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Summary 

 

 

In the paper, the stochastic equivalence scales (SESs)  are applied to homogenisation of the 

heterogeneous population of households when analysing the sequence of expenditure 

distributions in several years. The SES is any function that transforms the expenditure 

distribution of a specific group of households in such a way that the resulting distribution is 

stochastically indifferent from the expenditure distribution of a reference group of 

households. The stochastic indifference is a weaker criterion than the IB, and it turns useful 

when IB fails. For inter-temporal comparisons of expenditure distributions, we chose one 

common reference group of households and estimate non-parametric and parametric SESs for 

all years and all groups of households, using the Polish Household Budget Surveys 2005-

2010. 
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I. INTRODUCTION 

The aim of the paper is to estimate the inter-temporal equivalence scale for Poland in the 

years 2005-2010, using micro-data on expenditure distributions. The idea underlying 

proposed scales consists in choosing one reference group of households (single adults in 

2010) for all years and all selected groups of households. Assuming constant prices and 

‘benchmark’ reference household group, such equivalence scales allows for homogenisation 

of  expenditure distributions  in two dimensions: across time and across household groups.  

The stochastic equivalence scales (SES) are applied for aforementioned two-

dimensional homogenisation of heterogeneous populations of households. The SESs is a new 

class of equivalence scales that bases on the concept of stochastic indifference. For the sake of 

convenience, we will refer other equivalence scales as to ‘conventional 

Heterogeneity of household populations raises serious difficulties when addressing 

inequality, welfare and poverty. A two-step procedure is traditionally applied. In the first step, 

a reference household group is selected and then the actual expenditures of individual groups 

of households are adjusted by a chosen equivalence scale (Buhmann et al., 1988, Jones and  

O’Donnell, 1995). In the second stage, standard measures of inequality, welfare, and poverty 

are estimated on the basis of the adjusted distribution. These stages are usually perceived as 

independent.  

There are two serious reasons why the two-stage procedure is unsatisfactory.  First, 

conventional equivalence scales are not identifiable
1
, given consumer demand data.   Second, 

two abovementioned stages are not independent.   

The problems of equivalence scale identification is well-known in literature (see, in 

particular, Pollak and Wales, 1979, 1992, Blundell and Lewbel, 1991, Blackorby and 

Donaldson, 1993, and the surveys of Lewbel, 1997, Slesnick, 1998, Cowell and Mercader-

Prats, 1999). It seems that there is no way of selecting an appropriate equivalence scale unless 

the assumption alternatively called independence of base (IB) (Lewbel, 1989) or equivalence-

scale exactness (Blackorby and Donaldson, 1993) holds. Several papers have tested this 

assumption, but they ultimately reject it (Blundell and Lewbel, 1991, Blundell et al., 1998, 

Dickens et al., 1993, Pashardes, 1995, Gozalo, 1997, Pedankur, 1999). Consequently, Coulter, 

Cowell and Jenkins (1992a) conclude that there is no single correct equivalence scale for 

adjusting expenditures or incomes. Jäntti and Danziger (2000, p.319) maintain that ‘there is 

                                                 
1
 In economics, a parameter is said to be ‘identified’ if its numerical value can be determined given enough 

observable data [Lewbel, Pendakur, 2006]. 
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no optimal method for deriving an equivalence scale.’ For these reasons, conventional 

equivalence scales, which are used in analyses and in the practice are arbitrary.   

There is much evidence that the results of distributional comparisons are sensitive to 

the choice of equivalence scale (Coulter, Cowell and Jenkins, 1992a,b). This means that the 

two aforementioned stages are not independent. Thus the arbitrariness of equivalence scales 

generates the arbitrariness of those comparisons. 

The rest of this paper is organised as follows: Section II presents the concept of 

stochastic indifference and its relation to equivalence scale exactness (or independence of 

base). Then the concept of SES is formally developed.  Section III gives a statistical test to 

verify whether a particular function can be recognised as an SES and a method for estimating 

SESs. Section IV contains the empirical results of estimating inter-temporal non-parametric 

and parametric SESs for Poland in the years 2005-2010. Lastly, Section V presents general 

conclusions.  

II. STOCHASTIC EQUIVALENCE SCALES  

2.1 Stochastic indifference and equivalence scale exactness. 

The concept of the stochastic equivalence scale (SES), applied in this paper, bases on 

the idea of stochastic indifference (SI), i.e., a symmetric factor of stochastic dominance 

relation. Suppose that we consider two positive-valued random variables W1 and W2 

describing two expenditure distributions and characterised respectively by probability 

distribution functions R1(w) and R2(w) [W1~R1(w)  and W2(x)~R2(w), for short]. Let U1 denote 

the class of all von Neuman-Morgenstern type utility functions, u, such that u’ ≥ 0 

(increasing). Also let U2 be the class of all utility functions in U1 for which u’’ ≤  0 (strict 

concavity). Following Linton, Masuomi and Whang (2005), distribution W2 is said to 

dominate distribution W1 stochastically at first order, denoted W2≥FSDW1,  if and only if either 

R1(w. )≥R2(w) for all w≥0, for all w, with strict inequality for some w; or       (1) 

E[u(W1)≤E[u(W2)] for all uϵU1 , with strict inequality for some u,      (1a) 

where E[·] denotes the mean value operator of a random variable. 

Distribution W2 dominates W1 at second order, denoted W2≥SSDW1, if and only if either 

 
ww

dttRdttR
0

2
0

1 )()( , for all w, with strict inequality for some w; or      (2) 

E[u(W1)≤E[u(W2)] for all uϵU2 , with strict inequality for some u.   (2a) 
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First order dominance implies dominance at all higher orders. However, the implication goes 

in only one direction. 

Distribution W1 is said to be indifferent to distribution W2 if and only if W1 dominates 

stochastically W2 and W2 dominates stochastically W1. Stochastic indifference is called the 

symmetric factor of  stochastic dominance relation. 

Definition 1. W1 is first order indifferent to W2 , i.e. W2≥FSDW1 ˄ W2≤FSDW1, if and only if  

either 

R1(w)=R2(w) for all w≥0; or        (3) 

E[u(W1)=E[u(W2)] for all uϵU1.      (3a) 

Definition 2. W1 is second order indifferent to W2, i.e. W2≥SSDW1 ˄ W≤2SSD W1, if and only if  

either 

 
ww

dttRdttR
0

2
0

1 )()( , for all w≥0; or      (4) 

  E[u(W1)=E[u(W2)], for all uϵU2       (4a) 

Higher orders of stochastic indifference can be defined in a similar way. It is easy to 

see that the first order indifference implies the indifference of all higher orders and this 

implication goes in both directions.   

There are well known relationships between stochastic dominance and economic 

inequality and poverty (see, among others, Davidson, Duclos, 2000, Davidson, 2008). All 

these relationships also valid for stochastic indifference, which  can be easily checked when 

substituting inequality ‘≥’ by strict equality.  

The following corollary  summarises useful properties of stochastic indifference.  

Corollary 1. With the above notations, the following statements are equivalent: 

a) R1(w)=R2(w),  for all w≥0. 

b) Social welfare  in W1 and W2, i.e. E[u(W1)], and E[u(W2)] is the same for  all utility 

functions u  U2. 

c) Poverty in W1 and W2 is the same  for all poverty lines and for the Atkinson’s (1987) 

class of poverty indices.  

d) Inequalities in W1 and W2 are the same. 

Let the general population of all households consists of m+1 disjoint groups 

(subpopulations), m>1, which are selected according to an attribute other than expenditure, 

e.g. household size, demographic composition, etc. Let m+1 vector α=[α0,α1,…,αm] describe 

these attributes.  Let one of these groups with α0 attribute be chosen as a reference household 

group with an expenditure distribution described by positive continuous random variable Y 
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with probability distribution function G(y), Y~G(y) for short
2
. Without loss of generality, we 

choose households comprising a single adult as the reference group. Let positive continuous 

random variables Xi~Fi(x), i = 1,…,m, represent the expenditure distributions of the remaining 

m household groups. X1,…,Xm  with α1,…,αm attributes, respectively.  For technical reasons, 

X1,…,Xm will be called ‘the evaluated distributions.’  

To account for a normative setting, we consider a simple model of utilities and 

preferences of household members in an economic environment with q private goods. We 

assume that any two households with the same attributes have the same preferences and that, 

if utility levels are comparable across households, individuals in different households with the 

same attributes and consumption vectors are equally well off (Blackorby, Donaldson, 1993).  

Define the cost (expenditure) function, c(p,u,αi) corresponding to household utility 

function u(q,αi) , i=0,1,…,m, to give the minimum amount of expenditure necessary for a 

household of αi attribute to get utility level u at prices p, i.e., 

  uquqppuc i
q

i  ),(|min),,(        (5) 

The indirect utility function v(p,x,αi)  is given by  

 xqpquxpvu i
q

i  |),(max)..(  , i=0,1,…,m,  (6) 

where x is total expenditure at prices p. The functions c and v are related by the identity 

x=c(u,p,αi)↔u=v(p,x,αi) , i=0,1,…,m    (7) 

(Blackorby, Donaldson, 1993).  

Let d be the number of adult equivalents in a household with attributes αi  and income 

x facing prices p. Blackorby, Donaldson (1993) define di as follows 









 0,,),,( 

d

x
pvxpvu i       (8) 

where α0 is the reference household attribute (a single adult). We assume that for all αI, 

i=1,…m,  there exists d such that (6) has a unique solution.  

We may express (6) in an alternative form, assuming y as the reference household 

expenditure 

 0,,),,(  ypvdypvu i  .      (9) 

 

                                                 
2
 Henceforth, we reserve capital letters for random variables and lowercase letters for the values of these 

variables. 
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Equations (8) or (9) implicitly define a function d=eq(p,u,αi), where eq(p,u,α0)=1. Eq. 

(8) says that if the reference adult has an income x/d and faces prices p, then he or she enjoys 

a utility level exactly equal to the one enjoyed by each member of a household with attributes 

αi and income x, facing prices p.  

Eq. (9) can be interpreted as follows: the household with attributes αi, facing prices p, 

should spend amount of y·d if each of its member to be as well off as the reference adult, 

spending  y and facing prices p. 

Using (7), d is given by 

),,(

),,(
),,(

0




upc

upc
upeqd i

i  , i=1,…,m,     (10) 

(Blackorby, Donaldson, 1993)
3
.  

The function eq depends on the unobservable utility level of members of the 

household. Blackorby, Donaldson, (1993) suggest to use a single reference level of utility, say 

u0, and to define an index 

),,(

),,(
),(

00

0






upc

upc
pqed i

i  , i=1,…,m,     (11) 

In general, the index d  is not equal to the index d . Social rankings will be correct if 

and only if the index is exact, that is if and only if 

),,(),( ii upeqpqe   ,       (12) 

for all (p,u,αi), i=1,…,m. 

When (12) holds, Blackorby, Donaldson (1993) say that utilities satisfy equivalence 

scale exactness (ESE). Lewbel (1989) calls this independence of base (IB)and shows that if 

there exists a base-independent equivalence scale function Δ(p,α) of prices and household 

attributes, then the cost functions must be related by 

),(),,(),,( 0 ii pupcupc   , i=1,…,m.    (13) 

where Δ(p,α) must not depend on u. 

Using (7) and (8), the indirect utility function v corresponding to c is 














o

ip

x
pvxpv 


 ,

),(
,),,( , i=1,…,m,    (14) 

Defining ),(/ ipx  as equivalent expenditure, Eq. (14) says that if two households facing 

the same prices have the same equivalent expenditure, than they are equally well off. 

Similarly, using (7) and (9), the indirect utility function v corresponding to c is 

                                                 
3
 See also Deaton, Muellbauer, (1980), p.205. 
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 oii ypvpypv  ,,)),,(,(  , i=1,…,m.    (15) 

Several papers have tested ESE/IB assumption, but they ultimately reject it (Blundell 

and Lewbel, 1991, Blundell et al., 1998, Dickens et al., 1993, Pashardes, 1995, Gozalo, 1997, 

Pedankur, 1999). Perhaps, ESE/IB condition is too strong. The following theorem offers  a 

weaker condition.  

Theorem 1. Let the positive continuous random variables Xi~Fi(x) and Y~G(y) describe 

expenditure distributions of the households with ith attributes, i=1,…,m, and  the reference  

households, respectively. Let ESE/IB assumption holds which means that there exists 

),( ip   satisfying Eq. (14). Define  

)(~),(/ zHpXZ iii  .       (16) 

Then Zi is stochastically indifferent to Y. 

Proof. ESE/IB implies (14). This means that expenditure distribution of the households with 

ith attributes satisfies the equality: ),( ii pYX   that implies   

iii ZpXY  )),(/  .       (17) 

But the equality of two random variables implies the equality of their distribution functions 

G(y)=Hi(y),         (18) 

for all y>0, which means the validation of the condition (3) of stochastic indifference. QED. 

However, the above implication goes in one direction. To see this, it is enough to 

observe that (18) may not necessary imply (17). It is due to the fact that one probability 

distribution function may correspond to several random variables (Billingsley, 1995, p.261). 

This means that indifference criterion is weaker  than ESE/IB (see Fig1). 

 

Fig.1. The relation between ESE/IB and stochastic indifference. 

Stochastic 

indifference 

ESE/IB 
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Because of that ESE/IB assumption seems to be too strong in applications, we propose 

to found equivalence scales on the stochastic indifference (SI), a weaker criterion than 

ESE/IB. The SI can be easy to check by Kolmogorov-Smirnov (K-S) test. The K-S statistics 

may be also used for developing estimators of equivalence scale ),( ip  .  

A similar approach has been adopted in time series analysis when defining 

stationarity. A stochastic process is said to be stationary in the strict sense if its joint 

probability distribution remains unchanged when shifting along the time axis. Unfortunately, 

stationarity in the strict sense is untestable in most economic analysis where a single time 

series is usually available. However, stationarity in the strict sense implies some conditions
4
, 

which can be easily tested on the base of single time series. For this reasons, analysts have 

adopted these conditions as the definition of stationarity in the weak sense.  

2.2. The stochastic equivalence scales. 

According to the above notations, let Y~G(y) describe the reference expenditure distribution 

and Xi~Fi(x) be the evaluated expenditure distribution of the ith household group, i=1,…,m.  

Suppose that s() = [s1(),…,sm(·) ] is a continuous and strictly monotonic real-valued 

vector function for which the inverse function s
-1

() = [s1
-1

(),…,sm
-1

(·)] exists. Let the random 

variable Zi = si(Xi) ~Hi(z) be the transformation of the evaluated expenditure distribution Xi. 

Henceforth, the random variable Zi  Hi(z) will be called the ‘transformed expenditure 

distribution’. Define the random variable Z~H(z) as a mixture of the m transformed 

distributions Zi 

 


m

i ii zHzH
1

)()(  ,      (19) 

where the weights πi satisfy the condition  


m

i iimi
1

10,,..,1  .  

Definition 2. With the above notations, the function s() will be called the stochastic 

equivalence scale (SES) if and only if the following equality holds: 

z ≥0, H(z) = G(z)      (20) 

When the function s() is an SES, the transformed expenditure distributions Z will be 

called ‘the equivalent expenditure distributions’. Naturally, the definition of an SES also 

applies for m = 1 in Eq. (19), i.e., when only one group of households is compared to the 

reference group.  

                                                 
4
 If a stochastic process Xt is stationary in the strict sense then E[Xt]=µ=const, D

2
[Xt]=σ

2
=const, and 

autocovariance function cov(t1,t2)=cov(t2-t1). 
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The definition of an SES is ‘axiomatic’ in the sense that it only defines the properties  

of a function that can be recognised as an SES. This definition does not describe how an SES 

should be constructed. In other words, any function s() that fulfils the condition (20) has to be 

recognised as an SES.  

It might happen that several functions s(·) satisfy condition (20), i.e., they are SESs. 

Nevertheless, all such functions yield the equivalent expenditure distributions, which in virtue 

of corollary 1 exhibit the same social welfare, inequality and poverty. In other words, the 

choice of a particular SES from the set of SESs does not influence social judgements.    

Some classes of SES would be of special importance for empirical studies. For 

example, the class of relative SES can be defined in following way. Let d = [di], i = 1,…,m, be 

the vector of positive numbers called ‘deflators’ that transform the evaluated expenditure 

distributions X1,…,Xm thusly: 

Zi = Xi/di  Hi(z), i = 1,…,m,       (21) 

Definition 3. Under the above notations, the vector d will be called the relative SES if and 

only if the deflators d1,…,dm are such that equality (20) holds.  

The di deflators are used for calculation the weights πi appearing in (19), i.e. 

 


m

i iii dd
1

/ . It is due to the fact that the transformation (21) means the pass from the 

population of individuals to the fictitious population of equivalent adults [Ebert, Moyes, 

2003].   

Definition 4. The relative SES is said to be nonparametric if di deflators are simply the 

numbers of equivalent adults. The relative SES is said to be parametric if di deflators are 

functions d(h,θ) of some household attributes, h, e.g. the number of household’s members, 

the number of adults and children, etc
5
.  

Certain forms of the parametric deflator d(h,θ) are especially popular in practical 

applications. The power deflator has the following form:  

 


 hhd ),( , 0 ≤ θ ≤ 1,        (22)      

where h is the household size (Buhmann et al.,1988). The parameter  is set arbitrarily. The 

per capita (with  = 1) and square root (with  =  0.5) equivalence scales appear to be the 

most popular equivalence scales (OECD, 2008). This and other pragmatic equivalence scales 

one can treat as potential SESs. One will recognise them as SESs if condition (20) is fulfilled.  

                                                 
5
 Jenkins and Cowell (1994) describe the parametric equivalence scale class as ‘…a set of scales sharing a 

common functional form and for which parametric variations change the scale rate relativities for households of 

a different type’. 
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The validation of condition (20) can be tested using nonparametric statistical tests for 

equality between cumulative distribution functions. In this paper, the Kolmogorov-Smirnov 

(K-S) test is applied. Moreover,  the parametric and nonparametric SES can be estimated when 

the K-S statistic is used as a loss function.  

III. STATISTICAL ISSUES CONCERNING SES 

There are two statistical issues related to SESs: testing whether a function s() can be 

recognised as an SES and estimating parametric and non-parametric SESs. These two 

problems require random samples of expenditures per household. Micro-data are the most 

suitable data for this purpose, though grouped data may also be used. We assume that the 

general population consists of m+1 disjointed household populations and that each household 

represents a different type of household. One of these populations, which usually comprises 

one-person households, is treated as the reference population. The remaining m populations 

are called the evaluated populations.  

In this section, we will use the notations and symbols defined in Section II. The 

random samples are defined as follows: the sample of size l that is from the general reference 

population will be denoted as (y1,…,yl). Whereas the random sample from the i-th evaluated 

general population will be denoted as ini
xx ),...,( 1 , the transformed version of this sample will 

be denoted as ini
zz ),...,( 1 , i= 1,…,m. The total sample size of all of the evaluated groups will 

be denoted as n = n1+,…,+nm. We calculate the weights πi in (19) as  


m

i iii dd
1

/ , i.e. the 

shares of equivalent adults di, and assign them to the ith group for each i= 1,…,m.  Let 

(z1,…,zn) denote the pooled sample of all of the transformed values with their corresponding 

weights (π1,…,πn). 

We calculate the empirical distribution function )(G


 for the reference distribution Y 

using the sample (y1,…,yl); similarly, we calculate the empirical distribution function )(H


 

using the pooled sample (z1,…,zn) and the corresponding weights (π1,…,πn).  

To verify that function s() = [s1(),…,sm()] is an SES, i.e., to check whether identity 

(20) holds, we need to test the null statistical hypothesis 

 H0: H(z) = G(z)        (23)  

against the alternative hypothesis 

Ha: H(z) ≠ G(z)        (24)  

for all z ≥ 0.    
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We will verify one of these hypotheses using the Kolmogorov-Smirnov (K-S) test: 

nl

nl
zGzHU

z 


 |)()(ˆ|max


,for all z≥0     (25)  

Smirnov (1939).  

Under the null hypothesis, the U statistic (25) has an asymptotic Kolmogorov- distribution 

(Kolmogorov, 1933).  

The p-value of the K-S test (25), i.e., p =  P(U   ucalc), is a convenient tool for testing 

these hypotheses on the selected significance level α, where ucalc is the calculated value of the 

U-test in the sample. If p ≤ , we reject the null hypothesis H0 and accept Ha, and as a result, 

the function s() cannot be recognised as an SES. If p > , we accept the null hypothesis, and 

therefore, we recognise function s() as an SES. 

The proposed method of estimating SESs uses the U-test as a loss function. Suppose 

that the function s() is a potential SES. This function may be non-parametric, e.g., it may take 

the form of a set of deflators d = [d1,…,dm], or it may be parametric and depend on k 

parameters  =[1,…,k]. We will use the symbols s(|d), s(|θ) or simply s when the context 

of the estimation is obvious. Let z1,…,zn be the sequence of the evaluated expenditures that are 

adjusted by the function s, i.e., let zj = s(xj|d) or zj = s(xj|), j=1,…,n. Let )(zG


 and )|( szH


 

denote the empirical distribution functions of the reference expenditures and the adjusted 

expenditures, respectively. We propose the estimator s* of s that minimises the K-S statistic 

U(s), i.e.: 

ln

ln
zGzHU

zs 


 |)()|(|maxmin*)(


ss  for all z ≥ 0.  (26) 

When we compare the reference distribution Y with a particular evaluated distribution Zi, we 

can substitute for the terms )|( szH


 and n on the right-hand side of Eq. (26) with )|( szH i


 

and ni, respectively, for each i = 1,…,m. 

Alternatively, we can estimate the SES by using p-values as a function of s, i.e., by 

using p(s):  

p(s) = P[U(s)   ucalc(s)].       (27) 

This SES estimator is s*  and it maximises the p-value (27): 

)]()([max)( sss*
s

calcuUPp   ˄ p(s*)  > α    (28) 

The estimator s* can be found using the grid-search method. The following example 

illustrates this method when estimating nonparametric deflator d for two-member households. 
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We assume an initial interval [d1,d2] for the d deflator and we divide this interval using 

t equally spaced values d
(1)

,…,d
(t)

 (grids). For each d
(j)

,  j = 1,…,t, we calculate the n adjusted 

expenditures zi
(j)

 = x1/d
(j)

,…,zn = xn/d
(j)

 and the p-value p(d
(j)

) (27) of the Kolmogorov-

Smirnov U test (26). For a more accurate estimation, we may repeat calculations with the 

interval for a value d that is smaller than the initial interval. The deflator d
* 

that yields the 

maximal p-value, namely, p(d*) = max[p(d
(1)

),…,p(d
(t)

)], will be the desired estimator of the 

SES  if p(d*) is greater than the significance level . Fig. 2 shows the plot of p(d
(j)

) against 

d
(j)

. 
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Fig. 2. Estimating the d deflator of a non-parametric relative SES. 

Source: Author’s calculations from Polish Household Budget Survey 2010. 

 

One can see that the plot of p
(j)

 crosses the critical level α = 0.05 at two points that have the d-

coordinates d*(-) and d*(+). Thus, every relative scale with a deflator d that belongs to the 

[d*(-),d*(+)] interval can be accepted as an SES. The interval [d*(-),d*(+)] can be interpreted 

as the (1-α) confidence interval for the estimated deflator d*. In this example, d* = 1.686555 

and the 95% confidence interval is [1.663, 1.728].  
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The above estimation procedure is applied separately to every set of m deflators di.  If 

every di deflator is an SES, overall criterion (20) will be satisfied automatically. However, if 

some of the estimated deflators are not SESs, criterion (20) might be still fulfilled by applying 

the K-S test (26) for pooled samples.   

The Kruskal-Wallis (1952) test (which we abbreviate K-W) can be applied as a 

supplementary tool for checking the homogeneity of transformed distributions. The K-W test 

assesses whether different samples were drawn from the same distribution.  

It should be noted, however, that s* estimators do not always exist. Although p(s) 

usually reaches a maximum, the condition p(s*) > α might be violated.   

IV. INTERTEMPORAL EQUIVALENCE SCALES FOR POLAND 2005-2010. 

For inter-temporal comparisons of expenditure distributions, we use monthly micro-data that 

come from the Polish Household Budget Surveys for the years 2005-2010, where household 

groups are distinguished according to the number of members (household size). The 

expenditures are expressed in constant 2010 prices. We chose the households of single adults 

in the year 2010 as the reference group for all household groups and years.  We assume a 5% 

significance level in all of the analysed cases 

TABLE 1 

Estimates of non-parametric inter-temporal SESs 

Household 

size 

2005 2006 2007 2008 2009 2010 

1 .88276 

(.871;.893) 

p=.33497 

.91917 

(.911; .927) 

p=.19564 

.91381 

(.898; .929) 

p=.69180 

.94285 

(.923;.962) 

p=.94631 

.98510 

(.969; 1.007) 

p=.96077 

1 

 

 

2 1.41601 

(1.409; 1.437) 

p= .13451 

1.47531 

(1.463; 1.519) 

p=.31582 

1.53038 

(1.517; 1.565) 

p=.34443 

1.60348 

(1.584;1.646) 

p=.61932 

1.65582 

(1.639; 1.694) 

p=.48098 

1.686555 

(1.663; 1.728) 

p=61811 

3 1.64246 

(1.625; 1.692) 

p=.37444 

1.77607 

(1.768; 1.805) 

p=.14403 

1.85594 

(1.838; 1.900) 

p=.46894 

1.98467 

(1.965; 2.041) 

p=.41149 

2.03721 

(2.024; 2.074) 

p=.19892 

2.06870 

(2.062; 2.093) 

p=.09060 

4 1.78925 

(1.780; 1.815) 

p= .12690 

1.90296 

(1.890; 1.955) 

p=.27833 

2.02864 

(2.018; 2.065) 

p=.15709 

2.16172 

(2.153; 2.199) 

p=.14077 

2.22012 

(2.209; 2.251) 

p=.11610 

2.21725 

(2.202; 2.276) 

p=.22808 

5 or more 1.66465 

(1.646; 1.697) 

p= .21394 

2.00174 

(*;*) 

p=.00028 

2.12616 

(*;*) 

p=.00054 

2.26059 

(*;*) 

p=.00869 

2.32638 

(*;*) 

p=.00070 

2.37236 

(*;*) 

p=.00041 

p (K-S) .06931 .06127 .06895 .13691 .07735 .03988 

p(K-W) .59879 .76587 .48713 .85287 .94596 .90990 

Notes 

 reference households: single adults 2010. 

p(K-S):  p-value in Kolmogorov-Smirnov test; p(K-W): p-value in Kruskal-Wallis test, 95% confidence intervals 

in parentheses. 

Source: Author’s calculation from Polish Household Budget Surveys, 2005-2010. 
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Table 1 presents the estimates of nonparametric relative SESs. The deflators di are 

estimated separately for each household group, including single adults, and in each year. The 

deflator di=1 for single adults in the year 2010. 

An analysis of the results presented in Table 1 shows that almost all of the estimated 

deflators can be recognised as SESs. The exceptions are five estimates for households with 

five or more members. The second row from the bottom in Table 1 shows that these 

exceptions influence the overall K-S test for pooled household groups only for the year 2010. 

However, the p-values of the overall Kruskal-Wallis test, which is presented in the last row of 

Table 1, are greater than the significance level α = 0.05. Thus, all of the estimated deflators 

can be recognised as SESs.  

Three features of the estimated equivalence scales are remarkable. First, these 

nonparametric equivalence scales are very flat in comparison with the per capita scale. This 

means that Polish households exhibited large economies of scale in the years 2005-2010. 

Second, the 95% confidence intervals are very narrow for the estimated deflators. 

Consequently, the proposed method to estimate the non-parametric scales is quite accurate. 

Third, equivalence scales vary over time.  

Inter-temporal comparisons of equivalence scales reveal some interesting features. 

One can see that the number of the units that are  equivalent to 2010 single adults, increase 

over time, within each group of households. This means decreasing economies of scale in the 

years 2005-2010.   

Table 2 contains the estimates of the inter-temporal  power scale (22) d=h
θ
, where h is 

the household size. For comparisons, we present the estimates of the ‘current’ power scale, 

where reference household group contains single adults in current year.  

TABLE 2. 

Estimates of parametric inter-temporal and current SESs   

Year 
Inter-temporal SES. 

Reference households: 

single adults, 2010 

Current SES. 

Reference households: 

single adults, current year 

 p-value  p-value 

2005 
0.40127 

(0.400;0.402) 

0.06298 0.51872 

(0.513; 0.526) 

0.38150 

2006 
0.45899 

(0.457; 464) 

0.07575 0.53853 

(0.537;0.541) 

0.11294 

2007 
0.50117 

(0.499; 0.506) 

0.09910 0.58891 

(0.582; 0.597) 

0.47660 

2008 
0.55455 

(0.550; 0.571) 

0.23818  0.61021 

(0.606; 0.622 

0.24119 

2009 
0.58070 

(576; 0.595) 

0.16811 0.59684 

(0.592; 0.609) 

0.24987 

2010 
0.59438 

(0.591; 0.603) 

0.15262 0.59438 

(0.591; 0.603) 

0.15262 

Notes:  95% confidence intervals in parentheses 
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      Source: Author’s calculations from Polish Household Budget Surveys, 2005-2010. 

Analysis of the results in Table 2 shows that all of the power equivalence scales can be 

recognised as SESs because all of the corresponding p-values are greater than the significance 

level of 0.05. The estimates of  are less than one in every year under consideration. This is 

an indication of the economies of scale that were enjoyed by Polish households in the years 

2005-2010. However, the effect of economies of scale seems to diminish because the 

parameter 1 slowly increases in this period.  

One can see in Table 2 that the inter-temporal SES provides lower estimates of θ than 

the current SES. This means that the inter-temporal SES exhibits greater economies of scale 

that the current SES.  

V. CONCLUSIONS 

Thus far, conventional equivalence scales have failed to solve the problem of 

homogenising a population of households that differ in all respects other than their 

expenditures.  Under a single price regime, the equivalence scales are not identifiable unless 

the ESE/IB condition holds. Several papers have tested this condition, but they ultimately 

rejected it. Without IB, the standard equivalence scales turn out to be arbitrary, which implies 

arbitrariness of distributional judgements concerning inequality, poverty and welfare. 

Stochastic equivalence scales seems to be a promising alternative to conventional 

equivalence scales. SES bases on the stochastic indifference criterion, which is a weaker 

condition than ESE/IB.. The validation of the stochastic indifference can be verified using 

statistical tests. The stochastic indifference criterion can also be used to develop SES 

estimators.  

The axiomatic formulation of the SES is quite general. It does not specify one definite 

scale form, but it does define the properties that should be satisfied by a certain function for it 

to be recognised as an SES. This means that the actual form of an SES function is not 
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important; only the fact that a function is an SES function matters. Thus, we do not have to 

search for an optimal SES. The choice of a particular form of SES does not influence 

distributional judgements, in contrast to arbitrary standard equivalence scales. 

The application of SES to inter-temporal comparisons of expenditure distributions has 

turned out very useful. The choice of bench mark reference group of households for all 

analysed years and household groups provides more homogeneous platform for normative 

judgements than that when the current equivalence scales are separately estimated in each 

year. 

The estimated inter-temporal SESs for Poland reveal remarkable features.  Polish 

households exhibited large and diminishing economies of scale in the years 2005-2010. Also, 

the inter-temporal estimates of economies of scale are lower than the current estimates.  
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