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Abstract 
The adjusted headcount ratio, or MPI, is widely used by countries and international organizations to track 
multidimensional poverty and coordinate policy. Several characteristics have encouraged its rapid 
diffusion: applicability to ordinal data, ease of communication, a practical identification of the poor based 
on multiple deprivations, and a dimensional breakdown that informs and coordinates policy. Sen (1976) 
and others have argued that poverty should also be sensitive to inequality among the poor. This paper 
provides a new axiom that embodies this perspective in the multidimensional context and defines an M-
gamma family containing a range of measures satisfying the axiom. Like the FGT or P-alpha class of 
monetary measures, it has three main members: the headcount ratio to evaluate the prevalence of poverty, 
the adjusted headcount ratio to account for its intensity, and the “squared count” measure that reflects 
severity and inequality among the poor. We note that any inequality sensitive measure must violate the 
dimensional breakdown axiom and investigate Shapley decomposition methods as an alternative. 
Unfortunately, these methods can yield counterintuitive result; however, the squared count measure avoids 
this critique and its Shapley breakdown reduces to an easy to compute formula that supplements the 
traditional breakdown for the MPI with information relevant to inequality among the poor. An example 
from Cameroon illustrates our method of using M-gamma measures in tandem to evaluate multidimen-
sional poverty while accounting for inequality and dimensional contributions. 

Keywords: poverty measurement, multidimensional poverty, inequality, Shapley decomposition, transfer 
axiom, dimensional breakdown, FGT measures, decomposability, ordinal variables. 
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1. Introduction 

Multidimensional poverty measures are increasingly being applied in academic studies and policy analyses. 

The global Multidimensional Poverty Index (MPI) of the United Nations Development Programme, is 

now entering its tenth year of monitoring acute poverty in over 100 countries in developing regions and 

was recently revised and relaunched.
1
 The Atkinson Commission Report Monitoring Global Poverty (World 

Bank 2017) has called upon the World Bank to construct a multidimensional poverty measure for 

monitoring the non-monetary dimensions of global poverty. Dozens of official, national statistics on 

multidimensional poverty are now being produced by countries in line with Goal 1.2 of the Sustainable 

Development Goals.
2
 The measures have been adapted to evaluate women’s empowerment, decent work, 

gross national happiness and other multidimensional concepts.
3
 

The methodology underlying these examples – the adjusted headcount ratio 𝑀0 or MPI approach – has 

several characteristics that greatly facilitate its use in policy. First, it can be meaningfully applied to the 

types of data typically encountered when measuring multidimensional poverty, including ordinal variables 

and groups of indicators lacking a common measuring rod. Previous multidimensional measures require 

variables that have the cardinality and comparability properties of income, and hence are far less applicable. 

They violate an Ordinality axiom (defined below) embodying these data-implied constraints, while 𝑀0 

satisfies it.  

Second, its novel ‘dual cutoff’ method of identifying the poor preserves the utility of the traditional 

headcount ratio 𝐻 and augments it with a second component 𝐴 (the average breadth of deprivation) to 

obtain 𝑀0 = 𝐻𝐴. In contrast, the ‘union’ approach (anyone deprived in a single indicator is poor) and the 

                                                 

1 See UNDP and OPHI (2019a), Alkire and Santos (2014), Alkire and Jahan (2018).  
2 For example Mexico (CONEVAL 2009), Colombia (CONPES 2012), Bhutan (RGOB-NSB 2012), Chile (Government of 

Chile 2015) and others as listed in UNDP and OPHI (2019b) or on www.mppn.org.  

3 See respectively Alkire Meinzen-Dick et al.. (2013), IDB (2017), Ura et al (2012), Cameron et al (2019). 

http://www.mppn.org/
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‘intersection’ approach (a person must be deprived in all dimensions to be poor) render the headcount 

ratio 𝐻 useless for prioritizing and targeting the poor, especially when there are many indicators.  

Third, 𝑀0 can be broken down by population and dimension to obtain subindices that facilitate policy 

analysis. The Subgroup Decomposability axiom allows the assessment of subgroup contributions to 

overall poverty, thus facilitating regional analysis and targeting; the Dimensional Breakdown axiom 

(formalized below) allows the assessment of dimensional contributions to overall poverty, thus facilitating 

policy analysis and coordination.4 The result is an information platform comprising the headline poverty 

index 𝑀0 and a coordinated collection of subindices that reveal the contributions of populations and 

dimensions to overall poverty.  

Concern regarding inequality is now widespread.5 A natural question to ask is whether inequality can be 

incorporated into this form of poverty measurement and, if so, at what cost. The desire for measures that 

reflect inequality among the poor – powerfully voiced by Sen (1976) – has been reiterated in the 

multidimensional context with increasing frequency and may seem implicit in the Sustainable 

Development Goals’ priority to ‘leave no one behind’ UNGA (2015). But what sort of inequality is not 

being measured with 𝑀0?  

Inequality’s role in unidimensional poverty measurement has traditionally been represented by a transfer 

principle requiring poverty to fall as a result of a progressive transfer among the poor. This in turn has led 

to an array of distribution-sensitive unidimensional poverty measures that satisfy this property.6 In the 

multidimensional setting, there are two competing notions of inequality, leading to two distinct ways of 

                                                 

4  Subgroup Decomposability (or Decomposability) is defined for unidimensional measures in Foster, Greer, and Thorbecke 
(1984) and for multidimensional measures in Chakravarty, Mukherjee, and Renade (1998), Tsui (2002), and Bourguignon and 
Chakravarty (2003). Dimensional Breakdown and Ordinality were intuitively introduced in Atkinson (2003) and outlined in 
Alkire and Foster (2011a); they are both defined formally below. 

5 See for example Piketty (2014), Atkinson (2015).  
6  See Sen (1976), Clark, Hemming, and Ulph (1981), and Foster, Greer, and Thorbecke (1984) among others. It should be 

noted that a property properly depends on both the identification and aggregation steps. In unidimensional measurement, 
identification usually has a standard format, so we often say that the poverty measure satisfies a given property without 
explicitly specifying the identification method. Multidimensional measurement requires a more precise specification of 
identification, which when set, allows the use of a similar shorthand.  
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conceiving of inequality in multidimensional poverty. The first, linked most closely to Kolm (1977), 

generalizes the notion of a progressive transfer (or more broadly a Lorenz comparison) to the 

multidimensional setting by applying the same bistochastic matrix to every variable.7 This results in a 

coordinated “smoothing” of the distributions that preserves their means. The associated transfer principle 

for poverty measures requires the level of poverty to fall, or at least not to rise, when such a smoothing is 

applied among the poor.  

The second form of multidimensional inequality is linked to the work of Atkinson and Bourguignon (1982) 

and relies on patterns of achievements across dimensions. Imagine a case where one person initially has 

more of everything than another person and the two persons switch achievements in a single dimension. 

This can be interpreted as a progressive transfer that preserves the marginal distribution of each 

dimensional variable and lowers inequality by relaxing the positive association across variables. The 

resulting transfer principle specifies conditions under which this form of progressive transfer among the 

poor should lower poverty, or at least not raise it. 

Many multidimensional poverty methodologies satisfy one or both of these transfer principles.8 In 

particular, Alkire and Foster (2011a) show that the adjusted FGT measure 𝑀𝛼 , when used with a dual 

cutoff method of identification, satisfies the first type of transfer principle for 𝛼 ≥ 1 and the second type 

for 𝛼 ≥ 0. Note, though, that transfer properties in the multidimensional poverty literature have usually 

been ‘weak’ in that they allow poverty to remain unchanged in the face of a progressive transfer.9 It is 

                                                 

7  A bistochastic matrix is a weighted average of different permutation matrices (each of which switches achievements among 
people). When applied to an income distribution it ensures that each person’s transformed income is a weighted average of 
all the original incomes. See Foster and Sen (1997) or Alkire et al. (2015). 

8  See, for example, Chakravarty, Mukherjee, and Renade (1998), Tsui (2002), Bourguignon and Chakravarty (2003), Chakravarty 
and D’Ambrosio (2006), Maasoumi and Lugo (2008), Alkire and Foster (2011a), Bossert, Chakravarty, and D’Ambrosio 
(2013), Rippin (2013, 2017), Silber and Yalonetzky (2013), Aaberge and Brandolini (2015), Dhongde et al (2016), Datt (2018), 
and Bérenger (2017).  

9 See, for example, the related axioms of Tsui (2002), Atkinson (2003), Bourguignon and Chakravarty (2003), Chakravarty and 
D’Ambrosio (2006), Chakravarty (2009), Alkire and Foster (2011a), and Rippin (2017), and in the context of inequality, 
Gajdos and Weymark (2005). For a clarifying discussion theoretically, see Alkire et al. (2015), and empirically, Bérenger (2017). 
Dhongde et al (2016) formulates a strict version that relies on binary data for each variable. Datt (2018) formulates a strict 
version that does not apply when ordinal variables have more than one deprived level. See the discussion in section 3.1.  
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possible to define strict versions that require poverty to fall as a result of a suitably strict progressive 

transfer. Indeed, one could show that 𝑀𝛼 satisfies a strict version of the first transfer principle for 𝛼 > 1, 

while for 𝛼 > 0 it is easily transformed into a new measure satisfying a strict version of the second.10 

However, each of these distribution-sensitive measures violates Ordinality, thus severely limiting their 

applicability. This leads to the following natural questions: Is it possible to formulate a strict version of 

distribution sensitivity – by which greater inequality among the poor strictly raises poverty – that is 

applicable to multidimensional poverty methodologies satisfying Ordinality? And can we find poverty 

measures satisfying this requirement as well as the other properties that have proved to be so useful in 

practice? 

This paper considers the possibility of constructing multidimensional poverty measures satisfying key 

properties and a strict form of distribution sensitivity called Dimensional Transfer. The axiom uses an 

Atkinson-Bourguignon multidimensional transfer between the poor, but with the additional proviso that 

in one of the switched dimensions the poorer person is deprived while the other poor person is not – so 

that a deprivation is effectively transferred in the process. Given a dual cutoff approach to identification, 

we generalize the adjusted headcount ratio 𝑀0 to a parametric class 𝑀0
𝛾
 – called here the M-gamma class 

– that has a subclass satisfying Dimensional Transfer. The M-gamma class contains three main measures: 

the headcount ratio 𝑀0
0 = 𝐻, which provides information on the prevalence of poverty but violates the 

key axioms of Dimensional Breakdown and Dimensional Monotonicity (defined below); the adjusted 

headcount ratio 𝑀0
1 = 𝑀0, which satisfies these axioms but just violates Dimensional Transfer since it is 

neutral with respect to its defining transfer; and a squared count measure 𝑀0
2, which satisfies Dimensional 

Transfer but not Dimensional Breakdown.11 Each of these three M-gamma measures focuses on a 

different aspect of poverty in a manner reminiscent of the traditional P-alpha or FGT monetary measures.  

                                                 

10 This argument is outlined in Alkire and Foster (2011a, p. 485) where the individual poverty function Mα(yi; z) is replaced with 
[Mα(yi; z)]γ for some γ > 0 and averaged across the population. 

11 Chakravarty and D’Ambrosio (2006) present measures of social exclusion that correspond to 𝑀0
2 and other members of this 

class in the special case of union identification.  
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Unfortunately, no measure in the M-gamma class simultaneously satisfies Dimensional Transfer and 

Dimensional Breakdown, and we confirm that this ‘impossibility’ extends to all multidimensional poverty 

methodologies. Consequently, the property of Dimensional Transfer carries with it a significant 

opportunity cost: the loss of Dimensional Breakdown. One might avoid this trade off by using multiple 

measures, an approach which has precedence in the way the P-alpha measures typically are used. For 

example, 𝑀0
1 could be used to assess dimensional contributions, while some 𝑀0

𝛾
 for 𝛾 > 1 is used to 

provide information on inequality in poverty. But without a meaningful breakdown for the latter measures, 

the role of inequality would be limited to aggregate comparisons of poverty. 

Datt (2018) has suggested employing the Shapley decomposition methods of Shorrocks (2013) to 

illuminate the contribution of dimensions to overall poverty. The Shapley value’s theoretical meaning and 

axiomatic characterization have contributed to its wide adoption in many distributional contexts.12 Yet 

Shapley values are computationally complex and far less intuitive than standard decompositions. Could 

Shapley methods provide understandable, policy relevant information about dimensional contributions to 

overall poverty? To address this question, we apply them to the M-gamma measures for a specific example 

having hierarchical variables, the nested weighting structure, and the identification method of the global 

MPI, and find that they can lead to counterintuitive results in this canonical case. We conclude that the 

Shapley value approach does not offer a universal solution, nor a genuine alternative to 𝑀0’s dimensional 

breakdown. 

Exactly one distribution-sensitive measure in the M-gamma class manages to escape this critique: the 

squared count measure 𝑀0
2. We explain why and use this insight to derive a formula for its Shapley 

breakdown that is unexpectedly tractable and intuitive. The formula builds upon the standard breakdown 

expression for 𝑀0 but with additional ‘censored intensity’ terms to reflect the average deprivation score 

among those who are both poor and deprived in a given dimension. When all censored intensity levels are 

                                                 

12 See Ravallion and Huippi (1991) and Shorrocks (2013). 
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the same, the relative contributions revert to the original 𝑀0 levels; a relatively higher censored intensity 

will tend to increase a dimension’s relative contribution. While the squared count measure violates 

Dimensional Breakdown (as do all the measures satisfying Dimensional Transfer), its Shapley formula is 

intuitive and explicitly accounts for inequality in its poverty breakdown. An empirical example from 

Cameroon illustrates how using the three main M-gamma members in tandem can inform poverty analysis, 

with the headcount ratio 𝑀0
0 providing information on the incidence of poverty, the adjusted headcount 

ratio 𝑀0
1 adding intensity to the mix and providing the core breakdown formula, and the squared count 

𝑀0
2 adding inequality and a Shapley breakdown that deviates from the core formula in informative ways.  

The definitions and notation used in the paper are given in Section 2, while Section 3 presents formal 

definitions for three key axioms of the paper including one that proposes a role for inequality in poverty 

measurement. Section 4 presents the M-gamma class and establishes the impossibility result. Section 5 

explores Shapley decomposition methods and derives the breakdown formula for the squared count 

measure. Section 6 illustrates these new techniques, while Section 7 concludes. 

2. Notation and Definitions 

We begin with the notation and definitions needed for the subsequent analysis. Let |𝑥| denote the sum of 

all elements in any given vector 𝑥 of real numbers and let 𝜇(𝑥) signify the mean of 𝑥, or |𝑥| divided by 

the total number of elements in 𝑥. Where 𝑥 and 𝑥′ are vectors having the same number of entries, let 𝑥 >

𝑥′ denote the case where 𝑥 vector dominates 𝑥′ (so that each coordinate of 𝑥 is as large as the respective 

coordinate of 𝑥′, while 𝑥 ≠ 𝑥′). 

In what follows, we consider allocations of dimensional achievements across populations. The number of 

dimensions is assumed to be a fixed integer 𝑑 ≥ 2, where the typical dimension is 𝑗 = 1,2, … , 𝑑. The 

population size is any integer 𝑛 ≥ 1, where 𝑛 is permitted to range across the positive integers, and 𝑖 =

1,2, … , 𝑛 denotes the typical person. Let 𝑦 = [𝑦𝑖𝑗] be an 𝑛  𝑑 matrix of achievements belonging to the 



Alkire and Foster  The Role of Inequality in Poverty Measurement 

OPHI Working Paper 126  www.ophi.org.uk 7 

domain 𝑌 = {𝑦𝜖𝑅+
𝑛𝑑: 𝑛 ≥ 1} of nonnegative real matrices.13 The typical entry in 𝑦 is 𝑦𝑖𝑗 ≥ 0. We use 𝑦𝑖 

to signify the row vector of individual i’s achievements, while 𝑦∙𝑗 is the column vector that provides the 

distribution of dimension j’s achievements across people. A deprivation cutoff 𝑧𝑗 > 0 for dimension 𝑗 is 

compared to achievement level 𝑦𝑖𝑗 to determine when person i is deprived in j, namely, when 𝑦𝑖𝑗 < 𝑧𝑗. 

The row vector of dimension-specific deprivation cutoffs is denoted by 𝑧. 

Poverty measurement has an identification step and an aggregation step. An identification function 

𝜌: 𝑅+
𝑑 × 𝑅++

𝑑 → {0,1} is used to identify whether person i is poor, where 𝜌(𝑦𝑖; 𝑧) takes the value 1 if 

person i is poor, and the value 0 otherwise, and is weakly decreasing in each 𝑦𝑖𝑗 (lowering achievements 

does not bring a poor person out of poverty).14 The poverty status vector associated with 𝑦 is the column 

vector 𝑟 whose ith entry is 𝜌(𝑦𝑖; 𝑧). An index or measure of multidimensional poverty 𝑀: 𝑌 × 𝑅++
𝑑 → 𝑅+ 

aggregates the data into an overall level 𝑀(𝑦;  𝑧) of poverty in 𝑦 given 𝑧 and the identification function 

𝜌. The resulting methodology for measuring multidimensional poverty is given by ℳ = (𝜌, 𝑀). For any 

given dimension j, let 𝑌∙𝑗  be the set of all column vectors 𝑦∙𝑗 of jth dimensional achievements. It will 

sometimes be useful to focus on 𝑦 and 𝑦∙𝑗 that are consistent with a given poverty status vector 𝑟. Let 𝑌𝑟 

denote the set of all 𝑦 having 𝑟 as its poverty status vector and let 𝑌𝑟𝑗 denote the set of all 𝑦∙𝑗 that are 

derived from an achievement matrix 𝑦 found in 𝑌𝑟. 

Multidimensional poverty is identified and measured with the help of a vector 𝑤 = (𝑤1 , … , 𝑤𝑑) of 

dimensional weights satisfying |𝑤| = 1 and 𝑤𝑗 > 0 for all j, and a poverty cutoff 𝑘 satisfying 0 < 𝑘 ≤ 1. For 

any person i, the deprivation score (or weighted count) 𝑐𝑖 is the sum of weights 𝑤𝑗  across all dimensions in which 

i is deprived.15 The dual cutoff identification function 𝜌𝑘 is defined by 𝜌𝑘(𝑦𝑖; 𝑧) = 1 whenever 𝑐𝑖 ≥ 𝑘, and 

                                                 

13 We follow Alkire and Foster (2011a) in assuming that achievements are represented as nonnegative real numbers, while 
deprivation cutoffs are strictly positive. Other assumptions are clearly possible but are not explicitly covered here. 

14 While not included in our previous work, this requirement would seem to be a reasonable restriction on 𝜌 and the orientation 
of achievements. 

15 This notation expresses weights, poverty cutoff, and counts relative to the magnitude of 𝑑. An alternative but equivalent 

notation 𝑤′ = 𝑤𝑑, 𝑘′ = 𝑘𝑑 and 𝑐′ = 𝑐𝑑 was used in Alkire and Foster (2011a). 
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𝜌𝑘(𝑦𝑖; 𝑧) = 0 whenever 𝑐𝑖 < 𝑘. In other words, 𝜌𝑘 identifies person i as poor when the deprivation score 

𝑐𝑖 is at least 𝑘; otherwise, i is not poor. At one extreme, when 𝑘 = 1, the function 𝜌𝑘 becomes intersection 

identification, in which a person must be deprived in all dimensions to be poor. When 0 < 𝑘 ≤ min𝑗𝑤𝑗 , 

it becomes union identification, in which a person need be deprived in only one dimension to be identified 

as poor. Thus, while our emphasis is on the intermediate cases, 𝜌𝑘 includes the two limiting identification 

methods as well. 

It is helpful to construct a matrix of deprivations from the matrix of achievements, making use of the 

deprivation cutoffs. Let 𝑔0 = [𝑔𝑖𝑗
0 ] denote the deprivation matrix whose typical element is given by 𝑔𝑖𝑗

0 = 1 

when 𝑦𝑖𝑗 < 𝑧, and 𝑔𝑖𝑗
0 = 0 otherwise. In words, when person i is deprived in the jth dimension, the 

associated entry 𝑔𝑖𝑗
0  is 1; otherwise it is 0. The column vector 𝑔∙𝑗

0  of 𝑔0 indicates all the persons deprived 

in dimension j; the row vector 𝑔𝑖
0 = (𝑔𝑖1

0 , … , 𝑔𝑖𝑑
0 ) lists the deprivations of person i and is called i’s 

deprivation status vector. The deprivation score of person i can then be written as 𝑐𝑖 = 𝑤1𝑔𝑖1
0 + ⋯ + 𝑤𝑑𝑔𝑖𝑑

0  

which, in turn, generates the column vector 𝑐 that contains the distribution of deprivation scores across 

all persons, whether poor or nonpoor. The censored deprivation matrix 𝑔0(𝑘), defined by 𝑔𝑖𝑗
0 (𝑘) =

𝑔𝑖𝑗
0  𝜌𝑘(𝑦𝑖; 𝑧) for all i and j, uses the identification function to replace the data of the nonpoor with zeros.16 

The censored versions of the associated vectors 𝑔∙𝑗
0 (𝑘), 𝑔𝑖

0(𝑘), and 𝑐(𝑘) are then analogously defined. 

For example, the vector of censored deprivation scores 𝑐(𝑘) has 𝑐𝑖(𝑘) = 𝑐𝑖 𝜌𝑘(𝑦𝑖; 𝑧) as its ith entry.  

The adjusted headcount ratio 𝑀0 = 𝑀0(𝑦; 𝑧) of Alkire and Foster (2011a) is defined as 

𝑀0 = 𝜇(𝑐(𝑘)) = 𝐻𝐴      (1) 

where 𝜇(𝑐(𝑘)) = |𝑐(𝑘)|/𝑛 is the mean censored deprivation score across the entire population, 𝐴 =

|𝑐(𝑘)|/𝑞 is the average intensity (or deprivation score) among the poor, and 𝐻 = 𝑞/𝑛 is the headcount 

                                                 

16 Note that in the case of union identification, the censored and original versions are identical. 
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ratio, where 𝑞 = ∑ 𝜌𝑘(𝑦𝑖; 𝑧)𝑛
𝑖=1  is the number of the poor. Notice that (1) sums horizontally across the 

entries of 𝑔0(𝑘), and then vertically, yielding a decomposition across persons. Reversing the order yields 

the dimensional breakdown formula for 𝑀0 as follows 

     𝑀0 = 𝑤1𝐻1 + ⋯ + 𝑤𝑑𝐻𝑑      (2) 

where 𝐻𝑗 = 𝜇(𝑔∙𝑗
0 (𝑘)) is the censored headcount ratio, or the percentage of the population that is both poor 

and deprived in dimension j. In words, (2) expresses the adjusted headcount ratio as the weighted average 

of the censored headcount ratios. The associated breakdown vector 𝑏 = (𝑤1𝐻1, … , 𝑤𝑑𝐻𝑑) lists the 

dimensional contributions to poverty, while 𝑏𝑗/|𝑏| = 𝑤𝑗𝐻𝑗/𝑀0 are the relative contributions. 

Other measures defined in Alkire and Foster (2011a) require each variable j to be cardinally meaningful in 

order to gauge the depth of deprivation using the normalized gap (𝑧𝑗 − 𝑦𝑖𝑗)/𝑧𝑗. The censored deprivation 

matrix 𝑔0(𝑘) is replaced with matrix 𝑔𝛼(𝑘) having as its typical entry 𝑔𝑖𝑗
𝛼 (𝑘) = 𝑔𝑖𝑗

0 (𝑘)((𝑧𝑗 − 𝑦𝑖𝑗)/𝑧𝑗)𝛼 

for a given  > 0. Adding up the entries of 𝑔𝛼(𝑘) and dividing by 𝑛𝑑 generates the family 𝑀𝛼  for  > 0, 

which contains a measure 𝑀1 sensitive to the depth of deprivations, another measure 𝑀2 which 

emphasizing the largest gaps and is sensitive to the Kolm type of multidimensional inequality in the 

distribution of achievements. However, since multidimensional poverty analyses typically entail 

noncardinal variables, these measures like so many others requiring cardinal variables are effectively ruled 

out. Instead, we focus here on measures like 𝑀0 that satisfy Ordinality and can be implemented with real 

world data. 

3. Properties 

The properties of a poverty measure specify the patterns in the underlying data the measure should ignore, 

the aspects it should highlight, and the kinds of policy questions it can be used to answer. This section 

presents properties for multidimensional poverty measures, focusing first on the traditional properties 

satisfied by 𝑀0 or, more precisely, by the methodology (𝜌𝑘 , 𝑀0) since properties are, in fact, joint 
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restrictions on identification and aggregation. Only brief descriptions of these properties are provided 

here; precise definitions and verifications can be found in Alkire and Foster (2011a). Two additional 

properties of 𝑀0 that were previously discussed, but have not yet received a rigorous treatment, will be 

defined: Ordinality, which ensures that the measure can be meaningfully applied to ordinal data, and 

Dimensional Breakdown, which allows poverty to be broken down by dimension after identification. We 

conclude with a new property – Dimensional Transfer – that ensures that poverty is sensitive to a form of 

Atkinson-Bourguignon inequality among the poor. 

The properties of multidimensional poverty measures can be divided into the categories of invariance, 

subgroup, and dominance properties. Invariance properties isolate aspects of the data that should not be 

measured. They include Symmetry (invariance to permutations of achievement vectors across people), 

Replication Invariance (invariance to replications of achievement vectors across people), Deprivation Focus 

(invariance to an increment in a nondeprived achievement), and Poverty Focus (invariance to an increment 

in an achievement of a nonpoor person). 

Next are the subgroup properties that connect overall poverty to levels obtained from data broken down 

by population subgroup or by dimension. Two of the key properties here are Subgroup Consistency (if poverty 

rises in a population subgroup and stays constant in the remaining population, while subgroup population 

sizes are unchanged, then overall poverty must rise) and Subgroup Decomposability (overall poverty is a 

population-weighted sum of the poverty levels in population subgroups). 

Dominance properties focus on aspects of the data that should be measured and ensure that poverty levels 

respond appropriately to changes in achievements. They include Weak Monotonicity (an increment in a single 

achievement cannot increase poverty), Dimensional Monotonicity (a dimensional decrement among the poor 

– which lowers an achievement of a poor person from a nondeprived to a deprived level – must increase 
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overall poverty), and Weak Rearrangement (a progressive transfer among the poor arising from an 

association-decreasing rearrangement cannot increase poverty).17 

This paper takes all four invariance properties, the two subgroup properties, one dominance property 

(Weak Monotonicity) as its set of Basic Axioms for multidimensional poverty measures. We now present 

the three additional properties – an invariance property, a subgroup property, and a dominance property 

– that are the special focus of this paper. 

3.1 Ordinality 

The basic data used to construct the achievement matrix are typically derived from circumstances and 

conditions that are easy to describe and understand but have no natural metric in which to be measured. 

The numbers assigned to the various achievement levels (and deprivation cutoffs) in this domain are in a 

real sense simply placeholders designed to convey information about underlying conditions and, in 

particular, whether they are conditions of deprivation.18 Note that this general line of argument may be 

true even for the cases where the variable has an ‘in-built’ representation such as income or years of 

schooling, since the cardinalization that comes with the variable may not be the right one for reckoning 

gains and losses in a given context.19 

We say that (𝑦′; 𝑧′) is obtained from (𝑦; 𝑧) as an equivalent representation if there exist increasing functions 

𝑓𝑗: 𝑅+ → 𝑅+ for j = 1,…,d such that 𝑦𝑖𝑗
′ = 𝑓𝑗(𝑦𝑖𝑗) and 𝑧𝑗

′ = 𝑓𝑗(𝑧𝑗) for all i = 1,…,n and every j = 1,…,d. 

In other words, an equivalent representation assigns a different set of numbers to the same underlying 

                                                 

17 See Alkire and Foster (2011a) for more precise definitions of these properties. Another dominance property of Weak 
Transfer, which requires the application of the same bistochastic matrix to each dimension, is not well suited for ordinal 
variables and will not be considered here. 

18 In fact, categorical information is all that is necessary in the present context. Even if the deprived achievements cannot be 
ranked one against the other, and the same is true for the achievements in the non-deprived category, one could use any 
numerical assignment that would correctly separate achievements into the deprived or non-deprived categories, with the 
deprivation cutoff being set at an appropriate value in between. The functions used below in the definition of equivalent 
representation need only preserve the categorical allocations. 

19 For a fuller treatment of scales and measurement see Stevens (1946), Sen (1973, 1997), Alkire et al. (2015), and the references 
therein. 
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basic data while preserving the original order. The methodology (𝜌𝑘 , 𝑀0) satisfies the following invariance 

property, which embodies the concern that the measure should be independent of the way the underlying 

data are represented.20 

Ordinality: Suppose that (𝑦′;  𝑧′) is obtained from (𝑦;  𝑧) as an equivalent representation. Then the 

methodology ℳ = (𝜌, 𝑀) satisfies 𝜌(𝑦𝑖
′; 𝑧′) = 𝜌(𝑦𝑖; 𝑧), for all i, and 𝑀(𝑦′; 𝑧′) = 𝑀(𝑦; 𝑧). 

Suppose that a dual cutoff method 𝜌𝑘 is used for identification. To see that 𝑀0 satisfies this property, note 

that the dimensions in which person i is deprived are unchanged between (𝑦′; 𝑧′) and (𝑦; 𝑧), since the 

monotonic transformation ensures that 𝑦𝑖𝑗
′ < 𝑧𝑗

′ whenever 𝑦𝑖𝑗 < 𝑧𝑗. Consequently, the deprivation score 

is unchanged, which ensures that 𝜌𝑘(𝑦𝑖
′; 𝑧′) = 𝜌𝑘(𝑦𝑖; 𝑧) for all i. It follows that the associated censored 

deprivation matrices are identical, so that their means are the same, and hence 𝑀0(𝑦′; 𝑧′) = 𝑀0(𝑦; 𝑧). 

The headcount measure 𝐻 likewise satisfies Ordinality. But since normalized gaps can be very different 

for equivalent representations, Ordinality is violated by 𝑀𝛼 for  > 0 and any other measure making use 

of cardinal information on the depth of deprivations.21 

3.2 Dimensional Breakdown 

Multidimensional poverty by definition has multiple origins, and it is useful for policy purposes to have a 

method of gauging how each dimension contributes to overall poverty. For example, information on 

contributions of dimensional deprivations helps in the allocation of resources across sectors and the design 

of specific or multisectoral policies to address poverty, while monitoring progress dimension by dimension 

                                                 

20 We might imagine a weaker ordinality requirement that would only require the ordering, and not necessarily the measured 
level of poverty, to be preserved by equivalent representations. 

21 As does Datt (2018) for  > 0 and β > 1, which corresponds to indices we mentioned in 2011. Datt (2018) has recently 
proposed an alternative transfer axiom that, strictly speaking, is violated by the squared count measure (and the other M-
gamma measures satisfying our Dimensional Transfer axiom) when deprivation cutoffs are high enough to include two or 
more deprived levels. The axiom, and indeed the entire paper, seems oriented to measures requiring cardinal data, whereas 
our focus is measures satisfying Ordinality. 
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helps clarify the sources of progress.22 A thoroughgoing decomposition of poverty by dimension would 

require overall poverty to be a weighted average of dimensional components, each of which is a function 

of that dimension’s distribution of achievements only (without reference to achievements in the other 

dimensions). For example, Chakravarty, Mukherjee, and Ranade (1998) propose the following property 

for measures 𝑀 identified with a union approach:23 

Factor Decomposability: There exist 𝑣𝑗 > 0 summing to one, and component functions 𝑚𝑗: 𝑌𝑗 × 𝑅++ →

𝑅+ for 𝑗 = 1,2, … , 𝑑 such that  

   𝑀(𝑦; 𝑧) = 𝑣1𝑚1(𝑦∙1; 𝑧1) + ⋯ + 𝑣𝑑𝑚𝑑(𝑦∙𝑑; 𝑧𝑑) for 𝑦 in 𝑌  

Two alterations must be made to this property to fit the present purpose. First, Factor Decomposability 

was constructed for methodologies using a union identification approach, so that by definition every 

deprivation is a poor person’s deprivation. With an intermediate dual cutoff approach to identification, 

being deprived in a dimension does not automatically mean that a person is poor. Additional deprivations 

in other achievements may also be needed. And since a given deprivation only contributes to poverty when 

the deprived person is poor, we must consider a form of breakdown by dimension that explicitly permits 

the component functions to depend on information on who is poor. In our breakdown property, overall 

poverty is expressible as a weighted sum of dimensional components, but only after identification has 

taken place and the domain has been limited to the fixed set 𝑌𝑟 of achievement matrices with the same 

poverty status vector.24 

                                                 

22 Each of these has been used in practice: for example, in Colombia (CONPES 2012, Angulo 2016) and in Costa Rica 

(Government of Costa Rica INEC 2015). Naturally the translation from measure to policy response requires additional 
analysis. 

23 Chakravarty, Mukherjee, and Ranade (1998) also require the component functions to be identical, which seems a bit restrictive 
and that requirement is relaxed here. See also Chakravarty and Silber (2008) and Chakravarty (2009). 

24 This property allows the functional form of the breakdown to vary for every set of distributions having a different set of the 
poor – a less stringent and more general assumption than a full dimensional decomposition that requires the same functional 
form across all the subsets. 
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Second, while Factor Decomposability places no constraints on the component functions, one could argue 

that in order for a breakdown to be policy relevant, the component functions should reflect basic 

descriptive facts. The contribution of a dimension to overall poverty should intuitively be zero if no poor 

persons are deprived in that dimension; while if one or more persons are both poor and deprived in the 

dimension, then the contribution should be positive. We say that 𝑚𝑗(𝑦∙𝑗; 𝑧𝑗) is normalized if 𝑚𝑗(𝑦∙𝑗; 𝑧𝑗) =

0 whenever 𝑦𝑖𝑗 ≥ 𝑧𝑗 holds for every poor person i, while 𝑚𝑗(𝑦∙𝑗; 𝑧𝑗) > 0 whenever 𝑦𝑖𝑗 < 𝑧𝑗 holds for 

some poor person i. 

Dimensional Breakdown: For any given poverty status vector 𝑟, there exist 𝑣𝑗 > 0 summing to one and 

normalized component functions 𝑚𝑗 : 𝑌𝑟𝑗 × 𝑅++ → 𝑅+ for 𝑗 = 1, . . . , 𝑑, such that 

   𝑀(𝑦; 𝑧) = 𝑣1𝑚1(𝑦∙1; 𝑧1) + ⋯ + 𝑣𝑚𝑑(𝑦∙𝑑; 𝑧𝑑) for 𝑦 in 𝑌𝑟 (3) 

In words, after identification has taken place and the poverty status of each person has been fixed, 

multidimensional poverty can be expressed as a weighted sum of dimensional components.  

For the adjusted headcount ratio 𝑀0, the weights are given by 𝑣𝑗 = 𝑤𝑗  and the normalized component 

functions are 𝑚𝑗(𝑦∙𝑗; 𝑧) = 𝐻𝑗, and hence by expression (2) the measure satisfies dimensional breakdown. 

Note that the censored headcount ratio 𝐻𝑗 = 𝜇(𝑔∙𝑗
0 (𝑘)) depends on the distribution of the other 

dimensional achievements, since all achievement levels are needed to determine who is poor. However, 

since we have restricted consideration to distributions 𝑦 having the same poverty status vector 𝑟, each 𝑟𝑖 

is effectively a constant and the entries in column 𝑔∙𝑗
0 (𝑘) can be expressed as 𝑔𝑖𝑗

0 (𝑘) = 𝑔𝑖𝑗
0 𝜌𝑘(𝑦𝑖; 𝑧) =

𝑔𝑖𝑗
0 𝑟𝑖 without reference to other dimensions. Consequently 𝐻𝑗 depends only on 𝑦∙𝑗 and 𝑧 over this domain 

as required by Dimensional Breakdown. The measures 𝑀𝛼 for 𝛼 > 0 also satisfy Dimensional Breakdown. 

On the other hand, the multidimensional headcount ratio 𝐻 violates the property for any 𝜌𝑘 excluding 

intersection identification. Clearly, for every such 𝜌𝑘 there is at least one dimension j in which a person 

could be nondeprived and yet remain poor. If everyone went from being deprived in all dimensions to 

being deprived in all but j, the normalized component function 𝑚𝑗(𝑦∙𝑗; 𝑧) would have to fall to 0 from a 
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positive value. Since 𝑤𝑗 > 0, the overall measure would have to fall, and yet 𝐻 remains unchanged, 

violating Dimensional Breakdown. In the special case of intersection identification, intensity 𝐴 is 1 and so 

the multidimensional headcount ratio 𝐻 becomes 𝑀0 and satisfies Dimensional Breakdown. 

3.3 Dimensional Transfer 

Transfer properties are motivated by the idea that poverty should be sensitive to the level of inequality 

among the poor, with greater inequality being associated with a higher (or at least no lower) level of 

poverty.25 But which notion of inequality should be used in the multidimensional context? As noted in the 

introduction, there are two concepts in common use, one linked most closely to Kolm (1977) and another 

from Atkinson and Bourguignon (1982). The first is based on a definition of a progressive transfer as a 

‘common smoothing’, whereby each dimensional distribution is transformed using the same bistochastic 

matrix. However, for this form of inequality to be meaningful, each dimensional variable would need to 

exhibit properties that are at odds with Ordinality.26 

The second inequality concept is based on a specialized transfer called a rearrangement, in which two 

persons switch achievements in certain dimensions. The role of a progressive transfer in this context is 

played by an association-decreasing rearrangement, in which the achievement vectors of the two persons are 

initially ranked by vector dominance (so that one person has no less in each dimension than the other 

person and more in one) and then after the rearrangement their achievement vectors cannot be ranked (so 

that one person has more in one dimension and the other has more in a second dimension). In symbols, 

we say that 𝑦′ is obtained from 𝑦 by an association-decreasing rearrangement if (a) both 𝑦′ and 𝑦 have the 

same population size; (b) there exist persons u and i such that for each j = 1,..., d we have {𝑦𝑢𝑗
′ , 𝑦𝑖𝑗

′ } =

{𝑦𝑢𝑗 , 𝑦𝑖𝑗}, while the achievements for all other persons are unchanged; and (c) 𝑦𝑖 > 𝑦𝑢, while neither 𝑦𝑖
′ >

𝑦𝑢
′  nor 𝑦𝑢

′ > 𝑦𝑖
′. This transformation can be interpreted as a progressive transfer in that it transforms an 

                                                 

25 See Sen (1976), Foster and Sen (1997), and Alkire et al. (2015). 
26 The transformed achievement levels in a dimension are weighted averages of initial levels and hence depend on the specific 

cardinal representation of variables. H and M0 are independent of this form of inequality among the poor. 
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initial ‘spread’ between two persons – a spread represented by the dominance between achievement 

vectors – into a moderated situation where neither person has unambiguously more than the other. The 

overall achievement levels in society are unchanged, but the correlation between them (and hence 

inequality) has been reduced.27 

Since this form of transfer involves a rearrangement and not an algebraic averaging of two persons’ 

dimensional achievements, it can be applied to ordinal data and is in principle consistent with the 

Ordinality property. The resulting transfer axiom for multidimensional poverty measures typically specifies 

that the persons involved in the rearrangement are poor. For example, the Weak Rearrangement axiom 

requires poverty not to rise as a result of an association-decreasing rearrangement among the poor. Note 

also that this axiom – like virtually all related axioms in the literature – is weak in that it does not ensure 

that poverty must strictly fall. It rejects the most problematic measures for which poverty can be ‘alleviated’ 

by increasing inequality among the poor but at the same time allows measures to be entirely insensitive to 

progressive rearrangements among the poor.28  

A natural question to ask is how to formulate a version of this transfer axiom that would, in certain 

circumstances, require poverty to strictly fall in response to a decline in inequality among the poor. One 

minimalist approach is to restrict consideration to cases where the association-decreasing rearrangement 

among the poor involves achievement levels that are on either side of deprivation cutoffs – thus affecting 

the distribution of deprivations as well. This would yield an association-decreasing rearrangement among 

the poor in achievements that is simultaneously an association-decreasing rearrangement in deprivations. 

Recalling the definition of an association-decreasing rearrangement, we say that y' is obtained from y by a 

dimensional rearrangement among the poor if for poor persons u and i it satisfies (a) – (c) above, plus (d) 𝑔𝑢
0 >

                                                 

27 Note that in order for an association-decreasing rearrangement among the poor to exist, there must be at least three 
dimensions; otherwise, it would be impossible to have vector dominance initially and the absence of vector dominance 
subsequently. 

28 Such is the case of the headcount ratio H (since the number of poor persons is unchanged) and the adjusted headcount ratio 
M0 (since the number of deprivations among the poor is also unchanged).  
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𝑔𝑖
0 while neither 𝑔𝑖

0′ > 𝑔𝑢
0′ nor 𝑔𝑢

0′ > 𝑔𝑖
0′. In other words, the initial deprivation status vectors (and 

achievement vectors) are ranked by vector dominance, while the final deprivation status vectors (and 

achievement vectors) are not.29 The extra condition ensures that the person with lower achievement levels 

is actually deprived in two or more dimensions for which the other person is not and that, through the 

rearrangement, one or more of these deprivations (but not all) are traded for non-deprived levels. The 

following transfer property for multidimensional poverty measures requires poverty to decrease when 

there is a dimensional rearrangement among the poor. 

Dimensional Transfer: If 𝑦′ is obtained from 𝑦 by a dimensional rearrangement among the poor, then 

𝑀(𝑦′;  𝑧) < 𝑀(𝑦;  𝑧). 

The axiom does not apply to cases where the association-decreasing rearrangement leaves deprivations 

unaffected; instead, it requires the two persons to switch deprivations as well as achievements.30 This 

additional requirement is analogous to the one found in Dimensional Monotonicity. Its dimensional decrement 

among the poor goes beyond an ordinary decrease in one achievement by requiring that the affected poor 

person must gain a deprivation in the process. Clearly, the headcount ratio methodology 𝐻 violates both 

Dimensional Monotonicity and Dimensional Transfer since neither transformation affects the number of 

poor persons.31 In contrast, a dimensional decrement among the poor increases the average intensity of 

poverty 𝐴 and hence 𝑀0 = 𝐻𝐴, which ensures that the adjusted headcount ratio satisfies Dimensional 

Monotonicity. But since a dimensional rearrangement among the poor leaves both 𝐻 and 𝐴 unchanged, 

                                                 

29 The vector dominance in deprivations is converse to the vector dominance in achievements so that the person with lower 
achievements has more deprivations. In order to construct such a rearrangement, it must be possible to remove (or add) a 
deprivation from some poor person without altering his or her poverty status; this rules out intersection identification, for 
example, since a person must be deprived in all dimensions to be poor. 

30 While it is possible to formulate a strict property based only on (a) – (c), constructing a meaningful poverty measure that 
satisfies it might prove to be a challenge if indicators have no inherent cardinal content upon which to rely. Adding (d) allows 
deprivations to function as the measuring rod for practical measures.  

31 This of course assumes that such a transformation exists. For example, a dimensional decrement among the poor requires 
there to be at least two dimensions and a way for a poor person to add a deprivation, which rules out intersection 
identification.  
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𝑀0 just fails to satisfy Dimensional Transfer.32 The next section presents a parametric class containing 𝐻, 

𝑀0 and a range of measures satisfying Dimensional Transfer. 

4. The M-Gamma Class 

Seth (2013) has shown how a simple transformation at the individual level can produce measures that are 

sensitive to Atkinson-Bourguignon inequality.33 The approach is now applied to 𝑀0. For any 𝛾 ≥ 0, let 

𝑐𝛾(𝑘) be the vector obtained from the vector of censored deprivation scores 𝑐(𝑘) by raising each positive 

entry to the power 𝛾 and leaving the zero entries unchanged, so that 𝑐𝑖
𝛾(𝑘) =  (𝑐𝑖)

𝛾 when person i is poor 

and 𝑐𝑖
𝛾(𝑘) = 0 otherwise. For example, when 𝛾 = 0 we obtain 𝑐0(𝑘) = 𝑟, the poverty status vector, 

while 𝛾 = 1 yields 𝑐1(𝑘) = 𝑐(𝑘), the vector of censored deprivation scores, and with 𝛾 = 2 we obtain 

vector of squared censored deprivation scores 𝑐2(𝑘). The M-gamma family of measures is defined by 

     𝑀0
𝛾

= 𝜇(𝑐𝛾(𝑘)) for  ≥ 0.    

Note that 𝑀0
0 = 𝐻 is the headcount ratio that measures the incidence of multidimensional poverty, 𝑀0

1 =

𝑀0 is the adjusted headcount ratio that includes the breadth of deprivation, while 𝑀0
2, which might be 

called the squared count measure, emphasizes the severity of deprivation by squaring each person’s 

deprivation score.34 The properties of this family are given in the following result. 

                                                 

32 Again, assuming a dimensional rearrangement exists. Since 𝐴 is the average share of deprivations poor people experience, a 

rearrangement of the same set of deprivations among the same set of poor persons does not change 𝐴. 
33 This also follows Alkire and Foster (2011a p. 485) who applied the transformation to 𝑀𝛼 for 𝛼 > 0 and obtained measures 

requiring cardinal data. 

34 For the case of union identification and equal weights, 𝑀0
2 corresponds to a measure of social exclusion proposed in 

Chakravarty and D’Ambrosio (2006), which in turn is used by Jayaraj and Subramanian (2010) for equal weights and our dual 
cutoff approach. See also Silber and Yalonetzky (2013), Aaberge and Brandolini (2015), Rippin (2017), Bérenger (2017), Datt 
(2018), and Pattanaik and Xu (2018). 
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Theorem 1. The methodology (𝜌𝑘 , 𝑀0
𝛾

) satisfies: The Basic Axioms and Ordinality for 𝛾 ≥ 0, 

Dimensional Monotonicity for 𝛾 > 0, Weak Rearrangement for 𝛾 ≥ 1, and Dimensional Transfer for 

𝛾 > 1. 

Proof: See Appendix. 

The verification of Dimensional Transfer shows how a dimensional rearrangement among the poor across 

two achievement matrices becomes a progressive transfer among the poor across the censored deprivation 

score vectors, which lowers 𝜇(𝑐𝛾(𝑘)) and hence poverty for 𝛾 > 1. A person’s censored deprivation 

score resembles the normalized poverty gap in the unidimensional world, so that the M-gamma measure 

𝑀0
𝛾
 has a form analogous to an FGT or P-alpha index, with 𝛾 playing the role of 𝛼 in the unidimensional 

measures.35 And, like 𝑃2, the squared count measure 𝑀0
2 is directly linked to standard measures of 

dispersion and inequality: 

     𝑀0
2 = (𝑀0)2 + 𝑉 = 𝐻(𝐴2 + 𝑉𝑝)    (4) 

where 𝑉 denotes the variance of the censored distribution 𝑐(𝑦), while 𝑉𝑝 is the variance applied to the 

distribution of deprivation scores among the poor.36 Dividing each variance in (4) by its associated mean 

yields a restatement 

     𝑀0
2 = (𝑀0)2(1 + 𝐶2) = 𝐻𝐴2(1 + 𝐶𝑝

2)  (4') 

in terms of relative inequality, where 𝐶2 (or 𝐶𝑝
2) is the squared coefficient of variation. Comparable 

expressions can also be derived for inequalities in the censored attainment distribution 𝑎(𝑘), defined by 

                                                 

35 In a companion paper (Alkire and Foster, 2016) we show how any unidimensional poverty measure satisfying a traditional 
transfer axiom can generate a multidimensional measure satisfying Dimensional Transfer. 

36 The verification is elementary. See also Chakravarty and D’Ambrosio (2006) and Seth and Alkire (2017). 𝑉𝑝 represents 

(absolute) inequality among the poor. 𝑉 can be decomposed across the poor and nonpoor groups into a within group term 

𝐻𝑉𝑝 and a between group term in which the variance is applied to a ‘smoothed’ distribution where each person is assigned 

the group mean. Thus, it also measures inequality across poor and nonpoor. 
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𝑎𝑖(𝑘) = 1 − 𝑐𝑖(𝑘) for all 𝑖. This change of variable has no effect on the variance and hence expression 

(4) continues to apply. However, the means are now 1 − 𝑀0 and 1 − 𝐴, respectively, thus altering the 

squared coefficients of variance and expression (4'). In particular, where 𝐶𝑝𝑎
2  is the squared coefficient of 

variation applied to the attainment distribution of the poor, we obtain 

    𝑀0
2 = 𝐻[𝐴2 + (1 − 𝐴2)𝐶𝑝𝑎

2 ] 

which mirrors the expression for 𝑃2 found in Foster et al (1984). 

While all M-gamma measures in the range  > 1 satisfy Dimensional Transfer, it can be seen that none 

of them satisfies Dimensional Breakdown. Intuitively, the strict convexity of 𝑐𝑖
𝛾

 ensures that the marginal 

value of an additional deprivation is increasing in the overall deprivation score of a poor person, while 

Dimensional Breakdown requires the marginal value to be independent of the other dimensions (at least 

over the restricted domain 𝑌𝑟). This conflict between Dimensional Transfer and Dimensional Breakdown 

holds more generally, as is shown in the following result. 

Theorem 2. Let methodology ℳ = (𝜌, 𝑀) satisfy Symmetry and suppose that ℳ has at least one 

dimensional rearrangement among the poor. Then ℳ cannot simultaneously satisfy Dimensional 

Breakdown and Dimensional Transfer. 

Proof: See Appendix. 

Theorem 2 shows that the conflict identified for the M-gamma class (given 𝜌𝑘) extends to general 

multidimensional poverty methodologies. Of course, if no dimensional rearrangement were to exist – 

which could be the case for certain methodologies – Dimensional Transfer would technically hold but 

would be empty in practice. When there is at least one situation in which the axiom applies, the conflict 

must follow. Previous results in the literature assume full factor decomposability and a union identification, 
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which diminishes their relevance in the present context.37 Theorem 2 invokes Dimensional Breakdown, 

which constrains the measure within each 𝑌𝑟 and not across domains and allows for any identification 

method including 𝜌𝑘 . 

One response to Theorem 2 would be to use two measures – one satisfying Dimensional Breakdown and 

another satisfying Dimensional Transfer – instead of seeking one measure satisfying both. This would give 

inequality a role in comparing poverty levels, but not in understanding them, which seems less than 

satisfactory. Another response would be to alter one or the other of the competing axioms. For example, 

dropping the requirement (d) from the definition of an association-decreasing rearrangement among the 

poor changes Dimensional Transfer – but in the wrong direction. An axiom based on (a) – (c) (or fewer 

restrictions) broadens its applicability and maintains the conclusions of Theorem 2: either there is no such 

rearrangement (and so the axiom is effectively inapplicable) or there is at least one such rearrangement 

and impossibility ensues.38 As for Dimensional Breakdown, which is already a weakening of Dimensional 

Decomposition, it is unclear how a specific replacement axiom might be constructed and, more 

importantly, justified. 

5. The Shapley Breakdown 

Datt (2018) proposed using the Shapley value decomposition methods advanced by Shorrocks (2013) to 

obtain a vector of dimensional contributions adding up to the poverty level. Indeed, the Shapley value 

𝜙 = (𝜙1, … , 𝜙𝑑) provides an axiomatically justified technique for allocating a given quantity 𝑀 (in this 

case the poverty level in an achievement matrix) across d many constitutive variables in such a way that 

|𝜙| = 𝑀. Each 𝜙𝑗 is based on the notion of the marginal impact of j ’s deprivations on poverty, which 

                                                 

37 For example, see the impossibility result of Pattanaik, Reddy, and Xu (2012), which uses an ordinal version of full factor 
decomposability. The main intuition underlying all of these results can be found in the earlier work of Bourguignon and 
Chakravarty (2003), or Gajdos and Weymark (2005) in the context of inequality orderings. Rippin (2017, table 3.1 cf Burchi 
et al. 2018) claims incorrectly that she has found a measure satisfying both full factor decomposability and sensitivity to 
inequality; in fact, it violates full factor decomposability. 

38 Datt’s (2018) “strong rearrangement axiom” is of this type, for example. 
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(without Dimensional Breakdown) depends on the presence or absence of the other dimensions’ 

deprivations and hence the order in which dimensional deprivations are serially suppressed to calculate 

each marginal impact. The Shapley approach computes a separate marginal impact for each ordering or 

permutation of dimensions, and then defines 𝜙𝑗 as the average marginal impact (where each ordering is 

assumed to have equal weight). 

We should note that there are practical and conceptual barriers to applying Shapley methods. One 

challenge is the computational complexity of deriving the Shapley value 𝜙 = (𝜙1, … , 𝜙𝑑), each entry of 

which entails 𝑑! many individual calculations (or their combinatoric equivalents). A second barrier is the 

absence of a summary formula for understanding its meaning. After the calculations are completed and 𝜙 

has been derived, we are essentially left with a vector of d numbers. Without an explicit formula to help 

understand these numbers, their relevance in policy applications can be limited. Finding dimensional 

components that add up to total poverty is easy; finding components that add up and have a tangible, 

readily conveyed meaning for policy applications is far more challenging. 

The adjusted headcount ratio is one measure for which the Shapley method produces a useful 

breakdown—namely, the traditional breakdown introduced in (2). Given union identification, it is 

immediate that 𝜙 = 𝑏 is its breakdown vector, with components 𝑏𝑗 = 𝑤𝑗𝐻𝑗 that are easily understood. 

This conclusion follows from the linearity of 𝑀0, which ensures that the marginal contribution of 

dimension j is always 𝑏𝑗, no matter the order of removing or adding dimensions. And the result continues 

to hold for any dual cutoff identification 𝜌𝑘 , so long as the analysis uses what we call here the Shapley 

breakdown approach, which follows Dimensional Breakdown by conducting its entire analysis post 

identification.39 Are there other measures for which the Shapley breakdown approach might provide a 

workable alternative? 

                                                 

39 In other words, the analysis takes the censored deprivation matrix 𝑔0(𝑘) as given and serially replaces columns with a column 
vector of zeros in the order determined by a permutation. The change in poverty from zeroing dimension j’s deprivations is 
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We explore this question for the M-gamma class 𝑀0
𝛾
 using a simple example based on the structure of the 

global MPI of the UNDP as described in Alkire and Jahan (2018). The global MPI has three dimensions 

with ten dimensional indicators allocated among them: two indicators with weights of 1/6 in the first 

dimension (health), two with weights of 1/6 in the second (education), and six with weights of 1/18 in 

the third (living standards), resulting in equal weights of 1/3 for each dimension. Its overall poverty cutoff 

is 𝑘 = 1/3 so that a person is poor if deprived in the equivalent of a dimension or more. 

The example compares two single person achievement matrices 𝑦 and 𝑦′, whose health indicators are 

identical but have differing education and living standards. While both are deprived in the first health 

indicator (nutrition) and not deprived in the second, 𝑦 is deprived in every education indicator and no 

living standards indicator while 𝑦′ is deprived in every living standards indicator and no education 

indicator.40 Their deprivation scores of 0.50 exceed 𝑘, and hence both persons are poor. For any given 

𝛾 > 0 the associated M-gamma poverty levels are 𝑀0
𝛾(𝑦; 𝑧) = 𝑀0

𝛾(𝑦′; 𝑧) = (0.50)𝛾, and so by definition 

the Shapley breakdown vectors 𝜙 and 𝜙′ will satisfy |𝜙| = |𝜙′| = (0.50)𝛾. Our expectation is that the 

relative contribution of indicator 1 to overall poverty, namely 𝜙1/|𝜙| and 𝜙1
′ /|𝜙′|, should be the same 

since they are identical in health and are fully deprived in exactly one other (equally weighted) dimension. 

In other words, the relative contribution of indicator 1 should not depend on whether it is education or 

living standards in which the person is fully deprived. 

Figure 1, which depicts the relative contributions 𝜙1/|𝜙| and 𝜙1
′ /|𝜙′| over a range of 𝛾 values, shows 

how widely the two can depart.41 For 𝑦, the relative contribution of indicator 1 is always 𝜙1/|𝜙| = 1/3. 

                                                 

its marginal impact for that permutation. The Shapley component 𝜙𝑗  is the average of the 𝑑! many marginal impacts for j. 

Note that this approach is inapplicable to 𝐻 if 𝐻 > 0, since all marginal impacts would be 0 and the requirement |𝜙| = 𝐻 
fails to hold. An alternative ‘pre-identification’ Shapley approach does work for H, but it has certain drawbacks as discussed 
below. 

40 In symbols, 𝑦 has 𝑔1𝑗
0 = 1 for j = 1,3,4, and 𝑔1𝑗

0 = 0 otherwise; while 𝑦′ yields 𝑔1𝑗
0 = 1 for j = 1,5,…,10 and 𝑔1𝑗

0 = 0 

otherwise. 

41 This calculation entailed a rather extensive accounting of all marginal contributions for all variables across all permutations 
of the ten variables; it is available from the authors. The example would be unchanged if a union identification were used, or 
if union and a pre-identification Shapley approach (discussed below) were used. 
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For 𝑦′ the value of 𝜙1
′ /|𝜙′| begins near 1/7, rises above 1/3 then returns to 1/7 as gamma tends to 

infinity. The departure between the two illustrates that the Shapley method can produce unintuitive results 

in the context of multidimensional poverty and should not be applied without careful evaluation. This 

kind of conceptual problem has been noted by Shorrocks (2013, p. 109), who warned that the Shapley 

method may not work well with hierarchical variables. As most implementations of multidimensional 

poverty measures entail hierarchical variables in a nested weighting structure, we conclude that Shapley 

methods do not in general provide a workable solution. 

Figure 1. Relative Contribution of Nutrition as Gamma Varies 

 

One aspect of this example, however, invites further scrutiny. Figure 1 reveals that for two values of 𝛾, 

namely 𝛾 = 1 and 𝛾 = 2, the relative contribution of indicator 1 is the same for 𝑦 and 𝑦′. In other words, 

both measures ensure that the relative contribution is independent of whether the deprived dimension is 

education or living standards. Why this holds for 𝛾 = 1 (and hence 𝑀0
1 = 𝑀0) is straightforward: Since 

its Shapley breakdown vector 𝜙 and its dimensional breakdown vector 𝑏 are the same, we know that 𝜙1 =

𝑏1 = 1/6 and |𝜙| = |𝑏| = 0.50 for 𝑦, and similarly for 𝑦′, so that 
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In the case of 𝛾 = 2, however, although we know that |𝜙| = |𝜙′| = (0.50)𝛾, the associated Shapley 

formulas are so complex that they do not immediately reveal why 𝜙1 = 𝜙1
′ . The following result provides 

the explanation. 

Lemma 1. Let 𝑦 be an achievement matrix with 𝑛 = 1. Then the Shapley breakdown vector 𝜙 for 

𝑀0
2(𝑦; 𝑧) is given by 𝜙 = 𝑏|𝑏|, where 𝑏 = (𝑤1𝐻1, … , 𝑤𝑑𝐻𝑑) is the dimensional breakdown vector for 

𝑀0
1(𝑦; 𝑧). 

Proof: See Appendix. 

From Lemma 1, it is apparent why the two curves in Figure 1 intersect at 𝛾 = 2. The Shapley breakdowns 

for measure 𝑀0
2 yield the following relative contributions for indicator 1: 

       
𝜙1

|𝜙|
= 

𝑏1|𝑏|

|𝑏||𝑏|
=

1

3
=

𝑏1
′ |𝑏′|

|𝑏′||𝑏′|
=

𝜙1
′

|𝜙′|
 

Of course, the formula from Lemma 1 only applies to the case where 𝑛 = 1. However, as we shall now 

see, it leads directly to an unexpectedly intuitive formula for the Shapley breakdown of 𝑀0
2(𝑦; 𝑧) for any 

𝑦 with an arbitrary population size. 

Recall that for any 𝑦 with 𝑛 ≥ 1, the Shapley breakdown vector of 𝑀0
1(𝑦; 𝑧) has 𝑏𝑗 = 𝑤𝑗𝐻𝑗 as its jth 

dimensional component, where 𝐻𝑗 = 𝑞𝑗/𝑛 is the censored headcount ratio for dimension j and 𝑞𝑗 =

|𝑔∙𝑗
0 (𝑘)| is the number of poor persons deprived in j. The next result makes use of two additional 

definitions. The censored intensity for dimension j is defined by 

      𝐴𝑗 =
 𝑔1𝑗

0 (𝑘)𝑐1(𝑘)+⋯+𝑔𝑛𝑗
0 (𝑘)𝑐𝑛(𝑘)

𝑞𝑗
 

This gives the average deprivation score across all poor persons i deprived in a given j (i.e., satisfying 

𝑔𝑖𝑗
0 (𝑘) = 1). The censored adjusted headcount ratio for dimension j is defined by 

      𝑀0𝑗 = 𝐻𝑗𝐴𝑗  
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It takes the average across all 𝑛 persons, where the censored persons (those not poor or not deprived in 

j) are assigned a deprivation score of zero. We have the following useful result. 

Theorem 3. For any 𝑦, the Shapley breakdown vector of 𝑀0
2(𝑦; 𝑧) is given by 𝜙 = (𝜙1, … , 𝜙𝑑) where  

      𝜙𝑗 = 𝑤𝑗𝑀0𝑗 = 𝑤𝑗𝐻𝑗𝐴𝑗 for 𝑗 = 1, … , 𝑑  (5) 

Proof: See Appendix. 

Theorem 3 shows that the Shapley breakdown formula for the squared count measure 

     𝑀0
2 = 𝑤1𝑀01

1 + ⋯ + 𝑤𝑑𝑀0𝑑
1      (6) 

is remarkably similar to the dimensional (and Shapley) breakdown formula for the adjusted headcount 

ratio 

     𝑀0
1 = 𝑤1𝑀01

0 + ⋯ + 𝑤𝑑𝑀0𝑑
0      (7) 

where we denote the censored adjusted headcount ratios by 𝑀0𝑗
1 = 𝑀0𝑗 and the censored headcount ratios 

by 𝑀0𝑗
0 = 𝐻𝑗 to highlight the parallels between the two. Equation (7) expresses the adjusted headcount 

ratio 𝑀0
1 as the weighted average of censored headcount ratios 𝑀0𝑗

0 , while (6) expresses 𝑀0
2 as the weighted 

average of censored adjusted headcount ratios 𝑀0𝑗
1 . Hence in both cases censored measures with parameter 

(𝛾 − 1) are combined to obtain an M-gamma measure with parameter 𝛾. This common structure between 

the two breakdowns is quite striking and unexpected. 

It is also informative to trace out why formulas (6) and (7) are in fact true. To verify (7), pick any i and 

examine the components on the right-hand side of (7). For each dimension j in which person i is deprived 

and poor, one of the 𝑞𝑗-many 𝑤𝑗/𝑛 terms underlying the weighted censored headcount ratio 𝑤𝑗𝑀0𝑗
0 =

𝑞𝑗(𝑤𝑗/𝑛) is due to person i. Adding up across dimensions yields 𝑐𝑖(𝑘)/𝑛, and summing these terms 

across persons yields 𝑀0
1 = 𝑀0. To verify (6), pick any i and examine the components on the right-hand 

side of (6). In each dimension j for which i is deprived and poor, the term 𝑤𝑗𝑀0𝑗
1  contains 𝑤𝑗𝑐𝑖(𝑘)/𝑛 
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from person i, which when added across dimensions yields 𝑐𝑖
2(𝑘)/𝑛. Summing across persons yields 𝑀0

2. 

Clearly the two verifications are quite parallel. 

The Shapley breakdown follows the ‘post-identification’ perspective of Dimensional Breakdown in that it 

suppresses deprivations after it has fixed the poverty status of each person. Alternatively, one could imagine 

suppressing deprivations before the poor have been identified and then using this ‘counterfactual’ scenario 

for identifying the poor and measuring marginal impacts.42 How would such a ‘pre-identification’ 

perspective affect the Shapley value? For a single individual and a specific ordering of dimensions, the 

marginal impacts are unaffected for all dimensions preceding the ‘pivotal’ dimension in which the person’s 

poverty status changes; the pivotal dimension itself is then assigned the marginal contributions from all 

later dimensions, leaving them with zero. For union identification, the pivotal dimension is the final 

dimension in which the person is deprived, which implies that all marginal impacts are unaffected and the 

original Shapley breakdown vector is obtained. For intersection identification, the marginal contributions 

all accrue to the first deprived dimension of the ordering and hence every deprived dimension is allocated 

an equal share regardless of its weight or inherent importance. For an intermediate dual cutoff 

identification, which is the primary concern of this paper, the Shapley value can depend on the 

combinatoric properties of the specific poverty cutoff and weights in complex, non-transparent ways.43 

Given our desire to be consistent with Dimensional Breakdown, and the potential for arbitrary and erratic 

results using a pre-identification approach, we have opted for the Shapley breakdown approach. 

This section has explored whether Shapley methods can usefully be applied to multidimensional poverty 

measures – especially those that satisfy Dimensional Transfer and, hence, violate Dimensional Breakdown. 

                                                 

42 See Pérez et al (2015), who applies it to 𝐻, and Datt (2018). 

43 This erratic behavior is reflected in case of (𝜌𝑘, 𝐻), which for 𝑛 = 1 mirrors the structure of a weighted voting game -a simple 

coalitional game having 𝑑 players, a vector of voting weights 𝑤𝑗, a quota 𝑘, and a characteristic function value of 1 for any 

‘winning’ coalition of players whose sum of weights meets or exceeds the quota - and 0 otherwise. Zuckerman et al. (2012), 

for example, shows how a small change in 𝑘 can alter Shapley values abruptly and unintuitively, and notes the potential for 

manipulation by shifting parameters. Similarly, if we apply (𝜌𝑘, 𝐻) to 𝑦′ from our example, the pre-identification Shapley 

contribution of nutrition rises from 14% to 29% to 49% and back down again as 𝑘 varies from 0.05 to 0.50. 



Alkire and Foster  The Role of Inequality in Poverty Measurement 

OPHI Working Paper 126  www.ophi.org.uk 28 

We concluded that Shapley methods are untenable for most M-gamma measures but lead to an intuitive 

breakdown formula for 𝑀0
2 that builds upon the canonical breakdown of 𝑀0

1. We suggest using 𝑀0
0, 𝑀0

1, 

and 𝑀0
2 in tandem to evaluate multidimensional poverty, with a typical analysis including 𝑀0

1, its subgroup 

decomposition and its canonical dimensional breakdown to understand contributions to poverty; the 

partial index 𝑀0
0 to add tangible information on the prevalence of poverty; and 𝑀0

2 and its Shapley 

breakdown to inform how results are affected when accounting for inequality. Indicators 𝐴, 𝑉, and 𝑉𝑝 

(and the accompanying relative inequality measures) can supplement the description and help explain the 

variations between the three poverty measures; they can also be computed from these measures.44 Finally, 

to convert the dimensional breakdown for 𝑀0
1 into the dimensional breakdown for 𝑀0

2 only the censored 

average intensity levels 𝐴𝑗 are needed. If the 𝐴𝑗 levels were identical, the two breakdowns would have the 

same relative contributions; they depart from one in accordance with the variations in 𝐴𝑗. In the next 

section these tools are applied to recent data from Cameroon. 

6. An Illustrative Example: Cameroon 

Consider the following example that uses the 2014 Multiple Indicator Cluster Survey to compute 

multidimensional poverty for Cameroon and its 12 subnational regions following the methods used in the 

global MPI.45 Compared to other developing countries, Cameroon has a medium level of multidimensional 

poverty, with 45.3% of the population living in poverty and an MPI (𝑀0) of 0.243. To emphasize the 

relationships among the various indices, we suspend our usual notations for H and 𝑀0 and multiply their 

decimal values by 100 to express their levels in hundredths, so that the headcount ratio for Cameroon is 

                                                 

44 For example, 𝐴 = 𝑀0
1/𝑀0

0 and 𝑉 =  𝑀0
2 − (𝑀0

1)2. 

45 The parameters of the global MPI used in this example are presented in Alkire, Kanagaratnam, and Suppa (2018). Note that 
from 2019 the MPI Table 1 includes the variance measures of inequality among the poor for every country, and all MPI 
country briefings include the analysis by intensity bands. 

 



Alkire and Foster  The Role of Inequality in Poverty Measurement 

OPHI Working Paper 126  www.ophi.org.uk 29 

45.3 and the MPI is 24.3. The disparity in poverty across regions is striking, with the headcount ratio 

ranging from 3.9 to 80.0 and the MPI ranging from 1.5 to 48. 

Table 1 presents the traditional dimensional breakdown of the MPI for the country and each of its 

regions.46 The censored headcount ratios reveal a great variety in the composition of poverty across the 

regions. Consider, for example, Adamaoua and Est, two regions close in population size and with similar 

levels of MPI (30.7 and 31.5, respectively). From the breakdown, we see that they have marked differences 

in the composition of poverty, with education deprivations of the poor in Adamaoua being far more 

widespread than in Est, health deprivations of the poor being somewhat lower, and living standards 

deprivations of the poor are mixed. For example, the censored headcount ratio for school attendance in 

Adamaoua indicates that 27.0 percent of Adamaoua’s population are MPI poor and live in households in 

which a child is not attending school up to the age at which they should complete class eight; the 

comparable figure in Est is 19.6. Likewise, poverty in Est shows higher living standards deprivations, with 

a censored headcount ratio for sanitation and housing at 49.3 and 45.5, respectively, as compared with 

40.7 and 35.5 for Adamaoua. The policies needed for responding to poverty in regions with similar MPI 

levels can vary in terms of allocation and sectoral emphases. 

Table 2 lists poverty levels for Cameroon and its regions using the three main M-gamma measures, namely, 

the headcount ratio 𝑀0
0, the adjusted headcount ratio 𝑀0

1 discussed above, and the squared count measure 

𝑀0
2. Column 1 gives the headcount ratio for Cameroon (namely 𝑀0

0 = 45.3) along with its regional levels. 

The adjusted headcount ratio for Cameroon and its regions reappears in column 2, beginning with the 

overall value of 𝑀0
1 = 24.3 for the country. It adjusts the headcount ratio 𝑀0

0 by the intensity or the 

breadth of poverty 𝐴 = |𝑐(𝑘)|/𝑞, which is also computable as 𝐴 = 𝑀0
1/𝑀0

0. The squared count measure 

𝑀0
2 in column 3 adjusts 𝑀0

0 by its own intensity term 𝐴′ = |𝑐2(𝑘)|/𝑞 = 𝑀0
2/𝑀0

0 which is sensitive to the 

                                                 

46 A dimensional breakdown can be depicted in three ways. First, by listing the censored headcount ratios 𝐻𝑗 whose weighted 

average is 𝑀0; second by listing the weighted headcount ratios 𝑏𝑗 = 𝑤𝑗𝐻𝑗 that add up to 𝑀0; and third by listing the relative 

contributions 𝑤𝑗𝐻𝑗/𝑀0 that add up to 100%. We begin with the first of these. 
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inequality of deprivations among the poor, yielding a level of 𝑀0
2 = 14.2 for Cameroon. In Table 2, regions 

are ordered according to 𝑀0
1, and the rankings according to the three measures are quite similar. There are 

in this example no rank reversals when the headcount ratio 𝑀0
0 is used instead of the adjusted headcount 

measure 𝑀0
1. There is one reversal (Sud-Ouest vs. Ouest) when we move from the adjusted headcount 

ratio to the squared count measure 𝑀0
2. The difference is the percentage increase in A’ is higher than in 

A, and it is enough to overcome the higher headcount ratio in Ouest. 

The final columns of Table 2 present additional information on absolute inequality. Column 6 lists the 

variance 𝑉 applied to the entire censored count distribution: it is also the difference between column 3 

and the square of column 2. We see the Sud-Ouest has higher variance than Ouest. Column 7 gives the 

absolute inequality 𝑉𝑝 among the poor only. Note that 𝑉 includes information both on inequality within 

the poor 𝑉𝑝 and on inequality between the poor and nonpoor groups (which depends on the group means 

and population sizes). The difference is that the percentage increase in A' is higher than in A, and it is 

enough to overcome the higher headcount ratio in Ouest, hence the reversal of Sud Ouest and Ouest. 

Table 3 divides poor people into categories according to their deprivation scores. Columns 2 to 8 provide 

an indicative overview of the percentage of poor persons who are deprived in a range of weighted 

indicators – in different intensity bands. Such descriptive information can be easily constructed and 

provides additional insight into inequality.47  

Table 4 compares the Shapley breakdown of the squared count measure to the dimensional breakdown of 

the adjusted headcount ratio for Cameroon. Columns 1, 2, and 6 provide three views of the traditional 

dimensional breakdown with column 1 listing the censored headcount ratios whose weighted average is 

𝑀𝑃𝐼 = 𝑀0
1, column 2 containing the breakdown terms that sum to 𝑀0

1, and column 6 providing the 

relative contributions that sum to 100%. Column 1 shows that five of the six living standards indicators 

                                                 

47 Country briefings related to the global MPI include these intensity bands for each country and are available on 

https://ophi.org.uk/multidimensional-poverty-index/mpi-country-briefings/. 

https://ophi.org.uk/multidimensional-poverty-index/mpi-country-briefings/
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(excluding assets) have the highest incidence of deprivation among the poor, with nutrition not far behind. 

Accounting for weights in columns 2 and 6, we see that the nutrition and years of schooling indicators 

contribute most to multidimensional poverty with the school attendance and fuel indicators next in line. 

This reflects both the high censored headcount ratio of fuel (44.6) and the higher relative weights on the 

health and education indicators (1/6 rather than 1/18).  

The censored intensities 𝐴𝑗 in column 3 indicate the average deprivation score for poor people deprived 

in dimensional indicator j. The respective dimensional breakdown entries for 𝑀0
1 are multiplied by 𝐴𝑗 to 

obtain the Shapley breakdown information for 𝑀0
2. Column 4 lists the censored adjusted headcount ratios 

whose weighted average is 𝑀0
2, while column 5 contains the Shapley breakdown terms that sum to 𝑀0

2 

and column 7 provides the relative contribution terms summing to 100%. From Column 3 we see that 

persons who are deprived in school attendance, followed by child mortality and years of schooling, have, 

on average, the highest deprivation scores across all dimensions and hence 𝐴𝑗 values. These indicators 

have higher relative contributions for 𝑀0
2 than 𝑀0

1, reflecting their higher 𝐴𝑗 values and increased 

importance in the squared count measure. For the indicators with the lowest censored intensities – cooking 

fuel and sanitation – we see that the relative contributions are also lower and by larger margins (column 

8). This example illustrates how 𝑀0
2 supplements the headcount ratio (𝑀0

0) and adjusted headcount ratio 

(𝑀0
1) by evaluating inequality among the poor. The Shapley breakdown of the squared count measure, 

when interpreted though its subcomponents, provides interesting and new information about 

multidimensional poverty. Note, though, for this example, that the main conclusions from the traditional 

dimensional breakdown of 𝑀0
1 are largely echoed by the Shapley breakdown of 𝑀0

2. 

7. Conclusions 

This paper began with the formalization of two properties, Ordinality and Dimensional Breakdown, that 

significantly contribute to the practical usefulness of the MPI, and then introduced the Dimensional 

Transfer axiom, which requires multidimensional poverty measures to be sensitive to inequality among 
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the poor. A class of multidimensional poverty measures, which we call the M-gamma measures, was also 

introduced, of which three main measures were highlighted: the traditional headcount ratio, which 

provides tangible evidence on poverty (its prevalence) but violates several key axioms; the adjusted 

headcount ratio, which satisfies many desirable axioms including Dimensional Breakdown but not 

Dimensional Transfer; and a squared count measure, which satisfies Dimensional Transfer but violates 

Dimensional Breakdown. An impossibility result showed that Dimensional Transfer inevitably conflicts 

with Dimensional Breakdown, so that by adopting the former, one must forego the latter. 

The Shapley value from cooperative game theory was explored as an alternative path to breaking down 

poverty by dimension. An example drawn from the global MPI suggested that Shapley methods cannot 

be seen as a general replacement for the traditional breakdown formula. However, when applied to the 

particular case of the squared count measure, the Shapley breakdown generates coherent results and has 

an explicit formula that intuitively builds upon the traditional dimensional breakdown formula for the 

adjusted headcount ratio. The result is a remarkably transparent, ready to use toolkit of three M-gamma 

measures, with the headcount ratio providing tangible information on the prevalence of multidimensional 

poverty, the standard adjusted headcount ratio adding information on poverty’s intensity and its 

breakdown by dimension, and the squared count introducing inequality into the analysis. The ease with 

which this technology can be used, and the clarity of its results, were illustrated using Global MPI data 

from Cameroon. 

We conclude by making two additional points in the broader area of poverty analysis. While our method 

of identifying the poor includes as extreme cases the union approach (anyone deprived in any dimension 

is poor) and the intersection approach (only those deprived in all dimensions are poor), we would like to 

stress the practical importance of using an intermediate identification between the two extremes. Poverty 

analysis entails a separation of the poor from the nonpoor in order to direct policy, and this in turn imbues 

the headcount ratio with a salience that is fundamental to poverty analysis, not to mention its role in 

communication. However, these aims are typically thwarted by restricting consideration to an extreme 
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identification. For example, the union approach typically identifies nearly everyone as poor – 93.6 percent 

in the Cameroon example – dulling prioritization and rendering the headcount ratio ineffective for policy 

and communication purposes.48 We must be mindful of the needs and expectations of the eventual users 

of new tools if we want the tools to affect behavior and produce improved outcomes. 

The second point elaborates on a main theme of this paper: the role of inequality in poverty. A key 

motivation has been the idea that inequality should have a significant, if limited, role in the measurement 

of multidimensional poverty. A careful look at the Dimensional Transfer axiom reveals how restrictive 

this role actually is. A dimensional rearrangement does not permit the number of poor to change, and 

hence 𝑀0
0 is fixed. It preserves the aggregate collection of deprivations among the poor, and so 𝑀0

1 is 

fixed. After fixing 𝑀0
0 and 𝑀0

1, it reduces the positive association across achievements and across 

deprivations, thereby reducing multidimensional inequality. The Dimensional Transfer axiom thus gives 

inequality among the poor a contingent priority. Indeed, lower inequality unconstrained by incidence and 

breadth is not necessarily a good thing: a world in which all persons are maximally deprived in all 

dimensions achieves lowest inequality and worst poverty. Constraining the role of inequality ensures that, 

as inequality falls, the conditions of a relatively poorer poor person are improving as a result of the 

dimensional rearrangement. The axiom asserts that this is favorable for overall poverty even though the 

improvement comes at the expense of a better off poor person. 

Since Dimensional Transfer is based on transformations that impose deprivations on one poor person (to 

benefit another), the axiom may be criticized as being too extreme.49 It is not our intention to suggest that 

poverty should be addressed only through this route. Nonetheless, in future work, it may be useful to see 

whether sensitivity to inequality can be defined without invoking a transformation that ‘improves’ poverty 

                                                 

48 Recent papers advocating union identification include Datt (2018), although his justification of union identification relies on 
cardinal variables and is not relevant to the present case. See also Pattanaik and Xu’s (2018) advocacy in the case of cardinal 
variables. Note that adopting union identification could also skew the choice of indicators in an attempt to limit the size of 
the headcount ratio to a reasonable magnitude. See Alkire and Foster (2011b). 

49 We have benefited from discussions with Nora Lustig on this point. 
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while depriving a poor person even more. On the other hand, it could be argued that Dimensional Transfer 

is not extreme or progressive enough as it does not consider rearrangements involving a nonpoor giver. 

An alternative axiom might require poverty to fall, or at least not rise, whenever a poor person 

appropriately switches achievements and deprivations with a nonpoor person. This is already covered by 

dimensional monotonicity apart from the case where the nonpoor person becomes poor as a result. If the 

goal is to eradicate poverty, though, it is not entirely clear why the forced impoverishment of a nonpoor 

person necessarily represents a clear-cut improvement, especially if the designation of being poor is seen 

as salient. And, accordingly, for each M-gamma measure, it is easy to construct an example where measured 

poverty increases as result of an association-decreasing rearrangement between a nonpoor and a poor 

person, because the increase in the headcount ratio overwhelms the decrease in average intensity.50 While 

the ultimate goal is a world without poverty, different treatments of inequality in poverty can impact 

tradeoffs among incidence, breadth and severity, and hence policy priorities. The role of inequality in 

poverty measurement is indeed complex. 
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Appendix 

Proof of Th. 1: Verifications of the Basic Axioms are elementary and are left to the reader. To establish 

Ordinality for γ ≥ 0, suppose that (𝑦′; 𝑧′) is obtained from (𝑦; 𝑧) as an equivalent representation. Then 

(𝑦′; 𝑧′) and (𝑦; 𝑧) have the same deprivation matrix and hence the same deprivation counts for all i, from 

which it follows that 𝜌𝑘(𝑦′𝑖; 𝑧′) = 𝜌𝑘(𝑦𝑖; 𝑧), and hence the same persons are poor in both. This ensures 

that 𝑀0
0(𝑦′; 𝑧′) = 𝑀0

0(𝑦; 𝑧). It also implies that each person’s censored deprivation score is the same in 

both, which means that 𝑀0
𝛾

(𝑦′; 𝑧′) = 𝑀0
𝛾

(𝑦; 𝑧) for every 𝛾 > 0. Thus, 𝑀0
𝛾
satisfies Ordinality for 𝛾 ≥ 0. 

To verify Dimensional Monotonicity for 𝛾 > 0, suppose that 𝑦′ is obtained from 𝑦 by a dimensional 

decrement among the poor, so that a poor person i has gained a deprivation and the rest of the population 

is unaffected. Then 𝑐(𝑘)′ > 𝑐(𝑘) and hence 𝑐𝛾(𝑘)′ > 𝑐𝛾(𝑘) for 𝛾 > 0, which implies that 𝑀0
𝛾(𝑦′; 𝑧′) >

𝑀0
𝛾

(𝑦; 𝑧). Thus 𝑀0
𝛾
satisfies Dimensional Monotonicity for 𝛾 > 0. 

To verify Dimensional Transfer for 𝛾 > 1, suppose that 𝑦′ is obtained from 𝑦 by a dimensional 

rearrangement among the poor, so that (a) – (d) hold for poor persons u and i. We want to show that 

𝑀0
𝛾(𝑦; 𝑧) > 𝑀0

𝛾
(𝑦′; 𝑧) or, equivalently, that |𝑐𝛾(𝑘)| > |𝑐𝛾(𝑘)′| for γ > 1. By definition 𝑐(𝑘) and 𝑐(𝑘)′ 

differ only in coordinates u and i, and so this condition reduces to 𝑐𝑢
𝛾(𝑘) + 𝑐𝑖

𝛾(𝑘) > 𝑐𝑢
𝛾(𝑘)′ + 𝑐𝑖

𝛾(𝑘)′ or 

      (𝑐𝑢)𝛾 + (𝑐𝑖)
𝛾 > (𝑐𝑢

′ )𝛾 + (𝑐𝑖
′)𝛾    (A1) 

since u and i are poor. But notice that 𝑐𝑢 + 𝑐𝑖 = 𝑐𝑢
′ + 𝑐𝑖

′ since a rearrangement does not alter the total 

deprivations in the population. Moreover, the vector dominance of initial deprivation vectors given in (d) 

ensures that 𝑐𝑢 > 𝑐𝑖 , while the subsequent absence of vector dominance ensures that both 𝑐𝑢
′  and 𝑐𝑖

′ lie 

strictly between 𝑐𝑢 and 𝑐𝑖: the final pair of deprivation scores (𝑐𝑢
′ , 𝑐𝑖

′) can be obtained from the initial pair 

(𝑐𝑢, 𝑐𝑖) by a mean preserving transfer of scores from u to i. Condition (A1) follows immediately from 

standard convexity results and the fact that 𝛾 > 1. Thus, 𝑀0
𝛾
 satisfies Dimensional Transfer for 𝛾 > 1.  
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Finally, turning to Weak Rearrangement for 𝛾 ≥ 1, suppose that 𝑦′ is obtained from 𝑦 by an association-

decreasing rearrangement among the poor, so that (a) – (c) hold for persons u and i. We want to show that 

𝑀0
𝛾(𝑦; 𝑧) ≥ 𝑀0

𝛾
(𝑦′; 𝑧) or equivalently that 

    (𝑐𝑢)𝛾 + (𝑐𝑖)
𝛾 ≥ (𝑐𝑢

′ )𝛾 + (𝑐𝑖
′)𝛾.    (A2) 

If (d) also happens to hold, then condition (A2) follows from standard convexity results and the fact that 

𝛾 ≥ 1. Alternatively, one or more of the inequalities in (d) could fail to hold, in which case it can be shown 

that (A2) must be true with equality. Indeed, if inequality 𝑔𝑢
0 > 𝑔𝑖

0 fails to hold, then by (c) the only other 

possibility is 𝑔𝑢
0 = 𝑔𝑖

0, which implies that 𝑔𝑢
0′ = 𝑔𝑢

0 and 𝑔𝑖
0′ = 𝑔𝑖

0 and so (A2) is true with equality. 

If 𝑔𝑢
0 > 𝑔𝑖

0 holds but after the rearrangement 𝑔𝑖
0′ > 𝑔𝑢

0′ also holds, then we must have 𝑔𝑢
0′ = 𝑔𝑖

0 and 

𝑔𝑖
0′ = 𝑔𝑢

0 , which implies that (A2) is true with equality. If 𝑔𝑢
0 > 𝑔𝑖

0 holds but after the rearrangement 

𝑔𝑢
0′ > 𝑔𝑖

0′ holds, then 𝑔𝑢
0′ = 𝑔𝑢

0 and 𝑔𝑖
0′ = 𝑔𝑖

0 which also implies that (A2) is true with equality. Thus, 

𝑀0
𝛾
 satisfies Weak Rearrangement for 𝛾 ≥ 1. ∎ 

Proof of Theorem 2: Suppose that ℳ satisfies Symmetry and Dimensional Breakdown and let 𝑦′ be 

obtained from 𝑦 by a dimensional rearrangement among the poor. By Symmetry, without loss of generality, 

we can assume that 1 and 2 are the poor persons involved in the rearrangement and that 𝑦1 > 𝑦2. Now 

let 𝐽 be the set of all dimensions j that are unchanged in the rearrangement, so that both 𝑦1𝑗
′ = 𝑦1𝑗 and 

𝑦2𝑗
′ = 𝑦2𝑗 hold. Let 𝑥 be the achievement matrix obtained from 𝑦 by lowering person 1’s achievement 

level in each 𝑗 ∈ 𝐽 to person 2’s achievement level, leaving all remaining entries unchanged. Similarly 

construct 𝑥′ from 𝑦′ by lowering person 1’s achievement level in each 𝑗 ∈ 𝐽 to that of person 2. Person 1 

remains poor in both 𝑥 and 𝑥′, and so all four achievement matrices have the same poverty status vector 

𝑟. By Dimensional Breakdown, then, there exist 𝑣𝑗 > 0 summing to one and normalized component 

functions 𝑚𝑗: 𝑌𝑟𝑗 × 𝑅++
𝑑 → 𝑅+ for 𝑗 =  1, … , 𝑑, such that expression (3) holds for all matrices in 𝑌𝑟  . 

Applying (3) to 𝑦 and 𝑦′ yields 
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𝑀(𝑦′;  𝑧) –  𝑀(𝑦;  𝑧)  = ∑ 𝑣𝑗[𝑚𝑗
 
𝑗∉𝐽 (𝑦.𝑗

′ ; 𝑧𝑗) − 𝑚𝑗(𝑦.𝑗; 𝑧𝑗)] 

since 𝑦′ and 𝑦 are the same in all dimensions of J. Applying (3) to 𝑥′ and 𝑥 yields  

𝑀(𝑥′;  𝑧) –  𝑀(𝑥;  𝑧)  = ∑ 𝑣𝑗[𝑚𝑗( 
𝑗∉𝐽 𝑥.𝑗

′ ; 𝑧𝑗) − 𝑚𝑗(𝑥.𝑗; 𝑧𝑗)] 

for the analogous reason. By construction, it follows that 𝑦∙𝑗
′ = 𝑥∙𝑗

′  and 𝑦∙𝑗 = 𝑥∙𝑗 for all 𝑗 ∈ J and hence 

that 𝑀(𝑦′; 𝑧) – 𝑀(𝑦;  𝑧) = 𝑀(𝑥′; 𝑧) – 𝑀(𝑥; 𝑧). However, 𝑥′ is simply a permutation of 𝑥 (between 

persons 1 and 2) and so by Symmetry we have 𝑀(𝑥′; 𝑧) –  𝑀(𝑥; 𝑧) = 0. This implies that 𝑀(𝑦′; 𝑧)  =

 𝑀(𝑦; 𝑧) and thus Dimensional Transfer is violated. ∎ 

Proof of Lemma 1: In a one-person society 𝑦 the squared count measure 𝑀0
2(𝑦; 𝑧) is simply 𝑐1

2(𝑘), or 

the square of the person’s score 𝑐1(𝑘), where 

    𝑐1(𝑘) = 𝑤1𝑔11
0 (𝑘) + ⋯ + 𝑤𝑑𝑔1𝑑

0 (𝑘) = 𝑤1𝐻1 + ⋯ + 𝑤𝑑𝐻𝑑 = |𝑏| 

since 𝑔1𝑗
0 (𝑘) = 𝐻𝑗 in the case 𝑛 = 1. It follows that 𝑀0

2(𝑦; 𝑧) can also be written as |𝑏|2 or the square of 

the sum of the entries in 𝑏, the dimensional breakdown vector for 𝑀0
1(𝑦; 𝑧). 

Now let Π be the set of all permutations of 𝑑 dimensions. A typical permutation 𝜎𝜖Π indicates the order 

in which dimensions will have their deprivations suppressed when computing the Shapley average marginal 

impact on the squared count measure; in particular, 𝜎1𝜖{1, … , 𝑑} denotes the first dimension to have its 

deprivations suppressed, 𝜎2𝜖{1, … , 𝑑} is the second, and so on. Let 𝑐1
2(𝑇) = (∑ 𝑏𝑗)𝑗𝜖𝑇

2
 denote the 

squared count when all dimensions outside of T have had their deprivations suppressed. For any 

dimension 𝑗′, define 𝑇(𝑗′, 𝜎) to be the set of all dimensions that follow or appear to the right of 𝑗′ in 𝜎 

and hence remain intact after dimension 𝑗′ has had its deprivations suppressed in permutation 𝜎. Then 

the dimension 𝑗′ term in the Shapley breakdown of 𝑀0
2(𝑦; 𝑧) is defined by 

   𝜙𝑗′ =
1

𝑑!
∑  [𝑐1

2(𝑇(𝑗′, 𝜎) ∪ {𝑗′}) − 𝑐1
2(𝑇(𝑗′, 𝜎))]𝜎𝜖Π  

Clearly, 
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 𝑐1
2(𝑇(𝑗′, 𝜎) ∪ {𝑗′}) − 𝑐1

2(𝑇(𝑗′, 𝜎) = (∑ 𝑏𝑗𝑗𝜖𝑇(𝑗′,𝜎)∪{𝑗′} )2 − (∑ 𝑏𝑗)𝑗𝜖𝑇(𝑗′,𝜎)
2
 

   = 𝑏𝑗′
2 + 2𝑏𝑗′ ∑ 𝑏𝑗𝑗𝜖𝑇(𝑗′,𝜎)  

Therefore, 

   𝜙𝑗′ = 𝑏𝑗′
2 +

2

𝑑!
𝑏𝑗′ ∑ ∑ 𝑏𝑗𝑗𝜖𝑇(𝑗′,𝜎)𝜎𝜖Π  = 𝑏𝑗′

2 +
2

𝑑!
𝑏𝑗′ ∑ 𝑎𝑗𝑏𝑗𝑗≠𝑗′  

where 𝑎𝑗 is an integer indicating the number of times 𝑏𝑗 appears in the sum ∑ ∑ 𝑏𝑗𝑗𝜖𝑇(𝑗′,𝜎)𝜎𝜖Π  or, 

equivalently, the number of permutations 𝜎 for which 𝑗𝜖𝑇(𝑗′, 𝜎). But the number of permutations where 

𝑗 follows 𝑗′ equals the number where 𝑗 precedes 𝑗′, and hence 𝑎𝑗 =
𝑑!

2
 for every 𝑗 ≠ 𝑗′. It follows that  

    𝜙𝑗′ = 𝑏𝑗′
2 + 𝑏𝑗′ ∑ 𝑏𝑗𝑗≠𝑗′ = 𝑏𝑗′|𝑏| 

and so 𝜙 = 𝑏|𝑏|, as claimed. ∎ 

Proof of Theorem 3: Since 𝑀0
2 satisfies Subgroup Decomposability, we know that 𝑀0

2(𝑦; 𝑧) =

1

𝑛
∑ 𝑀0

2(𝑦𝑖; 𝑧)𝑛
𝑖=1 . Let 𝜙 denote the Shapley breakdown vector for 𝑀0

2(𝑦; 𝑧) and let 𝜙𝑖 be the Shapley 

breakdown vector for 𝑀0
2(𝑦𝑖; 𝑧) where 𝑖 = 1, … , 𝑛. By the linearity property of the Shapley value, 𝜙 =

1

𝑛
∑ 𝜙𝑖𝑛

𝑖=1 . By Lemma 1, the jth component of 𝜙𝑖 is given by 𝜙𝑗
𝑖 = 𝑤𝑗𝑔𝑖𝑗

0 (𝑘)𝑐𝑖(𝑘) and hence 

 𝜙𝑗 = 𝑤𝑗
𝑞𝑗

𝑛

∑ 𝑔𝑖𝑗
0 (𝑘)𝑐𝑖(𝑘)𝑛

𝑖=1

𝑞𝑗
= 𝑤𝑗𝐻𝑗𝐴𝑗 = 𝑤𝑗𝑀0𝑗 

as asserted. ∎ 
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Table 1. MPI and Censored Headcount Ratios for Cameroon and its Regions 

 

MPI (M0) 

Education Health Living Standards 

 
Schooling 

School 

Attendance 

Child 

Mortality Nutrition Electricity Sanitation Water Housing 

Cooking 

Fuel Assets  
Cameroon 24.3 23.4 17.6 9.8 24.2 36.9 40.2 28.8 39.0 44.6 22.8 

Yaoundé 01.5 1.4 0.4 1.2 2.3 0.4 3.4 1.5 1.2 2.3 1.6 

Douala 02.2 2.1 2.0 1.5 3.4 0.5 4.7 0.9 1.6 4.0 1.1 

Littoral (sans Douala) 07.8 4.3 0.8 3.7 9.1 12.3 15.3 14.8 15.7 18.6 10.2 

Sud 12.8 3.2 4.5 8.4 19.0 15.0 27.8 19.8 21.7 30.0 10.4 

Sud-Ouest 13.7 5.1 4.1 6.8 14.4 24.7 28.2 25.9 28.7 31.3 16.8 

Ouest 13.9 12.3 2.0 3.2 16.0 18.3 30.5 24.9 24.6 33.0 18.7 

Centre (sans Yaoundé) 14.4 6.0 4.2 7.4 18.5 24.4 28.2 25.0 25.7 33.1 14.5 

Nord-Ouest 17.4 7.7 3.9 3.7 23.4 32.9 36.1 24.0 35.7 39.6 29.0 

Est 30.7 28.0 19.6 14.3 32.2 43.3 49.3 42.1 45.5 56.9 33.2 

Adamaoua 31.5 41.3 27.0 11.8 30.0 44.9 40.7 33.3 35.5 57.5 25.8 

Nord 42.3 43.5 37.2 21.3 37.7 63.1 60.6 48.7 65.8 72.2 32.8 

Extrême-Nord 48.0 53.7 43.0 17.0 43.6 74.5 76.6 45.6 76.4 79.4 40.1 

 

 

Table 2. M-gamma Measures, Intensities, and Inequalities for Cameroon and Its Regions 

 𝑀0
0 𝑀0

1 𝑀0
2 𝐴 𝐴′ V Vp 

Cameroon  45.3 24.3 14.2 53.6 31.3 0.083 0.026 

Yaoundé 3.9 1.5 0.6 37.7 14.5 0.005 0.003 

Douala 5.5 2.2 0.9 40.6 17.0 0.009 0.005 

Littoral (sans Douala) 19.1 7.8 3.3 40.9 17.4 0.027 0.006 

Sud 30.1 12.8 5.7 42.4 19.0 0.041 0.010 

Sud-Ouest 32.0 13.7 6.2 42.8 19.3 0.043 0.010 

Ouest 33.2 13.9 6.1 42.0 18.5 0.042 0.009 

Centre (sans Yaoundé) 33.4 14.4 6.5 43.1 19.5 0.045 0.010 

Nord-Ouest 39.6 17.4 8.1 43.9 20.4 0.050 0.011 

Est 57.7 30.7 17.7 53.2 30.6 0.083 0.023 

Adamaoua 58.7 31.5 18.2 53.7 31.0 0.083 0.022 

Nord 73.0 42.3 26.4 58.0 36.1 0.084 0.024 

Extrême-Nord 80.0 48.0 30.9 60.0 38.6 0.079 0.026 
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Table 3. Distribution of Deprivation Scores of the Poor by Intensity Bands 

 33–39% 40–49% 50–59% 60–69% 70–79% 80–89% 90–100% 

Cameroon 26% 17% 20% 20% 9% 6% 2% 

Yaoundé 69% 12% 19% 0% 0% 0% 0% 

Douala 82% 18% 0% 0% 0% 0% 0% 

Littoral 44% 18% 22% 11% 0% 4% 0% 

Sud-Ouest 49% 21% 18% 12% 0% 0% 0% 

Sud 57% 20% 17% 4% 3% 0% 0% 

Ouest 62% 14% 17% 7% 0% 0% 0% 

Nord-Ouest 47% 23% 23% 7% 0% 0% 0% 

Centre 55% 20% 16% 7% 0% 2% 0% 

Est 39% 9% 28% 16% 4% 2% 1% 

Adamaoua 26% 22% 21% 16% 6% 7% 1% 

Nord 16% 15% 20% 25% 11% 9% 3% 

Extrême-Nord 14% 12% 15% 24% 19% 9% 5% 

 

Table 4. Breakdowns for 𝑴𝟎
𝟏 and 𝑴𝟎

𝟐 

 

 

 

Censored 

Headcount 

Ratio 

 

Dimensional 

Breakdown 

 

Censored 

Intensity 

Censored 

Adjusted 

Headcount 

 

Shapley 

Breakdown 

 

Relative 

Contribution 

 

Relative 

Contribution 

 

Percentage 

Point Diff. 

Indicator  𝑯𝒋 𝒘𝒋𝑯𝑱 𝑨𝒋 𝑴𝟎𝒋
𝟏  𝒘𝒋𝑴𝟎𝒋

𝟏  𝒘𝒋𝑯𝒋/𝑴𝟎
𝟏 𝒘𝒋𝑴𝟎𝒋

𝟏 /𝑴𝟎
𝟐 ∆ 

Years of Schooling 23.4 3.9 61.5 14.4 2.4 16.1% 16.9% -0.8 

School Attendance 17.6 2.9 65.1 11.4 1.9 12.1% 13.4% -1.4 

Child Mortality 9.8 1.6 63.9 6.3 1.0 6.7% 7.4% -0.6 

Nutrition 24.2 4.0 58.9 14.3 2.4 16.6% 16.7% -0.1 

Electricity 36.9 2.1 56.0 20.7 1.1 8.4% 8.1% 0.3 

Sanitation 40.2 2.2 54.4 21.9 1.2 9.2% 8.6% 0.6 

Water 28.8 1.6 54.5 15.7 0.9 6.6% 6.1% 0.4 

Flooring 39.0 2.2 55.1 21.5 1.2 8.9% 8.4% 0.5 

Cooking Fuel 44.6 2.5 53.8 24.0 1.3 10.2% 9.4% 0.8 

Assets 22.8 1.3 55.5 12.6 0.7 5.2% 4.9% 0.3 

  𝑴𝟎
𝟏 =24.3   𝑴𝟎

𝟐 =14.2    
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