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Abstract 

 

 

This paper proposes new tools of analysis to determine whether growth was pro-poor. 

Starting from the concept of distributional change, it makes first a distinction between 

a non-anonymous and an anonymous analysis of pro-poor income growth based on 

the notion of the elasticity of non-anonymous (anonymous) income at time 1 with 

respect to the corresponding non-anonymous (anonymous) income at time 0, such an 

elasticity being measured via the concept of relative concentration curve. These 

concepts of distributional change and of elasticity of income at one period with 

respect of that of another period are then also related to the notions of - and -

convergences. The approach is then extended to compute non-anonymous and 

anonymous growth rates of another characteristic, such as the level of education, with 

respect to income. Each of the concepts previously mentioned is represented by some 

index related to the famous Gini index and graphical illustrations derived from the 

concept of Lorenz and relative concentration curves are also given. Empirical 

illustrations based on Indian data and focusing on state literacy levels confirm the 

usefulness of the approach introduced in this paper.  
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I. Introduction 

 

There is by now a vast literature on the concept of pro-poor growth although there is 

no agreement on what this notion should refer to. Some argue that growth is pro-poor 

when it raises the incomes of the poor whereas others believe that growth can be 

labeled “pro-poor” only if it raises the incomes of poor proportionately more than it 

raises the average income in society (see, Kakwani et al., 2004, and Ravallion, 2004, 

for more details on these two approaches). While Dollar and Kraay (2002) found, on 

the basis of a large cross-country data set, that the incomes of the individuals who 

belong to the two poorest deciles of the income distribution rise on average at the 

same rate as the mean income (see, also the more recent study of Dollar et al., 2013, 

which tends to confirm the earlier findings of Dollar and Kraay, 2002). Van der 

Weide and Milanovic (2014) however, using micro-census data from US states for the 

period 1960-2010, concluded that high levels of inequality reduce the income growth 

of the poor and help the growth of the rich. 

It is also important to make a distinction between studies of pro-poor growth that take 

an anonymous approach in the sense that they are usually based on cross-sections and 

do not follow individuals over time and works based on panel data that do not assume 

such anonymity (see, for example, Grimm, 2007, and Nissanov and Silber, 2009).  

Note also that while studies of pro-poor growth generally looked at developing 

countries and, as a consequence, took an absolute approach to the definition of the 

poverty line (that is, they assumed a constant poverty line in real terms), the approach 

is quite different when looking at poverty in developed countries (e.g., see Deutsch 

and Silber, 2011) because there the poverty line is generally defined in relative terms 

(that is, the poverty line is assumed to be equal to some percentage of the median or 

mean standardized income).  

Essama-Nssah and Lambert (2009) suggested a common analytical framework to 

analyze pro-poor growth which allowed them to decompose their proposed measures 

of pro-poorness across income sources or consumption expenditure components. Such 

a breakdown has important policy implications because, for example, it may help 

identifying income sources which may be anti-poor. 

While the previously mentioned studies focused mainly on the income dimensions of 

poverty, Grosse et al. (2007) extended the analysis to non-income dimensions, 

deriving growth incidence curves and related pro-poor growth measures to non-



income indicators in the domains of education, health and nutrition. More recently 

Bérenger and Bresson (2012), using the concept of sequential stochastic dominance, 

suggested a new way of testing the “pro-poor” nature of growth for poverty measures, 

based on both income and other characteristics such as education. 

The present study follows in a certain way the approach taken by Grosse et al. (2007) 

but it proposes new tools of analysis to determine whether growth was pro-poor. 

Starting from the concept of distributional change, it makes first a distinction between 

a non-anonymous and an anonymous analysis of pro-poor income growth based on 

the notion of the elasticity of non-anonymous (anonymous) income at time 1 with 

respect to the corresponding non-anonymous (anonymous) income at time 0, such an 

elasticity being measured via the concept of relative concentration curve (see, 

Kakwani, 1980 for more details). These concepts of distributional change and of 

elasticity of income at one period with respect of that of another period are then also 

related to the notions of - and -convergences. This approach is then extended to 

compute non-anonymous and anonymous growth rates of another characteristic, such 

as the level of education, with respect to income. Each of the concepts previously 

mentioned is represented by some index related to the famous Gini index and 

graphical illustrations derived from the concept of Lorenz and relative concentration 

curves are also given. Empirical illustrations based on Indian states data on literacy 

rates confirm the usefulness of the approach introduced in this paper.  

 

2. Generalizations of the Gini Index and the measurement of distributional 

change, convergence and pro-poor growth: the case of unconditional 

convergence 

 

Among the numerous algorithms which have been proposed to compute the famous 

Gini index (see, Yitzhaki, 1998), some (see, Pyatt, 1976, and Silber, 1989) have 

expressed this index in matricial form. Silber (1989) has thus proposed to express the 

Gini index of income inequality    as 

 

                                                                                                                         (1) 

 



where    is a 1 by   row vector whose elements are the individual population shares 

 
 

 
 ,   is a   by 1 column vector of the individual income shares    and   is a   by   

square matrix whose typical element     is equal to 0 if    , to -1 if     and to +1 

if    ,   being the number of individuals. Note that the income shares     have to be 

ranked by decreasing individual income. 

 

2.1. A non-anonymous analysis of pro-poor income growth 

 

Silber (1994) has then shown that such an approach could be extended to the 

measurement of distributional change. He proposed two measures of distributional 

change, one    , a population weighted measure, and another one,    , which is 

income-weighted and is defined as follows. Let us call    the vector of the income 

shares     at time 0 (                                               and let us 

assume that these shares are ranked by decreasing values. Similarly let us call    the 

vector of the individual income shares     at time 1, the shares being ranked by their 

values at time 0. In other words if     is the share of an individual who has rank   at 

time 0 (remember that rank 1 is given to the richest individual), then     is the income 

share at time 1 of the individual who had rank   at time 0. 

Let us now define a row vector    of the individual shares    , these shares being 

now ranked by decreasing values of the ratios        ⁄  . Similarly call    the column 

vector of the individual shares    , these shares being also ranked by decreasing 

values of the ratios        ⁄  .The ratio        ⁄   may also be expressed as 

 

       ⁄   
       ̅̅̅̅⁄  

       ̅̅̅̅⁄  
 

       ⁄  

   ̅̅̅̅   ̅̅̅̅⁄  
 

         ⁄  

     ̅   ̅̅̅̅⁄  
                                                           (2) 

 

where     is the income of individual i at time t,   ̅ the average income at time t, 

              and   ̅ =    ̅̅ ̅    ̅̅ ̅   

Therefore the product       measures in a certain way the inequality of the 

individual (non-anonymous) growth rates        ⁄   and is the measure of 

distributional change     proposed by Silber (1994).  

The index       may be given the following graphical representation. On the 

horizontal axis we plot the cumulative values of the shares   , the shares being 



ranked by increasing values of the ratios        ⁄  . Similarly on the vertical axis we 

plot the cumulative values of the shares    , the shares being again ranked by 

increasing values of the ratios        ⁄  . It can then be shown that the index       

is equal to twice the area lying between the curve obtained and the diagonal.  

 

2.2. Measuring the “elasticity” of the individual non-anonymous incomes at time 

1 with respect to the values of the non-anonymous incomes at time 0. 

 

Let us now continue our analysis of the non-anonymous distributional change and 

assume that the shares     are ranked by decreasing values, which gives us the row 

vector      Similarly let us also rank the individual shares     by decreasing values of 

the income shares they had at time 0, that is, by decreasing values of the shares     . 

This gives us the column vector   , as it was defined previously. The product        

is then somehow a measure of the “elasticity” of the individual non-anonymous 

incomes at time 1 with respect to the values of the non-anonymous incomes at time 0. 

If this product is positive, it will show that, as a whole, the higher the income share at 

time 0, the higher the corresponding individual non-anonymous income share at time 

1; if it is negative it will show that the lower the income shares at time 0, the higher 

the individual non-anonymous income shares at time 1.  

Here again we obtain a graphical representation by plotting on the horizontal axis the 

cumulative values of the shares     and on the vertical axis the cumulative values of 

the shares      both sets of shares being ranked this time by increasing values of the 

shares    . The curve obtained may cross the diagonal once or several times. It can be 

shown that if any area below the diagonal is given a positive sign and any area above 

the diagonal a negative sign, then the sum of these signed areas is equal to half the 

value of the index   
      

It should also be clear that the index expressed as   
     measures in a certain way the 

degree of what is called  - convergence. More precisely when   
     , which varies 

between -1 and +1, is negative, it indicates that the income growth rates of the poor 

were higher than those of the rich, so that there was  - convergence. In other words if 

  
     is negative, we can say that non-anonymous growth was pro-poor. On the 

contrary when   
     is positive, it shows that the income growth rates were higher 



for the rich than for the poor so that there was income divergence and the non-

anonymous growth was somehow pro-rich. 

 

2.3. An anonymous analysis of pro-poor income growth 

 

Until now the whole analysis has been non-anonymous in the sense that we always 

compared the income shares of an individual at time 1 with his/her income share at 

time 0. We can however implement an anonymous analysis (which we have evidently 

to implement if we do not have panel data but only two different cross sections, with 

the same number n of individuals
1
) in the sense that we would always compare the 

income of an individual who had rank   at time 1 with the income of the individual 

who had rank   at time 0, these individuals being generally different. 

Let us now first call, as before,    the vector of the shares    , the latter being ranked 

by decreasing values (at time 0). Similarly let us call  
 
 the vector of the shares     , 

the latter being ranked by decreasing values also (at time 1). The typical share of the 

vector  
 
 will be denoted as  

  
  Let us now call    (with typical share      the vector 

of the shares     where the latter are ranked by decreasing ratios ( 
  

   ⁄ ) and  
 
 the 

vector of the shares  
  

 where the latter are also ranked by decreasing ratios 

( 
  

   ⁄ ). The product      
 
 measures then in a certain way the inequality in the 

anonymous growth rates, that is, of the growth rates obtained when we compare the 

    shares at time 0 and 1, this comparison being done for each  .  

It should be stressed here that the higher the value of the index      
 
, the greater the 

inequality in the anonymous growth rates (growth rates of the various centiles). 

A graphical representation may be derived in a way similar to that which was given 

previously to the product        in the non-anonymous case.  

 

2.4. Measuring the elasticity of the anonymous income shares at time 1 with 

respect to the anonymous income shares at time 0: 

 

                                                 
1
  If, as is generally the case, the number of observations in both cross-sections is different, it is always 

possible to draw a random sample of the same size n, from each cross-section. 



Finally if we compute the product      
 
 we compute somehow the elasticity of the 

anonymous income shares at time 1 with respect to the anonymous income shares at 

time 0.  

Note that in a certain way the index   
   

 
 corresponds to the concept of - 

convergence because it is easy to observe that if   
   

 
 is negative, the growth rates 

of the poor (which may be different individuals at time 1 and 0) were generally higher 

than those of the rich, so that inequality decreased while if   
   

 
 is positive, growth 

was pro-rich so that inequality increased. Remember that in the present case the poor 

are not necessarily the same in periods 0 and 1, and similarly for the rich. 

 

3. Generalizations of the Gini Index and the measurement of distributional 

change, convergence and pro-poor growth: the case of conditional convergence 

 

Assume now that in addition to knowing the incomes of the individuals at times 0 and 

1, we also know their educational levels at times 0 and 1.  

 

3.1. Computing distributional change, convergence and pro-poor growth for 

educational levels: 

 

We can apply the same definitions of the four indices that have been given in section 

2, and compute again four different Gini-related indices. To simplify the notations, we 

will use the same names for the vectors as those used previously in the case of 

income, but apply them now to educational levels. 

In the non-anonymous case, we will first compute the degree of inequality in the 

individual growth rates in educational levels, what was called       in section 2, 

when we analyzed the income distributional change. 

Then we can compute somehow an index measuring the degree of -convergence, 

that is, of individual non anonymous pro-“poor education” growth, what was called 

       in section 2 in the case of income. 

In the anonymous case we can similarly first compute the degree of inequality in the 

anonymous growth rates in educational levels of the various centiles, what was called 

     
 
 in section 2 when we analyzed income distributional change. 



Finally we can compute an index measuring somehow the degree of -convergence, 

that is, an index of anonymous pro-”poor education” growth. This corresponds to the 

index      
 
 that we computed in section 2 in the case of income growth. 

 

3.2. Computing non-anonymous and anonymous growth rates of individual 

educational levels with respect to individual incomes 

 

Let us call  
 
 the vector of educational shares at time 0 ranked by decreasing income 

at time 0 and   
 
 the vector of educational shares at time 1 ranked by decreasing 

income at time 0. The product  
 
   

 
is then an index which measures the 

relationship between the individual growth rates in educational levels and the 

corresponding individual incomes. If the index  
 
   

 
 is positive, it means that the 

non-anonymous growth rates in educational levels were as a whole higher for higher 

incomes while if it is negative it implies that the growth rates in educational levels 

were generally higher for the individuals with a low income. 

Finally let us call, as before,   
 
 the vector of educational shares at time 0 ranked by 

decreasing income at time 0 and    the vector of educational shares at time 1 ranked 

by decreasing income at time 1. The product  
 
   

 
  is then an index which measures 

the relationship between the growth rates in educational levels of the various centiles 

and the corresponding incomes of these centiles.  

 

3.3. Deriving indices measuring somehow the degree of conditional (on income) 

(non- anonymous)               and (anonymous) -convergence. 

 

Starting with the non-anonymous case, we defined previously an index        

measuring somehow the degree of (non-anonymous)               in educational 

levels, and an index  
 
   

 
 measuring the relationship between the individual growth 

rates in educational levels and the corresponding individual incomes. 

The difference between the former and the latter index may then be considered as a 

measure of the conditional (on income)                Given that, as was stressed 

previously, a negative index is a sign of pro-poorness, we can conclude that if this 

difference is negative (positive), the growth rates in educational levels were generally 



higher for individuals having low (high) values of the other determinants (income 

excluded) of these growth rates in individual educational levels. 

Finally in the anonymous case, we defined an index      
 
 measuring somehow the 

degree of -convergence in educational levels and an index  
 
   

 
  measuring the 

relationship between the growth rates in educational levels of the various centiles and 

the corresponding incomes of these centiles. The difference between the former and 

the latter index may then be considered as a measure of the conditional (on income) 

              If this difference is negative (positive), we can conclude that the 

growth rates in the educational levels of the various centiles were generally higher, 

the lower (higher) the level of the other (than income) determinants of educational 

levels. 

Simple illustrations of all the indices and relative concentration curves derived in the 

previous sections are presented in Appendix A. 

 

4. Empirical Applications 

 

Despite strong economic growth in the last two decades, illiteracy, especially among 

women, remains a major concern for India. Only about 65 percent of the women (age 

7 and above) were literate in 2011, the corresponding percentage for men being 82%. 

Women literacy rates are of significance since they are instrumental in improving key 

quality of life indicators such as lowering infant mortality rates, raising life 

expectancy, boosting school enrollment, and increasing women’s representation in 

legislatures. Recent efforts at improving literacy rates include the passage by the 

Indian Government in 2010 of the Right to Education Act which promises free and 

compulsory elementary education to all children between 6 and 14 years.  

 

4.1 Data sources 

 

The National Family Health Survey (NFHS) is a large-scale, multi-round survey 

conducted in a representative sample of households throughout India. Three rounds of 



the survey have been conducted since 1992-1993. We use data from the last two 

rounds, namely NFHS-2 for 1998/99 and NFHS-3 for 2005/06.
2
  

The survey primarily collects information on health indicators such as fertility, infant 

and child mortality, reproductive health, nutrition. Additionally data on indicators of 

standard of living such as type of flooring and roofing, the source of drinking water, 

availability of electricity and ownership of consumer durables such as fan, radio, 

sewing machine, refrigerator, bicycle, motorcycle and car is also collected. Since 

NFHS is not a panel data set at the individual level, we use data at the state level. We 

compile data on the number of women between the age of 15-49 who are literate in 

each state and calculate states’ share of literate women.
3
 Literate women are those 

who have either completed at least grade six or passed a simple literacy test conducted 

as part of the survey. Table 1 lists states’ share of literate women in the population. In 

both years, the state of Maharashtra had the highest share of literate women.  

 

4.2. Indices for the Non-Anonymous Case 

 

In the non-anonymous case we always compare the literacy share of a state   in 

1998/99 with the same state’s literacy share in 2005/06, regardless of its ranking in 

2005/06. Recall that    is the vector of literacy shares        in 1998/98 and    is the 

vector of literacy shares       in 2005/06 where both are ranked by decreasing values 

of    . 

 

Inequality in the growth rates of the states  

 

In Figure 1.1, we plot a curve showing cumulative literacy shares       in 1998/99 

and cumulative literacy shares       in 2005/06 by ranking states by increasing 

values of the ratio        ⁄  . This ranking is in fact identical to ranking states by 

increasing growth rates of literate women. The curve in Figure 1.1 shows the 

                                                 
2
 The latest round for 2014/15 is out in the field. The NFHS-2 sample covers 99 percent of India's 

population living in all 26 states. It has a representative sample of about 91,000 ever-married women, 

aged 15-49 while NFHS-3 has data on more than 230,000 women aged 15-49 and men aged 15-54 

from all states in India 
3
 We do not assign population weights to states while calculating the state’s share of literate women; 

we plan in the future to use such weights and re-estimate the indices to check their robustness. Note 

that in this analysis we use the weighted number of observations (weighted by sample design) in each 

state as reported in the NFHS data files. 



inequality of growth rates in women’s literacy across states. The index       is 

calculated by after ranking each vector by decreasing values of the ratio        ⁄  . 

The index is equal to twice the area lying between the curve in Figure 1.1 and the 

diagonal and varies between 0 and 1. The estimated value of the index is equal to 0.27 

(Table 2) and suggests low (non-anonymous) inequality levels among states’ literacy 

growth rates. 

 

Elasticity of the literacy rates in 2005/06 with respect to the literacy rates in 1998/99: 

 

In Figure 2.1, we plot another curve showing cumulative literacy shares       in 

1998/99 and cumulative literacy shares       in 2005/06 but in this case we rank the 

states by increasing values of    . The curve obtained crosses the diagonal once. If 

any area below the diagonal is given a positive sign and any area above the diagonal a 

negative sign, then the sum of these signed areas is equal to half the value of the index 

  
    , where the shares in the two vectors are arranged by decreasing values of    . 

The index varies between -1 and +1 and its estimated value is equal to -0.09 (Table 

2).  The index        is somehow a measure of the “elasticity” of the non-anonymous 

state literacy in 2005/06 with respect to the values in 1998/99. Though the value of 

the index is close to 0, a negative sign suggests that the lower the literacy shares were 

in 1998/99, the higher the shares were in 2005/06. Thus there is evidence of slight 

(unconditional)  - convergence implying that the non-anonymous growth in literacy 

among states was pro-poor education.  

 

Measuring the degree of “income pro-poorness” of the growth rates in literacy levels 

 

In addition to data on literacy shares, to estimate this measure, we compile data on per 

capita state income      in 1998/99.  
 
 and  

 
 are two vectors of literacy shares       

and       ranked by per capita state income       in 1998/99. In Figure 3.1, we plot a 

curve relating  
 
 and  

 
 by ranking the states by increasing values of    . By 

assigning any area below the diagonal a positive sign and any area above the diagonal 

a negative sign, we find that the sum of these signed areas is equal to half the value of 

the index  
 
   

 
  where both vectors are ranked by decreasing values of      The 

index measures the relationship between state growth rates in literacy levels and 



corresponding state incomes. The estimated value of the index is 0.06 indicating that 

the growth in state literacy levels was not pro-poor income.  

Note that the indices   
     and  

 
   

 
are both using the same data on states’ share 

of literate women. The difference between the two is that in the former, the literacy 

shares are ranked by decreasing values of the literacy shares in 1998/99,      and in 

the latter, they are ranked by decreasing values of income      . Hence the former 

measures the degree of non-anonymous               in literacy levels and the 

latter measures the relationship between the growth rates in state literacy and state 

income levels. If we take the difference between the two indices   
     and  

 
   

 
, it 

is equal to -0.15. This difference is somehow a measure of the conditional (on 

income)                Since a negative index indicates “pro-poorness” (either 

literacy “pro-poorness” or “income pro-poorness”) we can conclude that, given the 

states’ income, the growth rates in literacy rates were generally higher for those states 

which had low values of the other determinants of literacy.  

 

4.3 Indices for the Anonymous Case 

 

We now consider the anonymous case where we always compare the literacy share of 

a state which had rank   in 2005/06 with the literacy share of the state which had rank 

  in 1998/99, these states being generally, but not necessarily, different. Assume that 

   is the vector of the shares    , ranked by decreasing values of     while  
 
 is the 

vector of the shares     , ranked by decreasing values of    . 

 

Inequality in literacy growth rates 

  

Recall that    and  
 
 are vectors of the shares     and  

  
 respectively, where both 

shares     and  
  

are ranked by the ratio( 
  

   ⁄ ). In Figure 1.2, we plot a curve 

relating    and  
 
 by ranking both by increasing values of the ratio. The curve depicts 

the inequality of the growth rates in women’s literacy when we compare the     state 

in 1998/99 and 2005/06, this comparison being done for each          The index 

     
 
, where both vectors are ranked by decreasing values of the ratio,( 

  
   ⁄ ), is 

equal to twice the area lying between the curve in Figure 1.2 and the diagonal. The 



index value varies between 0 and 1 and in this case it is equal to 0.08 (Table 2). Such 

a relatively low value of this index indicates that there were no big differences in the 

anonymous growth rates of the various states (as mentioned previously anonymity 

refers here to the fact that we compare the literacy rate of the state which had rank i in 

2005/06 with the literacy rate of the state which had this same rank i in 1998/99, these 

states being usually different).   

 

Computing the “anonymous” elasticity of the literacy rates in 2005/06 with respect to 

the literacy rates in 1998/99: 

 

In Figure 2.2, we plot a curve which shows cumulative literacy shares       in 

1998/99 and literacy shares ( 
  

)  in 2005/06, each ranked by respective increasing 

values. As seen in Figure 2.2, the curve almost overlaps the diagonal. If any area 

below the diagonal is given a positive sign and any area above the diagonal a negative 

sign, then the sum of these signed areas is equal to half the value of the index   
   

 
  

where each vector is ranked by respective decreasing values. As expected from the 

curve in Figure 2.2, the estimated value of the index is equal to 0 (Table 2). The index 

  
   

 
 measures “elasticity” of the anonymous state literacy shares in 2005/06 with 

respect to the values in 1998/99. The index varies between -1 and 1 and measures 

somehow the degree of  - convergence because had this index been negative 

(positive), we would have concluded that the anonymous growth rates in literacy had 

been generally higher when the literacy ranking was low (high), so that the between 

states inequality in literacy rates would have decreased (increased). Since we found 

that this elasticity was close to zero we can conclude that between 1998/99 and 

2005/06 there was no sign of convergence in anonymous literacy rates, that is, growth 

in literacy rates was not pro-poor.   

 

Measuring the degree of “income pro-poorness” of the anonymous growth rates in 

literacy levels 

 

Recall that  
 
 is a vector of literacy shares       ranked by decreasing values of per 

capita state income in 1998/99,        while    is a vector of literacy shares       

ranked by decreasing values of per capita state income in 2005/06,        In Figure 



3.2, we plot a curve relating  
 
 and    by ranking each vector by increasing values. If 

any area below the diagonal is assigned a positive sign and any area above the 

diagonal a negative sign, it can be shown that the sum of these signed areas is equal to 

half the value of the index  
 
    . The index measures the relationship between 

anonymous growth rates in state literacy levels and state incomes. The estimated 

value of the index is 0.07 indicating that the anonymous growth in state literacy levels 

was not pro-poor income.  

As in the non-anonymous case, we compute the difference between   
   

 
 and 

 
 
     and find that it is equal to -0.06. Since   

   
 
 measures somehow the degree 

of              in literacy levels, that is, while  
 
     measures the relationship 

between the anonymous growth rates in state literacy and state income levels, the 

difference gives a measure of the conditional (on income)                Since 

such a difference was found to be negative and given that a negative index indicates 

that the growth in literacy rates was pro-poor, we can conclude that the other (than 

income) determinants of anonymous state literacy, favored somehow more those 

“anonymous” states for which the value of these determinants was low.  

 

4.3 Summary of Empirical Results 

 

Analyzing the regional distribution of literate women in India, we found that there 

were no big differences in (both the non-anonymous and anonymous) growth rates in 

literacy among the states. There was evidence of weak (unconditional)  - 

convergence implying that the non-anonymous growth in literacy among states was 

slightly pro-poor education; growth rates in literacy levels were slightly higher for 

states with lower literacy levels. However there was no sign of - convergence, 

meaning anonymous growth in literacy was not pro-poor education.  

Furthermore when we combined data on state literacy with per capita state income 

levels, we found that both the non-anonymous and the anonymous growth in state 

literacy levels were not pro-poor income; growth rates in literacy levels were slightly 

higher for states with higher incomes. In the non-anonymous case, we found evidence 

suggesting conditional (on income)              ; given the states’ income, the 

growth rates in literacy levels were generally higher for those states which had low 

values of the other determinants of literacy. In the anonymous case, we found 



evidence suggesting conditional (on income)             ; determinants (other 

than income) of anonymous state literacy, favored somehow more those “anonymous” 

states for which the value of these determinants was low.  

 

 

 

  



Table 1: State-wise share of literate women 

 

States 1998-1999 2005-2006 

Andhra Pradesh 0.03 0.04 

Arunachal Pradesh 0.01 0.01 

Assam 0.04 0.03 

Bihar 0.04 0.01 

Chattisgarh 0.01 0.02 

Delhi 0.04 0.04 

Goa 0.02 0.05 

Gujarat 0.05 0.03 

Haryana 0.05 0.02 

Himachal Pradesh 0.05 0.04 

Jammu & Kashmir 0.02 0.02 

Jharkhand 0.01 0.01 

Karnataka 0.05 0.04 

Kerala 0.06 0.06 

Madhya Pradesh 0.05 0.03 

Maharashtra 0.07 0.09 

Manipur 0.02 0.05 

Meghalaya 0.01 0.02 

Mizoram 0.02 0.03 

Nagaland 0.01 0.05 

Orissa 0.04 0.03 

Punjab 0.04 0.04 

Rajasthan 0.04 0.01 

Sikkim 0.01 0.02 

Tamil Nadu 0.06 0.06 

Tripura 0.02 0.02 

Uttaranchal 0.01 0.03 

Uttar Pradesh 0.07 0.05 

West Bengal 0.05 0.05 

 

  



Table 2: Estimates of Proposed Indices 

 

Index of Literacy 

Shares 

Formula Range Non-

Anonymous 

Estimates 

Anonymous 

Estimates 

Inequality in 

literacy growth 

rates  
      0 to 1 0.27 0.08 

     

Elasticity of the 

literacy rate in 

2005/06 with 

respect to the 

literacy rate in 

1998/99 

  
     -1 to 1 -0.09 0.00 

     

Income pro-

poorness of the 

elasticity of the 

literacy rate in 

2005/06 with 

respect to the 

literacy rate in 

1998/99 

 
 
   

 
 -1 to 1 0.06 0.07 

     

 

 

 

 

  



Figure 1: Inequality in state literacy growth rates 

 

1.1 The non-anonymous case 

 

Graphical representation of the index  
     

 

 
Ranking states by increasing values of the ratio        ⁄   

 

1.2 The anonymous case 

 

Graphical representation of the index      
 
 

 

 
Ranking states by increasing ratio ( 

  
   ⁄ )



 

Figure 2: Elasticity of the literacy rate in 2005/06 

with respect to the literacy rate in 1998/99 

 

2.1 The non-anonymous case 

 

Graphical representation of the index   
     

 

 
Ranking states by increasing values       

 

2.2 The anonymous case 

 

Graphical representation of the index   
   

 
 

 

 
Ranking states by increasing values       and ( 
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Figure 3: Income pro-poorness of the elasticity of the literacy rate in 2005/06 

with respect to the literacy rate in 1998/99 

 

3.1 The non-anonymous case 

 

Graphical representation of the index  
 
   

 
 

 

 
Ranking states by increasing income values       

 

3.2 The anonymous case 

 

Graphical representation of the index  
 
     

 

 
Ranking states by increasing values       and      . 
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Appendix A: A simple numerical illustration 

 

 

Measuring the inequality of the individual (non-anonymous) growth rates: 

 

Table 1 below gives basic data for a simple numerical illustration while Table 2 presents the 

values of the vectors   and      It is easy to derive that on the basis of the data shown there 

 
              Note that the vector  

  is expressed as  
                        

while the transpose     of the vector    is written as   
                             

 

Table 1: Original data 

 

Name of 

individual 

Income 

at time 

0 

Income 

share 

at time 

0 

(vector 

  ) 

Income 

at time 

1 

Income 

share 

at time 

1 

(vector 

  ) 

Ratios 

       ⁄   

Ranking 

of the 

individuals 

(by 

decreasing 

values) of 

the ratios 

       ⁄   

A 100 0.40 60 0.200 0.5 4 

B 80 0.32 80 0.267 0.83 2 

C 50 0.20 30 0.100 0.5 5 

D 15 0.06 10 0.033 0.55 3 

E 5 0.02 120 0.400 20 1 

TOTAL 250 1.00 300 1.000   

   

Table 2: Computing       

 

Name of 

individual 

Vector 

   
Vector 

   

Ratios 

      ⁄   

Ranking 

of the 

individuals 

(by 

decreasing 

values) of 

the ratios 

       ⁄   

A 0.02 0.400 20 1 

B 0.32 0.267 0.83 2 

C 0.06 0.033 0.55 3 

D 0.40 0.200 0.5 4 

E 0.20 0.100 0.5 5 

TOTAL 1.00 1.00   

 

The graphical representation of this index       is given below in Figure 1.  

 



Figure 1: Graphical representation of the index       

 

 
 

Measuring of the “elasticity” of the individual non-anonymous incomes at time 1 with 

respect to the values of the non-anonymous incomes at time 0: 

 

Using the simple numerical illustration of Table 1, it is easy to derive that   
            , so 

that as a whole, individuals having a high income share at time 0 tend to have a low income 

share at time 1, and conversely. The details are given in Table 3 below. 

 

Table 3: Computing   
     

 

Name of 

individual 

Income 

at time 

0 

Income 

share at 

time 0 

(vector   ) 

ranked by 

decreasing 

income at 

time 0. 

Income 

at time 

1 

Income 

share at 

time 1 

(vector   ) 

ranked by 

decreasing 

income at 

time 0 

Ranking 

of the 

individuals 

for both 

vectors     

and    

A 100 0.40 60 0.200 1 

B 80 0.32 80 0.267 2 

C 50 0.20 30 0.100 3 

D 15 0.06 10 0.033 4 

E 5 0.02 120 0.400 5 

 

Here again we obtain a graphical representation by plotting on the horizontal axis the cumulative 

values of the shares     and on the vertical axis the cumulative values of the shares      both sets 

of shares being ranked this time by increasing values of the shares    . A graphical representation 

based on our numerical example is given Figure 2. 
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Figure 2: Graphical representation of the index   
     

 

 
 

Note that the row vector     is expressed as                          
while the transpose     of the vector    is written as   

                            . 
 

Measuring the inequality of the anonymous income growth rates 

 

On the basis of the numerical example of Table 1 we then find that      
 

        The details 

are given in Table 4 below. 

Note that the row vector     is expressed as                          , 
while the transpose  

 
  of the vector  

 
 is written as  

 
                           . 

A graphical representation, based on the data of Table 4 and derived in a way similar to that in 

which Figures 1 and 2 were derived, is given in Figure 3. 
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Figure 3: Graphical representation of the index      
 
 

 

 
 

 

Measuring the elasticity of the anonymous income shares at time 1 with respect 

to the anonymous income shares at time 0 

 

Using the numerical example of Table 4, we then find that   
   

 
           

where   
                             and the transpose  

 
  of   

 
 is expressed as 

 
 
                                 . 

Note that since the index   
   

 
 is negative, there was - convergence. This can be 

easily verified since the Gini index at time 0 may be shown, using (1), to be equal to 

0.12 while the Gini index at time 1 is equal to 0.0724. 

 

Figure 4: Graphical representation of the index   
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Table 4: Computing      
 
and   

   
 
 

 

Income 

at time 

0 

Income 

shares at 

time 0 

ranked by 

decreasing 

values at 

time 0 

(vector   ) 

Income 

at time 

1 

Income shares 

at time 1 

ranked by 

decreasing 

values at time 

0 (vector   ) 

Income 

shares at 

time 1 

(vector 

 
 
) 

ranked by 

decreasing 

values at 

time 1 

Ratios 

( 
  

   ⁄ ) 

Ranking (by 

decreasing 

values) of 

the ratios 

( 
  

   ⁄ ) 

Vector 

   

Vector  
 
 Ranking 

of vectors  

   and  
 
 

100 0.40 60 0.200 0.400 1 3 0.06 0.100 1 

80 0.32 80 0.267 0.267 0.834 5 0.02 0.033 2 

50 0.20 30 0.100 0.200 1 3 0.40 0.400 3 

15 0.06 10 0.033 0.100 1.666 1 0.20 0.200 4 

5 0.02 120 0.400 0.033 1.666 1 0.32 0.267 5 

 

 



Computing distributional change, convergence and pro-poor growth for 

educational levels 

 

The educational levels and the incomes of individuals A, B, C, D and E at times 0 and 

1 are given in Table 5 below.  

 

Table 5: Income and educational levels of the various individuals 

 

Name of 

individual 

Income 

at time 

0 

Educational 

level at time 

0 (vector 

  ) 

Shares of 

educational 

levels at 

time 0 

Income 

at time 

1 

Educational 

level at time 

1 (vector 

  ) 

Shares of 

educational

levels at 

time 1 

A 100 12 0.286 60 15 0.288 

B 80 7 0.167 80 7 0.135 

C 50 10 0.238 30 10 0.192 

D 15 5 0.119 10 8 0.154 

E 5 8 0.190 120 12 0.231 

 

 

The inequality in the individual non anonymous growth rates in educational levels 

(what was called       when we analyzed the income distributional change) is 

equal to 0.100 (see the data that are at the basis of this computation in Table 6). 

 

Table 6: Computing       for educational levels 

Name of 

individual 

Vector 

   
Vector 

   

Ratios 

      ⁄   

Ranking 

of the 

individuals 

(by 

decreasing 

values) of 

the ratios 

       ⁄   

D 0.119 0.154 1.292 1 

E 0.190 0.231 1.212 2 

A 0.286 0.288 1.010 3 

C 0.238 0.192 0.808 4 

B 0.167 0.135 0.808 5 

TOTAL 1.00 1.00   

 

 

 

 

 

 

 

 

 

 

 



Figure 5: Graphical representation of the index       for educational levels 

 

 
 

 

The index measuring the degree of individual non anonymous pro-“poor education” 

growth (what was called       ) is equal to -0.028, so that individual educational 

growth was slightly pro-“poor education” (see the details of the computation in Table 

7). 

 

Table 7: Computing   
     for educational levels 

 

Name of 

individual 

Shares of 

educational 

level at 

time 0  

ranked by 

decreasing 

values at 

time 0 

(vector   ) 

Share of 

educational 

level at 

time 1 

ranked by 

decreasing 

values at 

time 0 

(vector   ) 

Ranking 

of the 

individuals 

for both 

vectors     

and    

A 0.286 0.288 1 

C 0.238 0.192 2 

E 0.190 0.231 3 

B 0.167 0.135 4 

D 0.119 0.154 5 
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Figure 6: Graphical representation of the index   
     for educational levels 

 

 
 

In the anonymous case if we compute the degree of inequality in the growth rates in 

educational levels of the various centiles (quintiles in our case), what was called 

previously      
 
 when we analyzed the income distributional change) we find out 

that this index of inequality is equal to 0.029 (see the data that are at the basis of this 

computation in Table 8). The graphical representation is given in Figure 7. 

 

Figure 7: Graphical representation of the index      
 
 for educational levels 
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Finally when we compute the index measuring somehow the degree of  

-convergence, that is an index of anonymous pro-”poor education” growth (which 

corresponds to the index      
 
 in the case of income growth), we find out (see, 

Table 8) that such an index is equal to -0.006 so that anonymous growth was very 

slightly pro-“poor education”. The graphical representation is given in Figure 8. 

 

Figure 8: Graphical representation of the index      
 
 for educational levels 
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Table 8: Computing      
 
and   

   
 
for educational levels 

 

Educational 

shares at 

time 0 

ranked by 

decreasing 

values at 

time 0 

(vector   ) 

Educational 

shares at 

time 1 

ranked by 

decreasing 

values at 

time 0 

(vector   ) 

Educational 

shares at 

time 1 

(vector  
 
) 

ranked by 

decreasing 

values at 

time 1 

Ratios 

( 
  

   ⁄ ) 

Ranking 

(by 

decreasing 

values) of 

the ratios 

( 
  

   ⁄ ) 

Vector   : 

educational 

shares at 

time 0 

ranked by 

values) of 

the ratios 

( 
  

   ⁄ ) 

Vector  
 
  

educational 

shares at 

time 1 

ranked by 

values) of 

the ratios 

( 
  

   ⁄ ) 

Ranking 

of 

vectors  

   and 

 
 
 

0.286 0.288 0.288 1.010 3 0.119 0.135 1 

0.238 0.192 0.231 0.969 4 0.190 0.192 2 

0.190 0.231 0.192 1.010 2 0.286 0.288 3 

0.167 0.135 0.154 0.923 5 0.238 0.231 4 

0.119 0.154 0.135 1.131 1 0.167 0.154 5 

 

 

 

 



Computing non-anonymous and anonymous growth rates of individual 

educational levels with respect to individual incomes 

 

Table 9 summarizes the data that will be the basis for the computations in the present 

subsection. 

 

Table 9: Shares of educational levels by decreasing income: non anonymous 

approach. 

 

Name of 

individual 

Income at 

time 0 by 

decreasing 

levels 

Shares of 

educational 

levels at 

time 0 

Income at 

time 1 

Shares of 

educational 

levels at 

time 1 

A 100 0.286 60 0.288 

B 80 0.167 80 0.135 

C 50 0.238 30 0.192 

D 15 0.119 10 0.154 

E 5 0.190 120 0.231 

 

If we call  
 
 the vector of educational shares at time 0 ranked by decreasing income 

at time 0, The corresponding row vector  
 
  will then be expressed as 

 
 
                                

Similarly let us call  
 
 the vector of educational shares at time 1 ranked by decreasing 

income at time 0. The corresponding row vector  
 
  will then be expressed as 

 
 
                                 

 

The product  
 
   

 
is then an index which measures the relationship between the 

individual growth rates in educational levels and the corresponding individual 

incomes. It is easy to find out that  
 
   

 
       . In other words the growth in 

individual educational levels is slightly pro-“poor income” since the index  
 
   

 
 is 

slightly negative. The graphical representation is given in Figure 9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 9: Graphical representation of the index  
 
   

 
 for educational levels 

 

 

 
 

  

Finally let  
 
 be the vector of educational shares at time 0 ranked by decreasing 

income at time 0 and    the vector of educational shares at time 1 ranked by 

decreasing income at time 1. The corresponding row vector     will then be expressed 

as   
  0.231 0.135 0.288 0.192 0.154(see, Table 10). 

The product  
 
   

 
  is then an index which measures the relationship between the 

growth rates in educational levels of the various centiles (in our numerical example, 

quintiles) and the corresponding incomes of these centile (quintiles). It is easy to find 

out that  
 
   

 
       . In other words the anonymous growth in individual 

educational levels of the various centiles (quintiles) is slightly pro-“poor income” 

since it the index  
 
   

 
is slightly negative. The graphical representation is given in 

Figure 10. 

 

Table 10: Shares of educational levels by decreasing income: the anonymous 

approach. 

 

Quintile Income at 

time 0 by 

decreasing 

levels 

Shares of 

educational 

levels at 

time 0 

Income at 

time 1 

Shares of 

educational 

levels at 

time 1 

1 100 0.286 120 0.231 

2 80 0.167 80 0.135 

3 50 0.238 60 0.288 

4 15 0.119 30 0.192 

5 5 0.190 10 0.154 
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Figure 10: Graphical representation of the product  
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Appendix B: An alternative algorithm to compute the Gini index 

 

 

Since using the G-matrix directly is impossible with many observations because this square 

matrix would be too big, the following algorithm could be used. 

Assume the index we compute is       where    is a row vector of shares ranked in a specific 

way and whose typical element is    with            being the number of observations, and   

is a column vector of shares ranked by some criterion and whose typical share is     Then, given 

the definition of the G-matrix, it is easy to derive that the product      my be also computed as  

 

     ∑   *(∑   

   

   
)  (∑   

 

     
)+
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