THE INSIGHTS AND ILLUSIONS OF CONSUMPTION MEASUREMENT: Evidence from a Large Scale Experiment

Erich Battistin University of Maryland, IRVAPP, CEPR and IZA

Michele De Nadai University of New South Wales

Nandini Krishnan ^{World Bank}

> IARIW World Bank Conference November 7-8, 2019

- Revisit if **diaries** are the most appropriate benchmark at a time when developing countries are increasingly moving to **recall**.
- Leverage a unique large-scale **pilot** in Iraq to inform the national statistics agency on the transition from diary to recall.
- Identify measurement error distributions in consumption from both diary and recall measurements:
 - Allow for errors in both measurements.
 - Errors from alternative collection modes can be correlated and correlated with true consumption.
- Our assumptions hinge on the same survey design employed in many national household surveys, like in Canada and the United States.

FOUR TAKE-HOME MESSAGES

- 1 The presumption that diaries are the most appropriate instrument to measure consumption is an illusion.
 - $-\,$ The modal entry understates true consumption by about 20%, with a thick lower tail: 13%-16% reporting less than half.
 - Severe over-reporting (share reporting at least twice) is 5%.
- 2 Recall errors are far from being classical in form, over-reporting being more likely than under-reporting.
 - However, the modal entry is about right.
 - $-\,$ Severe under-reporting (share reporting at most half) is in the 1%-3% range.
- 3 **Recall data yield a better classification of the poor**, and poverty statistics are severely overstated using diaries.
- 4 What is the value of one additional dollar spent on a diary?
 - An approximately equal mix of diary and recall interviews yields empirical distributions closest to the true distribution.
 - A recall survey is the best option when little information on true household consumption is available.

The Iraq Household and Socio Economic Survey

- We work with the 2012 Living Standards Measurement Survey (LSMS), covering about 25 000 households.
 - One-year long survey.
 - Monthly interviews in randomly selected EAs, with 9 households each.
- The baseline mode of collection is a **one-week household diary** filled out with the external assistance of enumerators (five visits).
- Diaries capture valued acquisition. Information on source (market, grants, donations, and gifts), amount, quantity and units purchased.
- In addition, households 3, 6 and 9 in each EA are administered a recall module on food consumption prior to the recording of diaries.
- By design:
 - 25 000 households fill out a diary.
 - One-third of these households, randomly selected, are mandated to an additional recall module.

- Specifically designed to inform the national statistics agency on the transition from diary to recall, planned for 2020.
- Refers to the week before the first visit.
- Uses a list of 20 groups obtained from disaggregated categories.
- The list was selected based on an assessment of their importance in household food budget shares and on how commonly they were reported, based on IHSES diaries for 2007.
- In the analysis:
 - Further harmonization of household measurements.
 - Randomization of the recall module was successful as well as the randomization of households to interviews in different survey months.

DATA: RECALL VS DIARY

Weekly per-capita consumption (USD)

DATA: RECALL VS DIARY RANK

Rank in the distribution of diary measurements

A MATTER OF FREQUENCY

- Simple simulations can give a sense for the difference between spending and consumption in the diary survey.
 - Y^* is weekly household consumption.
 - N^* is the **typical** number of purchases over one week.
 - *N* is the **observed** number of purchases in the diary (0 to 3 in our data).
 - To fix ideas, assume purchases of equal amounts.
- Diary spending (Y^d) is:

$$Y^d = \frac{Y^*}{N^*}N$$

- Running example: household consuming \$40 worth of chicken per month, purchasing it 8 times per month:
 - $Y^* = 10, N^* = 2.$
 - Each purchase is 5 = 10/2 = 40/8.
- A reasonable assumption is $E[N|N^*, Y^*] = N^*$. Note that this implies

$$E[Y^d] = E[Y^*]$$

Simulation: Consumption vs. Spending - One Item

• 15 out of 20 items considered in the analysis are bought less than once per week.

Over Items Aggregation over Goods Mitigates Problem

EXPERIMENTS MEET REPEATED MEASUREMENTS

- The Iraq setting allows identification of distributions of both latent consumption *Y** and measurement errors in diaries and recall.
 - No need to assume that diary measurements are error-free.
 - Errors in diary and recall measurements can depend on Y^* .
 - Non-parametric identification (Hu and Schennach, 2008).
 - Standard assumptions in the econometrics literature (Chen et al., 2011).
- Identification stems from an exclusion restriction that brings in the picture a particular type of instrument *Z*.
 - The variable *Z* can be arbitrarily correlated with errors.
- Identification rests upon three key assumptions (possibly conditional on household and area characteristics).
 - Additional mild regularity conditions are needed for identification.

• The three conditions above imply:

$$f_{Y^d Y^r|Z}[y^d, y^r|Z] = \int \underbrace{f_{Y^d|Y^*}[y^d|y^*]}_{\text{diary errors}} \underbrace{f_{Y^r|Y^*}[y^r|y^*]}_{\text{recall errors}} \underbrace{f_{Y^*|Z}[y^*|Z]}_{\text{true}} dy^*.$$

• Non-parametric identification: there exists a unique choice of distributions on the right-hand side that generates the observable distribution on the left-hand side (Hu and Schennach, 2008).

• The three conditions above imply:

$$f_{Y^dY^r|Z}[y^d, y^r|Z] = \int \underbrace{f_{Y^d|Y^*}[y^d|y^*; \theta_d]}_{\text{diary errors}} \underbrace{f_{Y^r|Y^*}[y^r|y^*; \theta_r]}_{\text{recall errors}} \underbrace{f_{Y^*|Z}[y^*|Z; \theta_y]}_{\text{true}} dy^*.$$

- Non-parametric identification: there exists a unique choice of distributions on the right-hand side that generates the observable distribution on the left-hand side (Hu and Schennach, 2008).
- Estimation: sieve maximum-likelihood; flexible specifications encompassing a rich family of distributions, yielding non-parametric estimates of the conditional densities on the right hand side.
- Use estimates of conditional densities to obtain quantities of interest, i.e. marginal distribution of true consumption $(f_{Y^*}[y^*])$.

RESULTS: TRUE CONSUMPTION

DIARY MEASUREMENT ERRORS

- Despite unbiasedness (i.e. *E*[*Y^d*|*Y*^{*} = *y*^{*}] = *y*^{*}) diaries yield under-reported consumption.
- Little differences across households with different levels of consumption.

RECALL MEASUREMENT ERRORS

- Errors are not classical. Modal entry about right.
- Smaller errors for households with high levels of consumption.

TARGETING

Optimal Assignment to Diary and Recall Interviews

- Consider a setting where households are assigned a diary with probability $p \in [0, 1]$.
- The observed distribution $F_Y(y; p)$ arising from this design is:

$$F_{\mathbf{Y}}(\mathbf{y};\mathbf{p})=F_{\mathbf{Y}^d}(\mathbf{y})\mathbf{p}+F_{\mathbf{Y}^r}(\mathbf{y})(1-\mathbf{p}).$$

- We are interested in the effects of this assignment on functionals of the distribution of observed consumption (e.g., the Gini coefficient): $\nu (F_Y(y; p))$.
- Knowledge of the true distribution of consumption $F_{Y^*}(y^*)$ allows to compare

$$u\left(F_{\mathsf{Y}}(y;p)\right) \qquad \text{vs.} \qquad \nu\left(F_{\mathsf{Y}^*}(y^*)\right),$$

at any given level of *p*.

Optimal Assignment to Diary and Recall Interviews

- Now consider a setting where, at each value y^* of Y^* , households are assigned a diary with probability $p(y^*) \in [0, 1]$.
- The share of survey participants filling out a diary is:

$$p\equiv\int p(y^*)dF_{Y^*}(y^*).$$

• The observed distribution $F_Y(y; p(y^*))$ arising from this design is:

$$F_{Y}(y;p(y^{*})) = \int \left[F_{Y^{d}|Y^{*}}(y|y^{*})p(y^{*}) + F_{Y^{*}|Y^{*}}(y|y^{*})(1-p(y^{*}))\right] dF_{Y^{*}}(y^{*}).$$

• For any given share of diaries *p* we can obtain the optimal assignment rule *p*(*y*^{*}) which minimizes the difference

$$\nu(F_{Y}(y;p(y^{*}))) - \nu(F_{Y^{*}}(y^{*})).$$

OPTIMAL MIX RESULTS

- Dashed line: fixed probability of being assigned to diary interview, i.e. $p(y^*) = p$.
- Solid line: probability of being assigned to diary interview varying with *Y**.

OPTIMAL MIX RESULTS

- Optimal mix allocates diaries to households on the right tail of the distribution of true consumption.
- In practice *Y*^{*} is unknown; a **feasible survey design** would allocate diaries based on a **proxy** for *Y*^{*}.

- Little empirical support for the idea that diaries yield data of better quality for measuring household welfare.
- Loss in accuracy in using recall questions to measure poverty is minimal compared to the increasing costs of using diaries.
- Even more so when inequality and poverty measurement is of interest.
- Diaries should collect information about **frequency** of consumption/purchase to correct for the potentially large errors.

APPENDIX - ITEMS FREQUENCY

APPENDIX - BALANCING TESTS

	Bimester						
	11	111	IV	v	VI	F-test	
	(1)	(2)	(3)	(4)	(5)	(6)	
		Panel A	Househol	l character	istics		
Age	-0.040	-0.007	-0.033	-0.017	0.008	0.339	
	(0.026)	(0.025)	(0.025)	(0.026)	(0.025)		
Education level	0.036	0.030	0.017	0.048	0.067**	0.294	
	(0.031)	(0.030)	(0.031)	(0.030)	(0.030)		
Employed	-0.010	0.008	0.030	0.004	0.024	0.505	
	(0.023)	(0.023)	(0.023)	(0.023)	(0.023)		
	Panel B. Spending and prices						
Log expenditure	0.204***	0.098***	0.080***	0.109***	0.030	0.00	
	(0.022)	(0.021)	(0.021)	(0.022)	(0.022)		
Log price index	0.026***	0.026***	-0.017***	0.008**	0.007**	0.00	
	(0.004)	(0.003)	(0.003)	(0.003)	(0.003)		
Exp. share on rice	0.180***	0.202***	0.232***	0.025	0.027	0.00	
	(0.022)	(0.024)	(0.022)	(0.021)	(0.021)		
Exp. share on potatoes	-0.146***	-0.162***	-0.245***	-0.135***	-0.059**	0.00	
- 1	(0.027)	(0.027)	(0.027)	(0.029)	(0.029)		
Exp. share on eggs	-0.137***	-0.078***	-0.184***	-0.184***	0.032	0.00	
	(0.025)	(0.026)	(0.025)	(0.026)	(0.027)		
Exp. snare on meat	0.012	0.108***	0.222	0.361	0.107***	0.00	
Fun above on fich	(0.023)	(0.023)	(0.023)	(0.025)	(0.024)	0.00	
exp. snare on fish	(0.011	-0.04/***	-0.088	-0.088	-0.039"	0.000	
	(0.022)	(0.021)	(0.022)	(0.021)	(0.022)		

Appendix - Instrument Relevance

	Bimester								
	II (1)	111 (2)	IV (3)	V (4)	VI (5)	F-test (6)			
	Panel A. Household characteristics								
Age	-0.040	-0.007	-0.033	-0.017	0.008	0.339			
	(0.026)	(0.025)	(0.025)	(0.026)	(0.025)				
Education level	0.036	0.030	0.017	0.048	0.067**	0.294			
	(0.031)	(0.030)	(0.031)	(0.030)	(0.030)				
Employed	-0.010	0.008	0.030	0.004	0.024	0.505			
	(0.023)	(0.023)	(0.023)	(0.023)	(0.023)				
	Panel B. Spending and prices								
Log expenditure	0.204***	0.098***	0.080***	0.109***	0.030	0.00			
	(0.022)	(0.021)	(0.021)	(0.022)	(0.022)				
Log price index	0.026***	0.026***	-0.017***	0.008**	0.007**	0.00			
	(0.004)	(0.003)	(0.003)	(0.003)	(0.003)				
Exp. share on rice	0.180***	0.202***	0.232***	0.025	0.027	0.00			
	(0.022)	(0.024)	(0.022)	(0.021)	(0.021)				
Exp. share on potatoes	-0.146***	-0.162***	-0.245***	-0.135***	-0.059**	0.00			
	(0.027)	(0.027)	(0.027)	(0.029)	(0.029)				
Exp. share on eggs	-0.137***	-0.078***	-0.184***	-0.184***	0.032	0.00			
	(0.025)	(0.026)	(0.025)	(0.026)	(0.027)				
Exp. share on meat	0.012	0.108***	0.222***	0.361***	0.107***	0.00			
	(0.023)	(0.023)	(0.023)	(0.025)	(0.024)				
Exp. share on fish	0.011	-0.047**	-0.088***	-0.088***	-0.039*	0.000			
	(0.022)	(0.021)	(0.022)	(0.021)	(0.022)				