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Abstract

Under which conditions does poverty reduction not only reduce the average
poverty score further but also decrease deprivation inequality among the poor more,
thereby emphasizing improvements among the poorest of the poor? Firstly, when
comparing cross-sectional datasets of the same society in different periods of time
(i.e. an anonymous assessment), we derive a simple second-order dominance con-
dition based on reverse generalized Lorenz curves, whose fulfillment ensures that
multidimensional poverty decreases along with a reduction in deprivation inequal-
ity for a broad family of inequality-sensitive poverty measures. Secondly, when we
can track poverty experiences of the same individuals or households using panel
datasets (i.e. a non-anonymous assessment), we adapt and extend a theorem from
Benabou and Ok (2001), whose fulfillment allows us to conclude that multidimen-
sional poverty reduction is more egalitarian in one experience vis-à-vis another one,
for a broad family of poverty indices which are sensitive to deprivation inequality
among the poor, and from an ex-ante conception of inequality of opportunity. We
illustrate these methods with an application to multidimensional poverty in Peru
before and after the 2008 world financial crisis.

Keywords: Pro-poorest poverty reduction, multidimensional poverty, reverse gen-
eralized Lorenz curve.
JEL Classification: I32.
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1 INTRODUCTION

1 Introduction

The “pro-poor" nature of income or per-capita GDP growth has received much atten-
tion from both academics and policymakers for the last couple of decades. While
a straightforward notion regards income growth to be “pro-poor" when the poor’s
incomes rise, a more interesting notion declares growth to be “pro-poor" when the
income of the poorest grows faster than the income of the less poor. Whenever in-
come grows monotonically faster at lower initial quantiles, “pro-poor" growth reduces
inequality according to a broad family of Lorenz-consistent measures. The related
literature on pro-poor concepts, dominance conditions and indices is vast. (See, for
instance, Deutsch and Silber (2011); for a review).

Now the “pro-poor" growth literature has traditionally worked with one continu-
ous variable. However recently there has been an interest in connecting the “pro-
poor" growth concepts with non-monetary measures of well-being, and multidimen-
sional poverty indices in particular. For instance, Berenger and Bresson (2012) pro-
vide dominance conditions to probe the “pro-poorness" of growth when well-being is
measured jointly by continuous and discrete variables. Ben Haj Kacem (2013) mea-
sures the “pro-poorness" of growth in income when the initial conditioning situation
is not income itself but a non-monetary multidimensional index of poverty or well-
being. Boccanfuso et al. (2009) apply the now traditional “pro-poor" growth toolkit to
assess changes in the individual scores of a non-monetary poverty composite index,
where the weights are determined by multiple correspondence analysis (MCA). Since
they use a vast number of indicators, their scores can take several values, thereby
mimicking a continuous variable.

In this paper we pose a related question in the context of multidimensional poverty
counting measures: What are the conditions under which a poverty reduction expe-
rience is more “pro-poorest" than another one? In other words, under which condi-
tions does poverty reduction not only reduce the average poverty score further but
also decrease deprivation inequality among the poor more? In order to answer these
questions we first address the most common anonymous assessment which compares
cross-sectional datasets of the same society in different periods of time. In this con-
text, Boccanfuso et al. (2009) have already shown a way in which the “pro-poor” mea-
surement toolkit for continuous variables can be applied to the case of non-monetary
deprivations if a composite index is constructed based on them, using data reduction
techniques (e.g. MCA). However, in many empirical applications, the number of in-
dicators may not be large enough, so that the number of values that the individual
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1 INTRODUCTION

deprivation score can take is quite limited, for a given set of weights and deprivation
lines. Hence an anonymous assessment of “pro-poor” growth linking initial-period
and final-period quantiles is not really feasible. Instead we derive a simple second-
order dominance condition based on reverse generalized Lorenz curves, which is suit-
able for deprivation scores with value domains of any breadth. The condition’s ful-
fillment ensures that multidimensional poverty decreases along with a reduction in
deprivation inequality for a broad family of inequality-sensitive poverty measures.

When we have a panel dataset we can also perform a non-anonymous assessment
of pro-poorest poverty reduction, in which we take into account the particular poverty
transitions experienced by individuals or households (depending on the unit of analy-
sis).1 For this purpose, we adapt and extend a theorem from Benabou and Ok (2001),
who work with transition matrices. When our conditions are fulfilled then one can
state that multidimensional poverty reduction is more egalitarian in one experience
vis-à-vis another one, for a broad family of poverty indices which are sensitive to de-
privation inequality among the poor, and from an ex-ante conception of inequality of
opportunity. 2

We illustrate both the non-anonymous and the anonymous conditions using a
yearly panel dataset from the Peruvian National Household Surveys spanning two
periods: 2002-2007 and 2007-2010 (and the respective cross-sections for the anony-
mous analysis). In the former period, Peru experienced a commodity boom, which
translated into high GDP growth rates, from 4 % in 2003 to 8.9 % in 2007, and a
steady decrease in monetary poverty headcounts, from 58.7 % in 2004 to 42.4 % in
2007. However, between 2008 and 2013, Peru’s economic performance was affected
by the world economic situation: GDP growth fell from 9.8 % in 2008 to 0.9 % in 2009,
and then stabilizing around 7 % between 2010 and 2012. Notwithstanding this fluc-
tuation, monetary poverty levels kept decreasing steadily, from 37.3 to 27.8 %. But
how did the Peruvian population fare in terms of non-monetary multidimensional
poverty? We measure non-monetary poverty with wellbeing indicators corresponding
to four dimensions: household education, dwelling material infrastructure, access to
services, and vulnerability related to household dependency burden.

In the anonymous assessment we compare the reverse generalized Lorenz (RGL)
curves between 2002 and 2013 for the whole country, for urban and rural areas, and
for each of the 25 Peruvian departments (provinces) and autonomous territories. We

1See Grimm (2007), for a thorough discussion of the distinction between anonymous and non-
anonymous analysis of pro-poor growth in the continuous-variable context.

2See Fleurbaey and Peragine (2013) for an explanation of the distinction between ex-ante and ex-
post inequality of opportunity.
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2 PRO-POOREST POVERTY REDUCTION WITH COUNTING MEASURES

find that the observed egalitarian reduction of our measure of poverty, between 2002
and 2013, is robust to different choices of poverty functions and poverty-identification
cut-offs in 14 out of the 25 departments. However, in the other 11 departments this
trend is not robust. In all these latter cases we find, instead, that the RGL curves
cross once at the cut-off point where the intersection approach to poverty identifica-
tion holds (i.e. when a household needs to be deprived in every dimension in order to
be deemed poor). Explanations for these results are provided below.

In the anonymous assessment we rank each poverty transition (2002-2004, 2004-
2006, 2007-2008, and 2008-2010) according to their degree of ex-ante “pro-poorest"
poverty reduction, i.e. the extent to which they reduce expected poverty while re-
ducing inequality among the poor at the same time, with an added interest to assess
whether the ranking is affected by the particular economic conditions that charac-
terized each observed period. We find that the mobility matrix of 2002-2004 is the
pro-poorest in the sense of yielding a distribution of expected poverty experiences that
second-order dominates the distributions induced by all the other matrices. Then, the
matrix of 2004-2006 turns up as the second-best, since its expected distribution dom-
inates those of 2007-2008 and 2008-2010, while being dominated by its predecessor’s.
However we cannot order the latter two matrices vis-a-vis each other. In summary,
the pre-crisis poverty transitions induced preferable distributions of expected poverty
scores from a welfare-utilitarian point of view.

The rest of the paper proceeds as follows: The next section presents our “pro-
poorest” poverty-reduction conditions. First, it introduce the family of counting poverty
measures for which the conditions are relevant and applicable, then it shows the con-
dition for the anonymous case, followed by the condition for the non-anonymous case.
The third section provides the empirical illustration on multidimensional poverty re-
duction in Peru. Finally, the paper concludes with some remarks.

2 Pro-poorest poverty reduction with counting mea-
sures

2.1 Inequality-sensitive poverty measures

Consider N individuals and D indicators of wellbeing. xnd stands for the level of at-
tainment by individual n on indicator d. If xnd < zd, where zd is a deprivation line
for indicator d, then we say that individual n is deprived in indicator d. In order
to account for the breadth of deprivations, counting measures rely on individual de-
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2 PRO-POOREST POVERTY REDUCTION WITH COUNTING MEASURES

privation scores which produce a weighted count of deprivations. If the weights are
denoted by: wd ∈ [0,1] ⊂ R+∣∑Dd=1wd = 1, then the deprivation score for individual n is:
cn ≡ ∑

D
d=1wdI(xnd < zd), where I is the indicator function. 3 Following Alkire and Fos-

ter (2011) we can also identify those multidimensionally poor with a flexible counting
approach that compares each cn against a multidimensional cut-off k ∈ [0,1] ⊂ R+, so
that person n is poor if and only if: cn ≥ k.

Our analysis focuses on a family of social poverty counting measures that are sym-
metric across individuals, additively decomposable (hence also subgroup consistent),
scale invariant and population-replication invariant. If pn ∶ cn × k → [0,1] ∈ R+ is the
individual poverty measure, and P ∶ [0,1]N → [0,1] is the social poverty measure then
our family is the following:

P =
1

N

N

∑
n=1

pn (1)

Our conditions of pro-poorest poverty reduction will also be useful for a broader
family of subgroup consistent measures: Q =H(P ) as long as H() is a strictly increas-
ing, continuous function. For the sake of subgroup consistency, the weights must be
set exogenously. Additionally we want P to fulfill the following key properties:

Axiom 1. Focus (FOC): P should not be affected by changes in the deprivation score
of a non-poor person as long as for this person it is always the case that: cn < k.

Axiom 2. Monotonicity (MON): P should increase whenever cn increases and n is poor.

Axiom 3. Progressive deprivation transfer (PROG): A rank-preserving transfer of a
deprivation from a poorer individual to a less poor individual, such that both are
deemed poor, should decrease P .

In relation to the latter axiom, there are different approaches to capture sensitiv-
ity to deprivation inequality in the literature, although most of the approaches are
virtually equivalent. 4 Axiom PROG is critical to the assessment of “pro-poorest”
poverty reduction, as it forces social poverty indices to be sensitive to the distribu-
tion of deprivation across the poor, and to prioritize the wellbeing of the most jointly
deprived among them.

In order to fulfill the above key properties, we narrow down the family of social
poverty indices by rendering the functional form of pn less implicit:

3Taking the value of 1 if the argument in parenthesis is true, otherwise it is equal to 0.
4For a comparative review of these approaches see Silber and Yalonetzky (2013). A different frame-

work is provided by Alkire and Seth (2014).
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2 PRO-POOREST POVERTY REDUCTION WITH COUNTING MEASURES

P =
1

N

N

∑
n=1

I(cn ≥ k)g(cn), (2)

where I(cn ≥ k) is the Alkire-Foster poverty identification function that also se-
cures the fulfillment of FOC; and g ∶ cn → [0,1], such that: g(0) = 0, g(1) = 1, g′ > 0

and g′′ > 0. The function g captures the intensity of poverty, which is understood as
number of deprivations in the counting approach. Several examples of g have been
proposed by Chakravarty and D’Ambrosio (2006).

2.2 The anonymous case

In the counting approach, there is only one vector of possible values of cn for each par-
ticular choice of deprivation lines and weights. Moreover it is easy to show that the
maximum number of possible values is given by: ∑Di=0 (

D
i
). In the particular, but com-

mon, case of equal weights (wd = 1
D ), the number of possible values is much smaller:

D + 1. Hence the distribution of cn in the sample is bound to be discrete, as there will
be several individuals for every value of cn.

In this subsection we show that for an assessment of inequality-reducing poverty
reduction in the anonymous case it is necessary and sufficient to compare the reverse
generalized Lorenz curve of the distribution of deprivation scores at the beginning
and at the end of the time period.

A reverse generalized Lorenz curve is a function L ∶ [0,1] → [0,1] that maps from
the cumulative share s of the population, ranked from the highest to the lowest values
of cn, to the incomplete average of cn, i.e. the sum of all cn in the share s divided by N :

L(s) =
1

N

sN

∑
n=1

cn (3)

Note that L(s) is none other than the "adjusted headcount ratio" of Alkire and Fos-
ter (2011) for a k such that 1

N ∑
N
n=1 I(cn ≥ k) = s. That is, L(s) is the adjusted headcount

ratio corresponding to the k cut-off that yields a multidimensional headcount equal
to s.

Let PA and LA refer, respectively, to the social poverty index and the reverse
generalized Lorenz curve of population A. The following theorem enables us to as-
sert whether a poverty reduction experience has been “pro-poorest” according to any
inequality-sensitive poverty index:

Theorem 1. PA < PB for all P in 2 satisfying FOC, MON and PROG, if and only if
LA(s) ≤ LB(s) ∀s ∈ [0,1] ∧ ∃s∣LA(s) < LB(s).
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2 PRO-POOREST POVERTY REDUCTION WITH COUNTING MEASURES

Proof. See Appendix.

If A stands for final period, and B stands for initial period, then whenever the con-
dition in theorem 1 is fulfilled, any experience of poverty reduction occurs alongside
decreasing inequality among the poor, as measured by indices satisfying PROG, for
every relevant value of k.

Finally, theorem 1 can also be restricted to apply only to a subset of relevant k
values, ruling out the lowest ones below a minimum k: kmin. In order to proceed this
way, the reverse generalized Lorenz curves need to be constructed using censored
deprivation scores such that: cn = 0 whenever cn < kmin. Then theorem 1 applies only
to those P which rule out poverty identification approaches with k < kmin.

2.2.1 The area under the reverse generalized Lorenz curve of deprivations

It is easy to show that the area under the reverse generalized Lorenz (RGL) curve
is in itself an index of counting poverty satisfying FOC, MON and PROG. The area
under the RGL curve, A, is:

A(k) ≡
1

N

N

∑
n=1

[N − n + 1]cnI(cn ≥ k), (4)

where the deprivation scores cn are ranked in descending order, so that c1 is the
highest score, and cN is the lowest. We use the areaA(0) below in order to complement
our robustness analysis with some quantitative poverty reduction comparisons.

2.3 The non-anonymous case

In the non-anonymous case we can track the experience of each individual across
periods with a panel dataset. More precisely we can construct a transition matrix
with the social probabilities of attaining a particular deprivation score in the final
year of the period, conditional on having had a specific deprivation score in the initial
year. Then we can compute the expected value of the deprivation score conditional
on a given value of the deprivation score in the initial year, by adding the products of
the conditional probabilities of attaining each score in the final year times the score
itself.

Thus we have as many conditional expected values of the score as the values for
the score. Then we can provide social evaluations of the distribution of the condi-
tional expected values of the scores. For instance, we may require properties similar
to MON and PROG in the social evaluation of expected values. Hence, inspired by
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2 PRO-POOREST POVERTY REDUCTION WITH COUNTING MEASURES

Benabou and Ok (2001), we can implement an ex-ante non-anonymous assessment
of “pro-poorest” poverty reduction. In this assessment, we compare different transi-
tion matrices and rank them in terms of their capacity to reduce poverty, prioritizing
reductions in the expected deprivation score of those who start the poorest. If this
assessment is applied to samples of parents and their adult offspring (so that the ini-
tial period corresponds to the former, and the final period to the latter), or at least
to relatively long periods (e.g. several years), then it can also become an analysis of
ex-ante inequality of opportunity (i.e. as long as we normatively posit that poverty
prospects should not depend on past poverty experiences over which there is little or
no control).

Let ctn be the score of individual n in period t. The probability of attaining a partic-
ular score in period t conditional on a specific score attained in period t − 1 is defined
as: mi∣j = Pr[ctn = i∣c

t−1
n = j]. The array of all these probabilities (i.e. from m0∣0 to m1∣1)

constitutes a transition matrix M . If the number of values for the deprivation score
(given a choice of weights and deprivation lines) is v then the transition matrix is a
v-dimension square matrix. For any initial score value in period t − 1 the conditional
expected score in period t is:

E[ctn∣j] =
1

∑
i=0
i ×mi∣j, (5)

where the sum in 5 has v elements. Consider also a v-dimensional vector Π

containing the probability distribution of scores in period t − 1: Π ∶= (π(0), ...π(1)).5

Now using superscripts to denote populations where appropriate (so, for instance,
EA[ctn∣j] = ∑

1
i=0 i×mA

i∣j and mA
i∣j is an element of MA), we propose the following theorem:

Theorem 2. ∑1
j=0 π(j)g(EA[ctn∣j]) < ∑

1
j=0 π(j)g(EB[ctn∣j]) for all convex, strictly increas-

ing, continuous functions g, if and only if LA(s) ≤ LB(s) ∀s ∈ [0,1] ∧∃s∣LA(s) < LB(s).6

Proof. See Appendix.

When theorem 2 holds, MA induces a stronger reduction in poverty than MB, in
terms of prioritizing the expected deprivation scores of those who start with higher
scores in t − 1.

Note that theorem 2 assumes a union approach to poverty identification. However,
the theorem can be restricted in order to apply it to less lenient poverty identification

5
∑

1
i=0 π(i) = 1.

6Note that, unlike the non-anonymous case, the RGL curves of theorem 2 are based on the distri-
butions of expected deprivation scores, which have v elements.
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3 EMPIRICAL ILLUSTRATION: MULTIDIMENSIONAL POVERTY IN PERU

criteria. The route to follow is as in the previous section, i.e. to censor all scores whose
value is below a chosen kmin. Then the rest of the analysis proceeds as established
above, noting that some cells in the transition matrices will be merged.

Finally, if the transition matrices are monotone, so that: E[ctn∣1] ≥ ... ≥ E[ctn∣0], we
reach a theorem slightly resembling theorem 2 by Benabou and Ok (2001):

Theorem 3. If 1 ≥
EA[ctn∣1]
EB[ctn∣1] ≥ ... ≥

EA[ctn∣0]
EB[ctn∣0] with at least one inequality being strict, then

LA(s) ≤ LB(s) ∀s ∈ [0,1] ∧ ∃s∣LA(s) < LB(s).

Proof. See Appendix.

Theorem 3 provides a useful method to check whether the condition in theorem 2
holds. Instead of computing the reverse generalized Lorenz curves, one only needs
to compute the ratios of conditional expected scores between two populations (of two
societies or two different years) and check whether the inequality between the ratios
holds as expressed in 3. However, this convenient condition only applies whenever
E[ctn∣1] ≥ ... ≥ E[ctn∣0], which is the case with monotone matrices (albeit not exclu-
sively).

3 Empirical illustration: Multidimensional poverty
in Peru

3.1 Background and data

As mentioned, Peru experienced a commodity boom between 2003 and 2007, which
translated into high GDP growth rates, from 4 % in 2003 to 8.9 % in 2007, and a
steady decrease in monetary poverty headcounts, from 58.7 % in 2004 to 42.4 % in
2007. However, between 2008 and 2013, Peru’s economic performance was affected
by the world economic situation: GDP growth fell from 9.8 % in 2008 to 0.9 % in
2009, and then stabilizing around 7 % between 2010 and 2012. Notwithstanding this
fluctuation, monetary poverty levels kept decreasing steadily, from 37.3 to 27.8 %.
How did the Peruvian population fare in terms of non-monetary multidimensional
poverty?

For our two analyses we use Peruvian National Household Surveys (ENAHO).
For the anonymous assessment, we have all the cross-sections between 2002 and
2013, which deliver more than 258,000 household-year observations. For the non-
anonymous assessment, we also exploit ENAHO’s two recent household panel sur-
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3 EMPIRICAL ILLUSTRATION: MULTIDIMENSIONAL POVERTY IN PERU

veys, spanning 2002-2006 and 2007-2010, each providing 1,570 and 2,260 households,
respectively.

Our multidimensional poverty measure relies on four dimensions, and on the
household as the unit of analysis. Firstly, household education, comprising two indi-
cators: (1) school delay, which is equal to one if there is a household member in school
age who is delayed by at least one year, and (2) incomplete adult primary, which is
equal to one if the household head or his/her partner has not completed primary ed-
ucation. The household is considered deprived in education if any of these indicators
takes the value of one.

The second dimension considers two indicators on infrastructure dwelling condi-
tions: (i) overcrowding, which takes the value of one if the ratio of the number of
household members to the number of rooms in the house is larger than three; and
(ii) inadequate construction materials, which takes the value of one if the walls are
made of straw or other (almost certainly inferior) material, if the walls are made of
stone and mud or wood combined with soil floor, or if the house was constructed at an
improvised location inadequate for human inhabitation. The household is deprived
in living conditions if any of the above indicators take the value of one.

The third dimension is access to services. The household is deemed deprived in
this dimension if any of the following indicators takes the value of one: (i) lack of
electricity for lighting, (ii) lack of access to piped water, (iii) lack of access to sewage
or septic tank, and (iv) lack of access to a telephone landline. The fourth dimension is
household vulnerability to dependency burdens. The household is deprived or vulner-
able if household members who are younger than 14 or older than 64 are three times
or more as numerous as those members who are between 14 and 64 years old (i.e. in
working age).

We weigh each dimension equally. Therefore the household score can take only
any of the following five values: (0,0.25,0.5,0.75,1).

3.2 Results

3.2.1 Anonymous case

Figure 1 shows the reversed generalized Lorenz (RGL) curves for Peru in 2002 and
2013, based on the measurement choices of the previous subsection. The curve for
2013 is never above that of 2002. Hence theorem 1 is fulfilled and we can conclude
that, given a particular choice of deprivation lines and dimensional weights, multidi-
mensional poverty in Peru decreased, along with a reduction in deprivation inequal-
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3 EMPIRICAL ILLUSTRATION: MULTIDIMENSIONAL POVERTY IN PERU

ity among the poor, between 2002 and 2013, for a broad family of inequality-sensitive
poverty indices (at least those in 2) and for any relevant choice of the poverty cut-off
k.

The coordinates for the four kink points7 in the figure represent combinations of
the multidimensional headcount (horizontal axis) and the adjusted headcount ratio
(vertical axis, i.e. L(s) itself) for the same relevant value of k (1, 0.75, 0.5, 0.25,
in our case). For 2002 these values are: (0.004,0.004), (0.158,0.119), (0.471,0.276),
(0.741,0.343). Meanwhile for 2013 they are: (0.003,0.003), (0.078,0.059), (0.266,0.153),
(0.581,0.232). Clearly, 2013 dominates 2002.

[Figure 1 about here.]

Figure 2 shows the experiences of urban and rural areas between 2002 and 2013.
Again, clearly, both regions experienced poverty reduction accompanied by lower in-
equality among the poor for any inequality-sensitive index and choice of k. However,
the reduction in urban areas was stronger even though the poverty situation in the
cities was already less serious in 2002. This is apparent if we compute A(0) between
the 2002 and 2013 RGL curves (i.e. the poverty reduction areas) and divide them by
the initial areas of the 2002 curves, for both urban and rural regions. In the urban
case, there was a 35% reduction in the RGL curve area A(0), (i.e. under the union
identification approach, deeming any person poor as long as they are deprived in at
least one dimension). By contrast, the area of the RGL curve only decreased 16.6%
(albeit from a RGL curve further away from the horizontal axis).

[Figure 2 about here.]

Figure 3 shows the RGL curves for the five rainforest Peruvian departments (the
dotted lines are for 2002, and the dashed lines for 2013). In all cases our non-
anonymous poverty reduction condition is fulfilled. The RGL curve area reductions
(i.e. percentage reductions in the adjusted headcount ratios under the union ap-
proach) were: Amazonas (18.4%), Madre de Dios (31.4%), Loreto (17.4%), San Martin
(26.7%), and Ucayali (16.0%). Compared to other regions (see below), some rainfor-
est departments like Amazonas, Loreto, and Ucayali experienced some of the lowest
RGL curve area percentage reductions, while also departing from relatively higher
RGL curves in 2002 (i.e. signalling also higher adjusted headcount ratios for every
relevant value of k).

7One of them is barely visible as it stands very close to the origin.
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3 EMPIRICAL ILLUSTRATION: MULTIDIMENSIONAL POVERTY IN PERU

[Figure 3 about here.]

Figure 4 shows the RGL curves for the four southernmost Peruvian departments,
comprising both coastal and highland regions. In the case of Arequipa the two curves
cross once very close to the origin. Then the 2013 curve appears always below the
2002 curve. This means that the assessment of inequality and poverty reduction de-
pends on measurement choices. For example, with the intersection approach (k = 1),
poverty actually increased in Arequipa during the period, whereas for less stringent
identification approaches (k < 1) the conclusion depends on the choice of both k and
individual poverty functions (the department still had a reduction in the RGL curve
area of 21.2%). By contrast, Moquegua, enjoying the benefits of a thriving mining
industry spread across a small population, saw a robust reduction of poverty accom-
panied by a decrease in inequality among the poor. Moreover its RGL curve area
experienced one of the largest drops, 38.1%. Puno’s case is similar to Arequipa’s: the
curves cross once at the highest levels of k rendering the poverty assessment incon-
clusive. Likewise, the most severe forms of poverty (with k = 1) in Puno increased
between 2002 and 2013. Unlike Arequipa though, its reduction in the RGL curve
area was much more modest (12.9%). Puno is landlocked, of mostly highland. Fi-
nally, Tacna’s situation mimicks Puno’s and Arequipa’s: curve-crossing at the highest
levels of k (and with an A(0) reduction of 17.7%). However, unlike Puno and Are-
quipa, Tacna’s curves are closer to the origin in both years, reflecting lower (robust)
poverty levels in both years. Tacna benefits both from its mining industry and its
active border with Chile.

[Figure 4 about here.]

Figure 5 shows the RGL curves for five south-central Peruvian departments, also
comprising both coastal and highland regions. In the cases of landlocked Cusco and
mainly coastal Ica their respective pairs of curves cross at the highest levels of k
so that poverty reduction is not robust. Again, with an intersection approach, both
departments actually saw increases in the most severe forms of poverty. Notwith-
standing that, their curve areas reduced by 22.8% and 36.4% (one of the largest),
respectively. By contrast, the other three departments did experience fully robust
poverty reduction with lower deprivation inequality among the poor. Their curve area
reductions were: Apurimac (29.4%), Ayacucho (26.5%), and Huancavelica (23.8%).

[Figure 5 about here.]
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3 EMPIRICAL ILLUSTRATION: MULTIDIMENSIONAL POVERTY IN PERU

Figure 6 shows the RGL curves for five central Peruvian departments (including
coastal and highland regions) and the coastal, city-sized, autonomous Callao province.
All cases show a robust poverty reduction accompanied by inequality reduction, with
the exceptions of the landlocked Junin and Huanuco. For the two latter departments,
there is, again, a curve crossing at the highest levels of k, just as in the previous
situations of curve-crossing encountered so far. However, all departments exhibit
curve area (A(0) reductions: Ancash (37%, among the largest), Callao (30.4%, where
the main seaport is), Lima (26.4%, where the capital city is), Junin (30.7%), Huanuco
(21.3%), Pasco (19.2%). The latter two reductions are relatively low compared to other
robust experiences, and depart from relatively high RGL curves.

[Figure 6 about here.]

Figure 7 shows the RGL curves for the five northern Peruvian Departments along
the coast and the highlands. Except for Cajamarca, all departments feature curve-
crossing at the highest levels of k, just as in the previous cases of crossing above.
Hence the conclusion of poverty reduction with lower inequality between 2002 and
2013 is not robust to all choices of k or functional forms. For instance, with an in-
tersection approach, this extreme form of poverty actually increased throughout the
region (except for Cajamarca). Despite those crossings close to the origin, all depart-
ments experienced curve area reductions: Cajamarca (15.4%), La Libertad (20.5%),
Lambayeque (35.8%, one of the largest), Piura (30.5%), Tumbes (21.0%).

[Figure 7 about here.]

3.2.2 Non-anonymous case

Tables 1 through 4 show the transition matrices for deprivation scores. In each ma-
trix the row π shows the initial distribution of scores, and the row E[ctn∣j] shows the
expected deprivation score conditional on a score value of j in the initial year. Overall,
all matrices are monotone, therefore the expected deprivation scores increase with the
value of the initial, conditioning score. The matrices also exhibit relatively high levels
of path-dependence (likelihood of replicating initial conditions in after the transition)
as measured by Shorrock’s trace index (where 0 means complete immobility and 1
means equality of conditional distributions). The respective values in chronological
order are: 0.41, 0.41, 0.33, 0.37. For instance, the probability of being non-deprived in
any dimension conditional on having that initial status remains fairly stable, across
the matrices, between 82% (2) and 88% (3). Whereas the probability of being deprived
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4 CONCLUDING REMARKS

in every dimension conditional on having that initial status fluctuates between 42%
(2) and 70% (4).

Table 5 provides the main finding in the non-anonymous assessment. It features
the vertical coordinates of the RGL curves of expected deprivation scores (the five
horizontal coordinates correspond to the number of expected deprivation scores and
are common to the four transition matrices). The ensuing ordering, related to the-
orem 2, states that if the initial score distributions were identical, then the ex-ante
expected social poverty induced by matrix 1 would be lower than the levels produced
by all the other matrices, for any social poverty function that increases both with
higher conditional expected deprivation scores and with higher inequality between
them. Likewise, matrix 2 induces lower ex-ante expected poverty than matrices 3
and 4. Finally, a similar robust ordering cannot be established between matrices 3
and 4 since their two respective RGL curves cross. In summary, the conditional distri-
butions of expected deprivation scores produced by the pre-crisis transition matrices
second-order dominate the distributions yielded by the crisis/post-crisis matrices.

[Table 1 about here.]

[Table 2 about here.]

[Table 3 about here.]

[Table 4 about here.]

[Table 5 about here.]

4 Concluding remarks

This paper proposed two methods to ascertain whether pro-poorest poverty reduc-
tion is robust to different choices of functional forms and identification cut-offs, in
the context of counting poverty measures for discrete, or discretized, variables. The
first method, based on reverse generalized Lorenz (RGL) curves, is pertinent for the
so-called anonymous approach to poverty dynamics, in which we compare two cross-
sectional samples of the same population in different periods of time, i.e. without
tracking the outcomes of the same individuals. When the anonymous conditions
based on the RGL curves are fulfilled, we can conclude that poverty decreased or
increased consistently, in the sense that the result is robust to different choices of
inequality-sensitive social poverty indices and counting identification approaches.

14
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However these conditions only hold for specific choices of deprivation lines and dimen-
sional weights. With alternative selections of the latter two parameter sets, the con-
ditions would need to be tested again. Conditions that ensure robustness for broader
sets of parameter and functional choices exist (e.g. see Yalonetzky, 2014), but they
are more difficult to implement and have a limited scope of application (e.g. they
only work for extreme identification approaches whenever three or more variables
are considered).

Measuring poverty with indicators capturing dimensions of education, dwelling
infrastructure, service access and dependency burdens, the empirical illustration of
this condition’s theorem 1 showed that 14 out of 25 Peruvian departments experienced
robust poverty reduction between 2002 and 2013, accompanied by lower deprivation
inequality among the poor. By contrast, 11 departments showed one curve-crossing,
always at the highest levels of the identification threshold, k. There is a literally good
reason behind these crossings: very few people are found to be deprived in every singe
dimension jointly. Therefore, even when region A has a higher RGL curve than B, for
any value k < 1, it can happen that, due to random sample variation, A has fewer
people deprived across all dimensions (i.e. poor according to k = 1), which induces
curve crossing close to the origin.

The second method, based on a combination of transition matrices with RGL
curves, is relevant for the non-anonymous approach, which is basically an intra-
generational mobility assessment, and compares the outcomes of the same people
across different periods of time. When non-anonymous conditions are fulfilled, we can
conclude that, ex-ante, the distribution of expected deprivation scores (conditioned on
different initial deprivation scores) of A second-order dominates that of B (meaning,
inter alia, that the distribution in A features both lower average expected deprivation
scores, and less dispersion than B’s in Lorenz-consistency terms), if the two distribu-
tions of initial deprivation scores are identical. Again, this conditions hold only for
specific choices of deprivation lines and dimensional weights. With alternative selec-
tions, the conditions must be tested again.

Our empirical illustration of the non-anonymous condition, using the Peruvian
panel datasets, showed that the mobility matrix of deprivation scores corresponding
to the 2002-2004 periods induced a preferable distribution of expected deprivation
scores vis-a-vis all the other matrices, i.e. those of 2004-2006, 2007-2008, and 2008-
2010. The second-best matrix was that of period 2004-2006, which was also prefer-
able to the two crisis/post-crisis matrices (but not to its predecessor, 2002-2004). By
contrast it was not possible to rank 2007-2008 and 2008-2010 in terms of expected
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egalitarian poverty reduction. Interestingly, this quasi-ordering held despite the fact
that the respective distributions of initial deprivation scores (i.e., respectively, for
2002, 2004, 2007, and 2008) were gradually experiencing probability mass moving
toward lower deprivation score values. This means that even though the distribution
of poverty scores has improved over the years in terms of higher proportions of lower
scores, each subsequent transition has been less conducive to egalitarian poverty re-
duction as the previous ones (with the exception of the inconclusive comparison be-
tween 2007-2008 and 2008-2010). A diminishing marginal return, so to speak.
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5 Appendix

5.1 Proof of theorem 1

First we prove the necessity of LA(s) ≤ LB(s) ∀s ∈ [0,1] ∧ ∃s∣LA(s) < LB(s) for
PA < PB, for all P in 2 satisfying FOC, MON and PROG, to hold. Then we prove
that the condition on the reversed generalized Lorenz curve is sufficient to fulfill the
condition on the indices.

NECESSITY:
We need to show that whenever the reversed generalized Lorenz curves cross, we

can always find two poverty indices, P1 and P2 satisfying FOC, MON, and PROG,
such that: PA

1 < PB
1 and PA

1 > PB
1 . Consider a case with D = 4 and equal weights.

For each possible value of cn (i.e.: 0,0.25,0.5,0.75,1), the set of poverty headcounts (i.e.
H(k) ≡ 1

N ∑
N
n=1 I(cn ≥ k)) for country A is: (0.7,0.6,0.5,0.4,0.3), and for country B it is:

(0.8,0.7,0.6,0.4,0.2). Then it is easy to show that LA and LB cross. Moreover, if we
choose pn = I(cn ≥ k)[cn]2 (which fulfills FOC, MON and PROG) with a union identifi-
cation approach (e.g. k = 0), it turns out that PA > PB. By contrast, if we choose the
following member of the family proposed by Silber and Yalonetzky (2013), which ful-
fills FOC, MON and PROG: P = 1

D−kD+1 ∑
D
d=kD[H( dD)]0.5 , with a union approach, then

it turns out that PA < PB. Therefore, we conclude that the absence of curve-crossing
is necessary for the robustness of orderings based on poverty indices satisfying FOC,
MON and PROG.

SUFFICIENCY:
Now we need to show that, whenever LA(s) ≤ LB(s) ∀s ∈ [0,1] ∧ ∃s∣LA(s) < LB(s),

we can obtain distribution A from B through a series of rank-preserving progressive
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transfers of deprivations between poor people and/or reductions in some deprivation
scores (to which poverty indices fulfilling MON should react). For this purpose we
need to use Muirhead’s theorem (Marshall et al., 2011, p. 7-8). Let X and Y be
the distributions of two non-negative, real-valued variables x and z, respectively. The
population size of both distributions isN . The theorem says that: ∑mi=1 xi ≥ ∑

m
i=1 yi ∀m ∈

[1,N] ⊂ N++ and∑Ni=1 xi = ∑
N
i=1 yi, with both x and y added from the highest to the lowest

value, if and only if Y can be obtained from X through a series of rank-preserving
progressive transfers.

Now if LA(s) ≤ LB(s) ∀s ∈ [0,1] ∧ ∃s∣LA(s) < LB(s), then either: LA(1) = LB(1) or
LA(1) < LB(1). If LA(1) = LB(1) then we can apply Muirhead’s theorem, realizing that
the reversed generalized Lorenz curves accumulate cn in descending order. Given the
relationship between LA and LB, the theorem allows us to conclude that the distri-
bution of deprivation scores in A can be obtained from that in B through sequences
of rank-preserving progressive transfers, i.e. transfers in which some deprivation,
whose weight is wd is transferred from ci to cj, such that: ci−wd ≥ cj +wd. Therefore, by
definition, it would have to be the case that P (A) < P (B) for any P satisfying PROG.

However, if LA(1) < LB(1), then before being able to apply Muirhead’s theorem,
we need to derive a distribution C from B such that LA(s) ≤ LC(s) ∀s ∈ [0,1] ∧

∃s∣LA(s) < LC(s),and LA(1) = LC(1). The natural starting point is to subtract the
least-weighted deprivation from some among those individuals in B for whom cn =

minw1, ...wD, thereby leaving them now belonging to the share of the population who
is non-poor even by the union approach (i.e. cn = 0). If rendering all individuals with
the least-weighted deprivation without any deprivation at all is insufficient to yield
LA(1) = LC(1), then we keep subtracting deprivations from individuals with values
immediately above cn = minw1, ...wD (starting with the least-weighted deprivations),
and so forth, until finally LA(1) = LC(1). Then, once we have LA(s) ≤ LC(s) ∀s ∈

[0,1] ∧ ∃s∣LA(s) < LC(s),and LA(1) = LC(1), we apply Muirhead’s theorem to con-
clude that A can be obtained from C through a series of rank-preserving, progressive
transfers of deprivations.

Finally, we have proven that if LA(s) ≤ LB(s) ∀s ∈ [0,1] ∧ ∃s∣LA(s) < LB(s), and
LA(1) < LB(1), we can always derive A from B through a sequence of deprivation sub-
tractions/reductions and rank-preserving progressive transfers (more precisely deriv-
ing C from B using deprivation subtractions, and then A from C using progressive
transfers). Therefore, any P satisfying MOC and PROG must consistently conclude
that PA < PB.
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5.2 Proof of theorem 2

For this proof we prove, first, that ∑1
j=0 π(j)g(EA[ctn∣j]) < ∑

1
j=0 π(j)g(EB[ctn∣j]) for all

convex, strictly increasing, continuous functions g implies LA(s) ≤ LB(s) ∀s ∈ [0,1] ∧

∃s∣LA(s) < LB(s). Then we prove that the reverse is also true.
FIRST PART:∑1

j=0 π(j)[g(EA[ctn∣j])−g(E
B[ctn∣j])] < 0 for all convex, strictly increas-

ing, continuous functions g implies: LA(s) ≤ LB(s) ∀s ∈ [0,1] ∧ ∃s∣LA(s) < LB(s).
Note first that ∑1

j=0 π(j)[g(EA[ctn∣j]) − g(E
B[ctn∣j])] < 0 if and only if g(EA[ctn∣j]) −

g(EB[ctn∣j]) ≤ 0 ∀j ∧ ∃i∣g(EA[ctn∣i]) − g(E
B[ctn∣i]) < 0. The “only if" part is true because,

otherwise, if even one of the gaps (e.g. g(EA[ctn∣l])−g(E
B[ctn∣l])) were positive, then one

could always fine a suitable vector Π such that ∑1
j=0 π(j)[g(EA[ctn∣j])− g(E

B[ctn∣j])] > 0.
Then, since g is continuous and strictly increasing, it must be the case that: g(EA[ctn∣j])−

g(EB[ctn∣j]) < 0 ∀j ∧∃i∣g(EA[ctn∣i])−g(E
B[ctn∣i]) < 0 implies that EA[ctn∣j] ≤ E

B[ctn∣j] ∀j ∧

∃i∣EA[ctn∣i] < E
B[ctn∣i]. Now, both reversed generalized Lorenz curves based on the con-

ditional expected scores will be constructed each with v elements cumulating them in
decreasing order of value. Since the cumulative sum of the largest l elements of A (l
being a natural number running from 1 to v) is never higher than the respective cu-
mulative sum forB, then it must be the case that: LA(s) ≤ LB(s) ∀s ∈ [0,1] ∧∃s∣LA(s) <

LB(s). Finally, since the set of continuous, strictly increasing functions g includes a
subset of convex functions, then the first part of the statement in the theorem holds
for convex functions, given that it really applies to all continuous, strictly increasing
functions g.

SECOND PART: LA(s) ≤ LB(s) ∀s ∈ [0,1] ∧∃s∣LA(s) < LB(s) implies: ∑1
j=0 π(j)g(EA[ctn∣j]) <

∑
1
j=0 π(j)g(EB[ctn∣j]) for all convex, strictly increasing, continuous functions g.

Here we follow a proof similar to that for theorem 1. Firstly, we note that LA(s) ≤
LB(s) ∀s ∈ [0,1] ∧ ∃s∣LA(s) < LB(s) implies that either LA(1) ≤ LB(1) or LA(1) =

LB(1). If LA(1) = LB(1) then we directly apply Muirhead’s theorem to conclude that A
can be obtained from B through a series of rank-preserving, progressive transfers of
expected conditional scores. Now note that every time one such transfer takes place,
say between individuals i and j such that EB[ctn∣i] > E

B[ctn∣j] , there is a change in the
expected welfare function proportional to −g′(EB[ctn∣i]) + g

′(EB[ctn∣j]), which must be
negative because g′′ > 0. Therefore the second part holds.

However if LA(1) ≤ LB(1), we first need to derive a distribution C from B such
that: LA(s) ≤ LC(s) ∀s ∈ [0,1] ∧ ∃s∣LA(s) < LC(s) and LA(1) ≤ LC(1), so that then we
can apply Muirhead’s theorem again. As in the previous proof, the natural procedure
is to subtract value from the expected deprivation scores starting from those with the
lowest values. Once distribution C is derived, then we can apply Muirhead’s theorem
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to conclude that distribution A can be derived from C through a sequence of rank-
preserving, progressive transfers. Finally, based on the transitive argument enabling
us to derive A from C from B, we can state that if LA(s) ≤ LB(s) ∀s ∈ [0,1] ∧∃s∣LA(s) <

LB(s) and LA(1) ≤ LB(1), we can derived A from B through a sequence of reductions in
expected deprivation scores and rank-preserving, progressive transfers among them.
Finally, it becomes clear to note that both types of operations induce reductions in
the expected welfare function, such that: ∑1

j=0 π(j)g(EA[ctn∣j]) < ∑
1
j=0 π(j)g(EB[ctn∣j])

for all convex, strictly increasing, continuous functions g.

5.3 Proof of theorem 3

First note that, in the context of the v expected scores: LA(l) − LB(l) = (EA[ctn∣1] −

EB[ctn∣1]) + ... + (EA[ctn∣l] −E
B[ctn∣l]). If, as stated by the first condition in the theorem,

1 ≥ EA[ctn∣1]
EB[ctn∣1] , then the first element of LA(l) −LB(l) will be non-positive for any value of

l.
Then for any given relationship EA[ctn∣1]

EB[ctn∣1] ≥
EA[ctn∣r]
EB[ctn∣r] , where r is any of the admis-

sible values of cn in the initial period (except 1), let λA(r) ≡
EA[ctn∣1]
EA[ctn∣r] (same for B,

and note that λ > 1 since by assumption E[ctn∣1] ≥ ... ≥ E[ctn∣0]). Realizing that
EA[ctn∣1] −E

B[ctn∣1] ≤ 0 and that λA(r) ≥ λB(r) we can deduce that: EA[ctn∣r] −E
B[ctn∣r] =

EA[ctn∣1]
λA(r) −

EB[ctn∣1]
λB(r) ≤ 0. Proceeding the same way with every conditioning value of cn in

the initial period (except 1), we conclude that LA(l) − LB(l) must be non-positive for
every relevant value l that cn can take. Finally, it is straightforward to show that only
one strict inequality in 1 ≥

EA[ctn∣1]
EB[ctn∣1] ≥ ... ≥

EA[ctn∣0]
EB[ctn∣0] , suffices to render LA(s) ≤ LB(s) ∀s ∈

[0,1] ∧ ∃s∣LA(s) < LB(s).
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FIGURES

Figure 1: Reversed generalized Lorenz curves of deprivation counts. Peru,
2002-2013.
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FIGURES

Figure 2: Reversed generalized Lorenz curves of deprivation counts. Urban
and rural Peru, 2002-2013.
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FIGURES

Figure 3: Reversed generalized Lorenz curves of deprivation counts.
Peruvian rainforest provinces, 2002-2013.
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FIGURES

Figure 4: Reversed generalized Lorenz curves of deprivation counts.
Peruvian southern coastal and highland provinces, 2002-2013.
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FIGURES

Figure 5: Reversed generalized Lorenz curves of deprivation counts.
Peruvian south-central coastal and highland provinces, 2002-2013.
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FIGURES

Figure 6: Reversed generalized Lorenz curves of deprivation counts.
Peruvian central coastal and highland provinces, 2002-2013.
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FIGURES

Figure 7: Reversed generalized Lorenz curves of deprivation counts.
Peruvian northern coastal and highland provinces, 2002-2013.
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TABLES

Table 1: Transition matrix of deprivation scores, Peru, 2002-2004

2002
0 0.25 0.5 0.75 1

0 0.87 0.21 0.02 0.0 0.0
0.25 0.11 0.65 0.20 0.04 0.0

2004 0.5 0.02 0.14 0.67 0.33 0.09
0.75 0.0 0.0 0.11 0.61 0.36
1 0.0 0.0 0.0 0.02 0.55
π 0.18 0.28 0.36 0.17 0.01
E[ctn∣j] 0.039 0.235 0.467 0.653 0.864
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TABLES

Table 2: Transition matrix of deprivation scores, Peru, 2004-2006

2004
0 0.25 0.5 0.75 1

0 0.82 0.19 0.02 0.0 0.0
0.25 0.15 0.68 0.19 0.03 0.0

2006 0.5 0.03 0.12 0.69 0.21 0.0
0.75 0.0 0.01 0.11 0.74 0.58
1 0.0 0.0 0.0 0.02 0.42
π 0.23 0.28 0.34 0.15 0.01
E[ctn∣j] 0.051 0.239 0.473 0.686 0.854
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TABLES

Table 3: Transition matrix of deprivation scores, Peru, 2007-2008

2007
0 0.25 0.5 0.75 1

0 0.88 0.14 0.01 0.0 0.0
0.25 0.10 0.71 0.15 0.01 0.0

2008 0.5 0.02 0.14 0.74 0.24 0.0
0.75 0.0 0.0 0.10 0.74 0.40
1 0.0 0.0 0.01 0.01 0.60
π 0.27 0.27 0.29 0.15 0.01
E[ctn∣j] 0.034 0.251 0.489 0.686 0.900
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TABLES

Table 4: Transition matrix of deprivation scores, Peru, 2008-2010

2008
0 0.25 0.5 0.75 1

0 0.86 0.17 0.03 0.0 0.0
0.25 0.13 0.68 0.24 0.05 0.0

2010 0.5 0.01 0.14 0.64 0.26 0.05
0.75 0.0 0.01 0.10 0.67 0.25
1 0.0 0.0 0.0 0.02 0.70
π 0.283 0.267 0.293 0.148 0.01
E[ctn∣j] 0.039 0.250 0.451 0.666 0.913
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TABLES

Table 5: Generalized Lorenz curves of expected deprivation scores. Vertical
coordinates.

E[ctn∣j] 1 2 3 4 5
E[c2004n ∣2002] 0.836 1.516 1.983 2.218 2.257
E[c2006n ∣2004] 0.854 1.540 2.013 2.252 2.304
E[c2008n ∣2007] 0.900 1.586 2.074 2.325 2.359
E[c2010n ∣2008] 0.913 1.578 2.029 2.279 2.318
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