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Abstract 

Traditional poverty measurement is costly and time-

consuming. It costs multi-million dollars and requires 

2 to 3 years from the preparation to dissemination of 

final estimates. This paper explores whether Machine 

Learning (ML) can reduce the cost and time for 

producing poverty estimates so that anyone can 

monitor poverty and inequality easily and frequently.  

However as we show in this paper, a simple 

application of ML can cause large biases in the 

estimates of poverty and shared prosperity indicators. 

But, by combining it with other statistical techniques, 

like multiple imputation (MI), it can produce precise 

estimates of poverty and shared prosperity from a set 

of asset ownership and non-monetary conditions of 

living in a cost-effective and timely manner.  Our 

study proposes several methodologies, where ML and 

MI are combined in a different way and compares 

their performances on poverty measurement. Then, 

we discuss the pros and cons of these methodologies 

and suggest the way to select the most appropriate 

methodology for measuring poverty in each specific 

context. 

Keyword: Machine Learning, poverty measurement, 

SWIFT, survey to survey implementation 

 

1. Introduction 

Ending extreme poverty and promoting shared 

prosperity are raised as twin goals of the World Bank 

Group. The former pursues to reduce the percentage 

of the world’s population whose household 

expenditures per capita are below $1.90 per day to 3 

percent by 2030, while the latter will be measured by 

the growth rates of the poorest 40 percent of the 

population in each country. Both measures require 

household expenditure or income data collected by 

household sample surveys. 

 

However, estimating these statistics is no simple 

undertaking, especially for developing countries that 

are a center of attention for monitoring of the twin 

goals. It requires collection of household 

consumption data and estimation of poverty and 

shared prosperity indices, which need time, money, 

and highly skilled manpower. For example, a typical 

household survey data collection takes two to three 

years from its preparation to completion. It also costs 

multi-million dollars. Furthermore, to estimate the 

indicators, a country needs to deal with the following 

technical questions:  

 What items should be included in consumption 

aggregates?  

 How are price differences adjusted?  

 How are housing rents imputed?  

 How is a service flow of consumer durables 

estimated?  

 How are poverty lines estimated?  

Answering these questions requires additional 

training after completion of standard training in 

statistics and economics. For example, poverty 

economists who provide technical assistance on 

poverty measurement to developing countries need to 

take a week-long course even though most of them 

have master or Ph.D. in Economics or Statistics. 

These requirements make it nearly impossible for 

poor countries to monitor poverty and shared 

prosperity indices frequently.  

 

These requirements also make inclusion of the twin 

goals in Monitoring and Evaluation (M&E) of policy 

interventions and investment projects almost 

impossible. A typical cycle of these interventions and 

projects is three to five years. If the estimation of the 

twin goal indicators takes more than two years, it is 

often too late for the evaluation. Also, finding experts 

of poverty measurement for every single policy 

intervention or investment project is nearly 

impossible while spending multi-million dollars only 

for estimating the twin goal indicators is likely 

unjustifiable. As a result, inclusion of monitoring of 

the twin goal indicators as part of M&E explicitly is 

almost non-existent in projects in the World Bank.     

 

Survey-to-survey imputation offers a potentially cost-

effective solution for improving the frequency and 

comparability of poverty data. The idea is as follows; 

suppose consumption or income data are not 

collected in a particular year, but non-consumption 

data from other surveys are available, then 

consumption or income data can be imputed into the 

non-consumption/income data set using imputation 

models calibrated on consumption data collected 

previously, and the twin goal indicators are estimated 



from the imputed data. Such an approach can be used 

to estimate the twin goals using households surveys 

without consumption or income data like 

Development Health Surveys (DHS). However, this 

approach cannot be applied for years when no 

household survey is carried out or for M&E of most 

projects, which are carried out in different years and 

areas from official household surveys.  

 

The World Bank’s ongoing initiative, SWIFT (Survey 

of Well-being via Instant, Frequent Tracking), fills 

the data gaps (Yoshida, et al., 2015). After developing 

imputation models from the latest household surveys 

with consumption or income data, like household 

budget surveys, SWIFT conducts a survey to collect 

variables in the models and then estimates the twin 

goal indicators from the variables collected by the 

SWIFT survey using the models. This approach is 

cost-effective and time-saving because (i) the number 

of variables selected by models is usually 15 to 20 

and they can be collected in a 3 to 5 minutes 

interview; (ii) developing models takes less than one 

week and estimating the twin goals indicators using 

imputation models from 10,000 observations, a 

typical sample size of a national household survey, 

takes only 1 to 2 minutes. Programs for developing 

models are readily available and technical support for 

the implementation of SWIFT is available with a 

minimum cost. Beyond its cost-effectiveness and 

timeliness, SWIFT’s estimations are found to be 

accurate as well. Evaluation using testing data show 

the estimates of poverty headcount rates are usually 

within a few percentage points from the true rates.  

  

With SWIFT, it is no longer impossible to monitor 

the twin goals frequently, cost-effectively and 

accurately. Even for a M&E of one project, all the 

project team needs to do is to add a 3-5 minutes 

interview to a regular monitoring system, with which 

we can monitor the twin goal indicators of project 

beneficiaries.     

  

However, SWIFT is not flawless. Chen et al. 

(forthcoming) show for some countries, the estimates 

of poverty rates are not accurate for some datasets. 

SWIFT adopts linear regression models and uses a 

stepwise selection process to identify imputation 

models and variables in the models. To deal with 

overfitting issues, SWIFT uses a 10-fold cross 

validation technique to decide the p-values of the 

stepwise selection. The cross validation is certainly 

effective in reducing the risk of overfitting, but it 

increases the time to complete the development of 

imputation models. To develop one model, SWIFT 

needs 5 to 6 hours.  

 

The objective of this paper is to explore the latest 

Machine Learning technique to improve the accuracy 

of imputation models and reduce the time needed to 

develop models.   

 

Recently, along with the unprecedented progress of 

the data science and increasing availability of ICT 

tools for data collection, machine learning (ML) has 

attracted enthusiastic attention in a field of 

development (see, for example, Athey [2018] or 

Athey and W.Imbens [2019]). It is strongly believed 

that ML could be a game-changing solution for the 

accurate and timely measurement of the poverty data, 

and the SWIFT algorithm could also be improved 

greatly using the power of ML. In this paper, we 

demonstrate how ML, integrated into the framework 

of SWIFT, could produce an accurate poverty data. 

 

ML is a generic term for a wide variety of algorithms 

which detect some kind of patterns from a data set, 

which is generally quite huge, and conduct prediction 

or classification for the new data set. The idea of ML 

itself appeared in many academic fields since a long 

times ago, but the application of its algorithm became 

popular and influential in a last decade especially due 

to the significant improvement of the computing 

power. Although ML includes so many other 

powerful approaches, in this paper, we focus on 

applying two very popular algorithm of ML; 

regularized regression approaches and random forest. 

 

1.1 Regularized regression approaches 

Regularized regression approaches are those which 

impose the regularization on the magnitude of 

coefficients when minimizing the loss function. In the 

normal linear regression with n observations and p 

predictors, the dependent variable y could be written 

as; 

                                                           (1) 

where y=(y1,y2,…,yn)
T
, X=(x1,x2,…,xp) is a     

matrix of independent variables, and   is a residual 

term. In the case of p < n, the coefficients 

 =(          ) can be estimated by minimizing the 

loss function, 

                   

which leads to the ordinary least squares (OLS) 

estimator. However, in the cases of p > n, the above 

approach does not work. Also, even if p<n, if n is 

small or independent variables are highly correlated, 

predictions based on OLS estimators are vulnerable 

to small sample biases, such as overfitting. To 

overcome these issues, the regularized regression 

approach solves the following minimization problem:  

                        

where       is a regularization function or simply a 



penalty against OLS estimators. Several useful forms 

of       are known, leading to different regularized 

estimators. Some popular forms include ridge, 

          
  

   , lasso,             , elastic net, 

                      . All these regularization 

functions add penalties against OLS estimators, such 

as   and     and as the penalty becomes bigger, the 

regularized regression coefficients shrink toward 0. 

This is a reason why the regularized regression 

estimators are sometimes called shrinkage estimators. 

In addition to shrinkage, each regularization function 

is known to have different characteristics. The ridge 

penalty adds the robustness to the multicollinearity 

and the lasso penalty is popular when there are too 

many predictors, as lasso enables the reduction of the 

predictors and estimation of the coefficients at the 

same time. Elastic net has mixed characteristics of 

ridge and lasso.  

 

1.2 Random forest 

Random forest is known as one of ensemble learning 

methods among machine learning techniques and 

probably one of the most popular algorithms used in 

the application of the ML. As stated above, ML 

makes a prediction on the big data set, based on 

computational algorithms which by themselves 

construct the model, learning from the data. When the 

prediction is about discrete data, the problem 

becomes classification, while when it is about 

continuous variables, it is called as a regression. The 

models constructed by algorithms in ML are often 

called as classifier or learner. In ML, the data is 

typically split into a training set from which the 

algorithm learn the model and a test set to which the 

model constructed by the algorithm is applied. ML 

contains numerous methods, and among them, the 

ensemble learning is characterized by an approach to 

predict explanatory variables at higher accuracy, 

combining the results drawn from weak learners 

which themselves do not have strong prediction 

accuracy. 

 

Typical example of ensemble learning is bagging. 

Bagging algorithm consists of mainly three steps. 

Given a vector of observations Y=(y1,y2…,yn)
T
 and 

set of explanatory variables as a matrix 

X=(x1,x2…,xp), where xi=(x1i,x2i…,xni)
T
 for i = 

1,2…p, bagging works as follows; 

 

1) Randomly sample n observations from X and Y, 

allowing the replacement and call the new sample a 

training dataset. Due to the replacement, some 

portion of the original dataset (X, Y) are not included 

in the training dataset. This remaining dataset is 

called an “Out of Bag” (OOB) dataset and is used as 

a testing data to evaluate the fitness of predictions of 

Random Forest. Using the training dataset, construct 

the model of classification or regression, which is 

referred to as a (weak) learner   

2) Repeat 1) for b times and get a weak learner   , 

where j=1,2,…b 

3) These    are applied to a test set constructed from 

OOB data. Then the final prediction is made by a 

strong learner f, which averages the predictions from 

all the weak learners   ; 

     
 

 
      

 

   

 

Averaging the weak learners is implemented by 

taking the mean of values predicted in the case of 

regression or by taking the majority vote when it is a 

problem of classification. The difference between the 

predicted and actual value in OOB data is referred to 

as an OOB error and is used for the model selection 

with different parameters. 

 

One of popular methods used for developing a weak 

learner is a classification and regression tree (CART). 

CART is an approach for predicting or classifying 

variables Y, by repeatedly partitioning the data 

according to the certain value of explanatory 

variables X. It is called as a “tree” because the 

partitioning of the data is often shown as a tree-like 

structure, as exemplified in Figure 1. The figure 

illustrates the result of CART using the famous data 

set Iris, contained in R software
1
. Iris includes the 

length and width of the sepal and petal of three 

different species of iris, setosa, versicolor and 

virginica. In this example, the objective of the model 

is to classify the species of iris according to the 

information on its sepal and petal. The result of 

CART consists of nodes which determine the 

threshold value of X to split the data, and branches 

growing out of the nodes. The algorithm tries to 

detect these X values at the branch point so that the 

subset of y, grouped at the terminal of the node 

becomes homogeneous. In this case, 1.9 of the Petal 

Length, 1.7 of the Petal Width and 4.8 of the Petal 

Length are the thresholds detected by the algorithm. 

According to Figure 1, one can see that the node 1 

managed to distinguish the group of setosa, node 3 

with Virginica and node 4 with Versicolor. Although 

this is the example of classification, it can also be 

used to predict the continuous variables using 

explanatory variables, which is implemented by a 

regression tree. Unlike the normal linear regression 

analysis, the regression tree has a merit in capturing 

the non-linear relationship between X and Y, as it 

                                                             
1
 https://www.r-project.org/ 

https://www.r-project.org/


Figure 1: Comparison between SWIFT and simple 
ML 

Figure 1: Example of CART 

does not assume any linear relationship between 

variables when searching for the branch point of the 

tree. 

 

 

Random forest is an extended approach of bagging, 

using CART for developing a weak learner (or a tree). 

and makes a prediction from a strong learner - an 

ensemble of the results from weak learners (or trees), 

for improving the accuracy of the prediction. This is 

why it is called as a “forest”. Another feature of 

random forest is double randomization. As described 

above, as part of bagging, b samples are created by 

random selection of n observations with replacement. 

Random forest has another randomization – random 

selection of a subset of explanatory variables instead 

of using all X=(x1,x2…xp) for each sample. Each 

weak learner is thus constructed from a different 

subset of explanatory variables, which reduces 

correlations between weak learners and the variance 

of the final predictor – a strong learner (see more 

details in Hastie et al., 2007).   Besides, as random 

forest is an ensemble approach which try to predict y 

variable combining the results from hundreds of 

regression/classification trees, it is especially good at 

detecting the non-linear relationships between Y and 

X variables. 

 

2. Data and Evaluation Methodology 

We used Uganda National Household Survey 

(UNHS) data of two different years (2009, 2012), 

where both consumption and non-consumption data 

are included. First, the models for imputations 

between household expenditures in natural log and 

covariates including the assets of the household, 

educational level of the household head and number 

of household members, etc., are developed from the 

2009 round of data by using the current poverty 

prediction approach (SWIFT) and ML algorithms 

including regularized regression approaches and 

random forest, and the modifications. Then applying 

these models into the 2012 round of data, poverty 

rates at the national level are estimated and compared 

with the actual ones calculated from the household 

consumption data.  

 

3. Issues to be dealt with when applying ML for 

poverty measurement 

 

The simple applications of the ML approaches for 

calculating the poverty measures such as the poverty 

rate or mean income for the bottom 40% face large 

biases. Figure 2 shows what will happen when we 

simply apply the regularized regression approach, 

which is elastic net in this case, and the random forest 

using the Ugandan consumption data.  

The black line shows the true distribution of the log 

of consumption expenditure, and the blue line depicts 

the distribution predicted by the traditional SWIFT 

model. Compared with these two distributions, the 

ones of elastic net and random forest are much 

narrower. As a result, if the ML estimators are used 

for estimating poverty rates or the mean household 

expenditure of the poorest 40 percent of population, 

both statistics face large biases.  

 

This is due to the fact that ML is designed to produce 

only the prediction of the log of household 

consumption expenditure. It is however clear from 

equation (1) that the variance of log of household 

expenditure is a sum of variances of predicted 

expenditures and of residuals. But since ML 

approaches, both regularized regression approaches 

and random forest, produce only the predictions, the 

variance of the predictors is significantly smaller than 

the actual one. On the other hand, SWIFT and a 

typical survey to survey imputation technique take 

into account the variances of predictions and errors, 

the distribution of imputed household expenditures 



(in log), as discussed below, is much closer to the 

actual one than ML predictors (see Yoshida et al., 

2015).  

 

Ignoring the variance of the residuals causes large 

biases in estimation of poverty rates and the mean 

household expenditures of the poorest 40 percent of 

population. This implies that in order to estimate 

unbiased poverty rates and shared prosperity indices, 

we need to modify ML approaches so that the impact 

of residuals needs to be properly considered.  

 

4. Possible solution 

Actually, the above issue occurs even if we just use 

the normal OLS regression. However, in the SWIFT, 

we solved this issue by combining the OLS with 

multiple imputation (MI). MI was originally 

developed to handle the missing data
2
. The key idea 

of MI is to replace each missing value with a set of 

plausible values drawn from the predictive 

distribution conditional on the observed data and then 

generate the multiple imputed data sets to account for 

uncertainty of imputing missing values. In case of the 

normal linear regression, the procedure of the MI can 

be described as follows. 

 

Considering a univariate variable x=(x1,x2,…,xn) with 

p variables Z=(z1,z2,…,zp) that follows a normal 

linear regression model; 

                                         
                                 

(2) 

Let Zo denote the observed components of Z and Zm 

denote the missing components. 

1. Fit a regression model (2) to the observed data 

(     ) to obtain estimates   and    of the model 

parameters. 

2. Simulate new parameters    and   
  from their joint 

posterior distribution; 

  
                   

  

     
           

    
    

    
3. Obtain one set of imputed values,   

  by simulating 

from          
         

4. Repeat steps 2 and 3 to obtain M sets of imputed 

values,   
    

      
  

 

In the following sections, we propose a way to 

combine the MI with our regularized regression 

approaches and random forest to integrate the error 

term. 

 

4.1 Combining regularized regression approaches 

                                                             
2
 For details on different algorithms on MI, see, for 

example, Harel and Zhou (2006), Kropko et al. (2013), 

Bertsimas et al.(2018) 

with MI 

The first step of MI described above can be done 

easily with the regularized regression approaches. 

However, the issue comes under the step 2. Let   be 

the unknown model parameters, which in this case 

       . When the regularized regression 

approaches are used, it is not easy to derive the 

distribution           mathematically as done in the 

above step 2. Therefore, it is required to obtain the 

distribution of   somehow empirically, which would 

be enabled by using a bootstrap data as follows 

(Deng, et al., 2016).   

(1) Generate a bootstrap data set Z of size n by randomly 

drawing n observations from Z with replacement. 

(2) Use a regularized regression method to fit the 

model                based on the Zo, and obtain 

parameter estimate   , noting that    can be considered 

a random draw from        . 

(3) Impute     , with       by drawing randomly from 

the predictive distribution                 , which is 

in this case,             . 

 

And we can repeat the above procedure for M times 

results to obtain M imputed data sets.  

 

4.2 Combining random forest with MI 

We can combine random forest with MI in a similar 

way with regularized regression approaches, but in 

random forest, we do not obtain  , but              3. 

So the procedure looks like as follows (Shah et al., 

2013). 

 

(1) Generate a bootstrap data set Z of size n by 

randomly drawing n observations from Z with 

replacement 

(2) Standard random forest is applied to (           ), 

which gives                

(3) Missing Y values are imputed by taking a normal 

draw centered on               and residual variance 

equal to the “out of bag” mean square error 

 

                                                             
3 In other words, we obtain the group of trees which return  

Y taking the inputs of (       ) 



Figure 3: Summary of the overall performance 

Figure 4: Predicted values VS True value 

By using a bootstrap data set, it is possible to 

combine ML with MI. Figure 3 shows the 

distributions of the consumption using the traditional 

SWIFT, elastic net combined with MI, and random 

forest combined with MI. It can be seen that the 

performance of the regularized regression approach, 

which is elastic net in this case, and random forest 

improved greatly because they managed to take into 

account the error term properly.  

 

But just from this graph visually comparing the 

multiple distributions, it is difficult to say which 

methodology fits the best, as some methods are good 

at capturing the lower tail, while others perform good 

at the higher tail of the distribution. To grasp the 

overall performance of the methodology, the absolute 

gap between the true poverty rate and the predicted 

one, when the poverty line is moved from 1% 

quantile of the distribution up to 100% with increase 

of 1%, which produces 100 numbers for each 

methodology, was calculated, as shown in Figure 4. 

 

Figure 5 shows the mean and maximum absolute 

difference between true and predicted poverty rate. In 

this example, the random forest+MI appears to be the 

best methodology with the least error. 

 

5. Need for variable selection 

Now we confirm that ML could be very promising 

for the accurate poverty measurement. Nevertheless, 

there remains an issue for regularized regression 

approaches and random forest. In the typical SWIFT 

problem setting, the model is constructed using a data 

set of year 0 and in the model construction, the 

number of variables required to estimate the poverty 

rate normally drops drastically to around 15 to 20 due 

to the stepwise process. Then in year 1, we only have 

to collect the data for these 15 to 20 variables, which 

reduces the interview time and cost of the survey and 

this is one of the biggest advantages of the SWIFT 

approach.  

 

However, in the new ML+MI approaches described 

above, there is no explicit process of variable 

selection. In regularized regression approaches, for 

instance, if we use LASSO, the number of variables 

selected will be reduced in each bootstrapped data, 

but the group of variables selected is slightly different 

across different bootstrapped data, and so the process 

as a whole does not reduce the number of variables 

required. In the algorithm of random forest+MI, there 

is not any variable reduction in the end, either
4
. 

Therefore, we need some process of variable 

selection in order to practically make use of it in 

actual SWIFT programs. A question is whether 

limiting the number of variables used for ML 

                                                             
4 Although we use limited number of variables in each  

tree, overall, we are using all the available variables. 

Figure 2: Comparison between SWIFT and ML+MI 



approaches can reduce the accuracy of the estimation 

of the twin goal indicators.  

 

5.1 Variable selection for regularized regression 

 

Regarding the regularized regression approaches, one 

possible solution is to conduct some statistical test 

based on the coefficients. After applying the 

regularized regression on the bootstrapped data, we 

obtain the distribution of coefficients
5

 for each 

predictor. Then we can select only those variables 

with coefficients, of which 95% confidence interval 

does not contain 0. In principle, this procedure is the 

same as typical statistical tests for coefficients with a 

significance level of 5 percent.  

 

Figure 6 compares the performance of the normal 

Elastic Net (EN) +MI and the one with variable 

selection conducted in a way described above. In this 

case, the normal EN +MI uses all the 55 variables, 

while the EN + MI with the variable selection uses 

only 22 variables. Interestingly, as shown in both 

figures, the performance slightly improved with the 

process of variable selection. 

 

5.2 Variable selection for random forest 

 

For random forest, different algorithms are proposed 

for the variable selection, but probably the most 

straightforward way is to use the information of the 

variable importance, which can be calculated in 

random forest. Often used variable importance is a 

permutation importance (PI), which measures how 

much the accuracy of the prediction will get worse if 

the particular x variable is randomly permuted.  

                                                             
5 For LASSO and Elastic Net, 0 will be assigned to those 

coefficients which were not selected. 

 

Formally, PI of a specific predictor xj calculated from 

tree t, with t=1,2…T, can be written as follows; 

 

                          
   

, where   ,     and    
  are observed actual y value, 

predicted y value in tree t, and predicted y value for 

tree t after the permutation of X respectively. L() is a 

loss function, which calculates the error between 

actual y value and predicted y value. In terms of the 

classification, misclassification rate or gini impurity 

is often used as a loss function, while for regression, 

mean squared error is used. Then, the importance of 

variable xj is finally computed by averaging VI
t
(xj) 

across all trees; 

       
 

 
        

 

   

 

Using the above variable importance, we can rank the 

variables in the order of importance of each variable 

in relation to the dependent variable. Several 

methodologies are proposed to select variables 

systematically based on this ranking
6
, but here, we 

show the results of the simplest approach, in which 

we simply pick up the first top 10 or 20 variables 

from that ranking and compare their performances. 

Figure 7 illustrates the comparison between the 

normal RF+MI, RF+MI with top 10 variables and 

RF+MI with top 20 variables.  

 

It is interesting that the performance is better with 

                                                             
6 One of the popular algorithms for selecting variables 

using the variable importance calculated by Random Forest 

is VSURF (Genuer, Poggi and Tuleau-Malot, 2015), which 

can be implemented in R software. 

Figure 5: EN+MI with variable selection  

Figure 6: RF+MI with variable selection 



Figure 8: Robustness against the multicollinearity 

variable selection, which is encouraging when 

considering the application of this algorithm for the 

SWIFT program, as this result implies that we need 

only a part of the variables in order to get the better 

results. In this case, the RF+MI with 20 variables is 

the best among all other methodologies with the 

average gap between the true poverty rate of 0.009 

and the maximum gap with 0.018, which is a 

significant improvement from the original SWIFT.  
 

6. Robustness against the multicollinearity 

One of the issues of SWIFT or other methodologies 

using stepwise for variable selections is 

multicollinearity between the explanatory variables. 

To see the robustness of the different modified ML 

approaches against the multicollinearity, we 

conducted the above exercise including the square, 

cube, the fourth and fifth power of the household size 

cumulatively and compared the performances by the 

mean error of the poverty rate, which is illustrated in 

Figure 8. 

 

It can be seen that the performance of traditional 

poverty approaches using OLS framework (SWIFT, 

Post Lasso where the explanatory variables are 

selected using lasso instead of stepwise) deteriorate 

suddenly after including the term of square and gets 

worse gradually along with the additional power term. 

On the other hand, the performance of regularized 

regression approaches, no matter what the penalty 

terms are, and random forest is stable irrespective of 

the addition of the power terms, which clearly 

indicates the robustness of these ML approaches 

against the multicollinearity.  

 

7. How to select the best methodology 

Now we know that different approaches of machine 

learning could improve the poverty measurement 

significantly. However, there still remains an issue on 

how to select the best methodology. For instance, the 

random forest is essentially non-linear, which is 

fundamentally different from other linear regression 

approaches such as original SWIFT or regularized 

regression approaches. Whether the linear or non-

linear methods should be selected depends on the 

data structure. In the previous case study using 

Uganda data, we figured out that the best performer 

was random forest+MI if we use the difference 

between the predicted poverty rates and true rates. 

But in a real setting, nobody knows the true poverty 

rates. Therefore, we need some procedure to 

determine which methodologies to be taken only 

from the training data. Figure 9 illustrates the 

proposed solution. 

 
Figure 9: How to determine the best methodology? 

 

Let’s say we have the consumption data in year 0 and 

tries to predict the poverty rate in year 1. Then the 

first step will be to divide the data set in year 0 into 

10 folds, randomly select one fold as a test set, while 

putting other folds as a training set. Then the models 

are constructed from these training set using different 

methodologies such as stepwise, EN and RF. Then 

we apply these models to the test set and calculate the 

mean error of poverty rate for 100 poverty lines like 

we did in the previous Uganda data. As a third step, 

we pick out the different test set and training set, and 

repeat the step 1 and 2 for 10 times. Now we have the 

10 different numbers for each three methods, so we 

take the overall mean error and choose the best one 

with the least mean error of the poverty rate. Then 

finally, we apply that model for the year 1 data set to 

predict the poverty rate. 

 

8. Limitations and future research 

Although these approaches described above seem to 

be very promising, there are still limitations and 

space for the improvement. First of all, in the above 

new methodologies, we focus on the prediction of the 

consumption data which is normally distributed. In 

the process of MI under the framework of OLS, we 

assume two normal distributions for   and Y, which 

are      
           

    
    

    and Y~      
      . 

On the other hand, in the EN+MI and RF+MI 

approach, we do not have the former assumption
7
, but 

                                                             
7 This is because for regularized regression approaches, we 



still we assume that each observation comes from the 

normal distribution when imputing. The additional 

research is required to clarify the extent of the effect 

on the prediction accuracy of the new methodologies 

when the assumption of the normality is violated.   

 

In the above examples, we use the regularized 

regression approaches and random forest, both of 

which are some of the most popular algorithms of 

machine learning. However, there are also other 

powerful approaches, such as support vector machine 

and neural network. There exists some research on 

using these tools for imputing missing data
8
, and it 

would be interesting to try these novel methods for 

the poverty measurement using not only the 

traditional sets of explanatory variables, but also 

image data, such as satellite image or pictures of 

houses taken by the drone, which is difficult to 

handle with traditional approaches. 
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