residential structure
Structure under construction

Training of
Apartment building

C N N fO I e 100,000 non-structures center points - with at least
20 meters to the nearest structure.
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structure
detection

* Images of the 207,000 locations with structures and
no structures, downloaded from Google Maps API.

* In final training
* Palm roof and Apartment had too few observations and
were excluded.
* Grey roof” category is largely overrepresented (92% of
the 107 507 houses) only a subset of 10 000 images
from this group was used.




Example structure
detection

By applying the CNN-detector in
a sliding window approach over
each of the 400x400 pixel cell
images, the CNN-detector
provides a count for number of
windows with more than 50%
probability for a structure,
leading to an estimate of
structure density.




* Within test set accuracy of structure detection was 97 percent
* Within test set accuracy of type of structure was 67 percent, with this

distribution:
Accuracy of
CNN Grey roof Painted Non- Under

structure roof residential constr.

estimates Grey 79% 3% 3% 15%
roof
Painted 11% 73% 3% 13%
roof
Non- 22% 24% 50% 4%
res.
Under 23% 7% 1% 69%

constr.




Accuracy of prediction models at cell level

Method 1 Cell level Method 2 Cell level
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Accuracy of prediction models at Bairro level

Method 1 Bairro level

Method 2 Bairro level

Observed Poverty Score
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Importance scores for method 2
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Further results and observations

* The models are not transferable, as predicting a city excluded from
training was unsuccessful.

* There is room for improvement in raw data, as we have noise due to:
* Data is imperfectly aligned across time
* The quality of structure tagging could be better



Moving forward we would like to:

* Do further testing of accuracy and robustness of results, and develop
standard errors, utilizing known data.
* Gain more experience with sample size and city variation, exploring
e Other countries with geo referenced data
* Application to multicounty settings
* Model transferability across cities and countries

» Test application of method on other areas: population, health, education,
transport, infrastructure.

* Test potential use of CNN structure estimator for impact assessments, for
instance road construction and disaster.



Thank you




* The tagging of images was USD 4.800.

* Based on gained experience, we believe it can be
done of higher quality at lower costs.

* Updating predictions for Mozambique based on
new Google Map images cost very little.
* |ssue: Google maps images are not dated, and the

date of current images is unknown, as is the date of
next update.

How

expensive is
h e * Cost of purchasing images vary notably and
t 1S must be assessed on a case by case basis.




