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Abstract

The pace of poverty reduction through growth vs. redistribution is at the
heart of current debates on equitable development. In this paper, we argue that
empirical poverty decompositions should build in the inherent boundedness of the
poverty headcount ratio directly. As a solution, we propose a fractional response
approach to estimating poverty decompositions, and present extensions dealing with
unobserved heterogeneity, measurement error and unbalancedness. Using a large
new data set, we estimate income and inequality (semi-)elasticities of poverty for the
2$ a day and 1.25$ a day poverty lines. The models fit the data remarkably well over
the entire data range. We highlight the relevance of focusing on semi-elasticities for
policy purposes and, building on the improved accuracy of the fractional response
results, we present poverty projections from 2010 through 2030. Finally, we discuss
some implications of these results for the post-2015 development agenda.
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1 Introduction

The pace of poverty reduction through economic growth is at the heart of ongoing debates
on inclusive growth and equitable development. Given the salience of this issue to both
policy makers and academics, an increasingly large literature analyzes the impact of
changes in incomes and inequality on poverty, as well as their respective contributions
towards poverty reduction in the past decades (Ravallion and Chen, 1997; Besley and
Burgess, 2003; Bourguignon, 2003; Kraay, 2006; Kalwij and Verschoor, 2007; Bresson,
2009; Chambers and Dhongde, 2011). Collectively, these studies established not only that
income growth is crucial to achieving sustained decreases in poverty but also that the
benefits of income growth strongly depend on the initial levels of income and inequality.
In fact, poverty is linked to income and distribution through a decomposition identity
that should guide empirical studies of poverty (Datt and Ravallion, 1992; Kakwani, 1993;
Bourguignon, 2003). In this paper, we revisit and extend this literature in several ways.

First, and most fundamentally, we argue that the previous literature based on linear
models of poverty change ignores the bounded nature of the poverty headcount ratio
and either disregards or awkwardly reintroduces the information provided by income
and inequality levels. This leads to poorly fitting approximations of the underlying
decomposition identity and estimates of the relevant elasticities that can take on
implausible values. Instead, we propose that empirical models of poverty should capture
the boundedness of the poverty headcount ratio directly, and thus build in the inherent
non-linearity of the relationship and the non-constancy of the elasticities. To this end, we
derive fractional response models of the poverty headcount ratio. We present extensions of
these models that deal with unobserved heterogeneity, measurement error and unbalanced
panel data (see Papke and Wooldridge, 1996, 2008; Wooldridge, 2010a). A key result is
the greatly improved accuracy of the poverty decomposition. Our specifications fit the
data remarkably well and predict the observed poverty headcount ratio with less than 2.5
percentage points error on average. For comparison, we also reproduce the traditional
approach and highlight some of its empirical shortcomings.

Second, using a new data set of 809 nationally representative surveys covering 124
countries from 1981 to 2010, we estimate income and inequality elasticities of the poverty
headcount ratio for different regions and time periods. Our findings generally confirm
the result of previous studies that the average income elasticity of poverty is around
two. However, in order to understand the speed of poverty reduction across different
regions and time periods, we are particularly interested in reliable estimates of values
other than the overall cross-country mean. Our method provides considerably more
precise regional and temporal estimates of the income and inequality elasticities of poverty
that often contradict earlier studies. For example, we find universally higher income
elasticities in Latin America and Eastern Europe and Central Asia but lower income
elasticities in both South Asia and Sub-Saharan Africa than reported earlier (Kalwij
and Verschoor, 2007). Furthermore, since income or inequality elasticities of poverty are
concepts of relative change, they may give the misleading impression that richer countries
are becoming ever better at reducing poverty even though the underlying absolute changes
are small. Hence, we also stress the importance of semi-elasticities which capture the
absolute change in poverty for a given rate of income growth or proportional change in
the income distribution (Klasen and Misselhorn, 2008).

Last but not least, based on the much improved accuracy of our new estimates, we
present projections of the poverty headcount ratio for the 2$ a day and 1.25$ a day poverty
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lines until 2030. We find that absolute poverty in Sub-Saharan Africa and, as a not too
distant second, South Asia remains the primary development challenge of the twenty-first
century. In all other regions, poverty is projected to nearly disappear or fall to much less
than 10% of the population by 2030. These results are based on the assumption that
per capita incomes and expenditures in each country continue to grow at the average
pace of the last 15 years. While it is clearly far from guaranteed that this will hold true,
other assumptions are easily evaluated using our proposed estimation framework. The
projected poverty trends have direct bearing on the post-2015 development agenda and
can be used to assess the viability of proposed development goals.

The remainder of this paper is organized as follows. Section 2 reviews how the
existing literature models poverty, derives our approach, and discusses the econometrics
of fractional response models. Section 3 briefly outlines the data used in this paper.
Section 4 presents the estimation results, regional elasticities, and poverty projections
until 2030. Section 5 concludes.

2 Modeling poverty and elasticities

2.1 Traditional approaches: linear models of poverty changes

Using micro-data, changes in poverty can be decomposed into changes in income and the
income distribution up to some error (Datt and Ravallion, 1992; Kakwani, 1993). A key
problem for cross-country studies of poverty is that we generally do not have access to
micro data sets of incomes and/or consumption expenditures for all countries but usually
estimate poverty based on grouped data.1 To overcome this limitation, Bourguignon
(2003) suggests approximating the entire income distribution of each country using a
two-parameter log normal distribution – an approach that is theoretically grounded2,
simple and popular but not without its critics (e.g. Bresson, 2009).

Bourguignon assumes that income, yt, is a log normal random variable, such that
ln yt ∼ N (µt, σ

2
t ), and mean income can be written as ȳt = E[yt] = exp(µt + σ2

t /2). Then
the poverty headcount ratio (henceforth, poverty headcount) at time t may be defined as

Ht = H(ȳt/z, σt) = Φ

(− ln(ȳt/z)

σt
+

1

2
σt

)
≡ Pr[yt ≤ z] (1)

where Φ(·) denotes the standard normal cdf, inequality is measured as the standard
deviation (σt) of log income, and ȳt/z is the (relative) distance of mean income (ȳt) to
the (fixed) poverty line (z) – which we interpret as a ‘shortfall’ when ȳt < z and ‘affluence’
when ȳt > z.

1There have been some attempts to either collect all the available primary data or to estimate gaps
in survey coverage with the help of national accounts. Milanovic (2002) compiles a global data set
of household level data to study the evolution of inequality, Sala-i-Martin (2006) estimates a “world
income distribution” via kernel density approximations based on grouped data, and Kraay (2006) fits
three-parameter Lorenz curves to grouped data in order to estimate the entire income distribution for
the country-poverty spells in his sample.

2Gibrat’s law, for example, illustrates how the log normal distribution can arise from a sequence of
stochastic income shocks ln yt = ln yt−1 + et, so that et is a random transitory shock in log income and
as t grows the distribution of et defines the distribution of ln yt. Battistin, Blundell, and Lewbel (2009)
recently argued that this process is better thought of in terms of permanent income and suggest that
consumption is closer to a log normal distribution.
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Eq. (1) can be interpreted as the probability that, at a particular time t, an individual
randomly drawn from the population is poor. This formulation gave rise to a large
literature deriving the income and inequality elasticities of poverty analytically and
estimating econometric models inspired by their analytic counterparts (e.g. Bourguignon,
2003; Kalwij and Verschoor, 2007; Klasen and Misselhorn, 2008). To summarize the
essence of this approach note that, based on eq. (1), we can derive the income elasticity
(εHȳt = ∂Ht

∂ȳt

ȳt
Ht

) and inequality elasticity (εHσt = ∂Ht

∂σt
σt
Ht

) of the poverty headcount as

εHȳt = − 1

σt
λ

(− ln(ȳt/z)

σt
+

1

2
σt

)
(2)

and

εHσt =

(
ln(ȳt/z)

σt
+

1

2
σt

)
λ

(− ln(ȳt/z)

σt
+

1

2
σt

)
(3)

where we define the inverse Mills ratio (λ(x) ≡ φ(x)/Φ(x)) as the ratio of the standard
normal pdf to the standard normal cdf, and we require Ht > 0.

The decomposition of the poverty headcount is often written as

dHt

Ht

≈ εHȳt
dȳt
ȳt

+ εHσt
dσt
σt

(4)

where dHt/Ht is a small relative change in the poverty headcount, dȳt/ȳt is a small
relative change in mean incomes, and dσt/σt is a small relative change in the standard
deviation of log incomes. The approximation follows from a linear Taylor expansion of
Ht. Appendix A derives this result.3

Given log normality, the standard deviation is a monotone transformation of the Gini
inequality coefficient, denoted Gt, and can be obtained via σt =

√
2Φ−1(Gt/2+1/2).4 So,

eqs. (2) and (3) can be used to predict the elasticities directly using observed values of
income and inequality. With some additional algebra, we can also derive an expression
for the Gini elasticity and rewrite eq. (4) accordingly – see eq. (A-6) in Appendix A.

However, the assumption of log normality is only an approximation and unlikely
to hold exactly. The key observation motivating the econometric models is that both
elasticities depend only on the initial levels of mean income and inequality (when the
poverty line is fixed). In order to allow for misspecification of the functional form, the
authors rely on a linear approximation of these intrinsically non-linear functions. They
capture the dependence on initial levels by interacting both mean income and inequality
with the ratio of initial mean income to the poverty line and with initial inequality. This
model is sometimes called the “improved standard model” (Bourguignon, 2003) and it is
usually formulated in (annualized) differences:

∆ lnHit = α + β1∆ ln ȳit + β2∆ ln ȳit × ln(ȳi,t−1/z) + β3∆ ln ȳit × lnGi,t−1

+ γ1∆ lnGit + γ2∆ lnGit × ln(ȳi,t−1/z) + γ3∆ lnGit × lnGi,t−1 + εit
(5)

where ∆ is the difference operator, α is a linear time trend and εit is an error term. We
also added country subscripts.

3Also see Datt and Ravallion (1992), Kakwani (1993) and Bourguignon (2003).
4This formulation is the inverse of Gt = 2Φ(σt/

√
2)− 1 due to Aitchison and Brown (1957).
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Suppose eq. (5) is estimated via OLS or GMM, then it is straightforward to see that
the implied elasticities approximate eqs. (2) and (3). The estimated income elasticity is
ε̂Hȳit = β̂1+β̂2 ln(ȳi,t−1/z)+β̂3 lnGi,t−1 and the estimated inequality elasticity is ε̂HGit = γ̂1+
γ̂2 ln(ȳi,t−1/z) + γ̂3 lnGi,t−1. Clearly, the elasticities depend on the initial levels of income
and inequality. These two elasticities are sometimes referred to as the ‘distribution-
neutral’ income elasticity and the ‘growth-neutral’ inequality elasticity. They identify
the partial effect of changing either income or inequality, contrary to the simple observed
elasticity that confounds both effects.5 Yet, this approximation is extremely coarse and
does not place any meaningful restrictions on the parameter space. Moreover, it is unclear
which level equation this specification derives from.

In general, poverty elasticities can paint a distorted picture of poverty dynamics. The
income elasticity, for example, gives the impression that richer countries become ever
better at poverty reduction because a drop in the poverty headcount from 2% to 1% is
treated just the same as a drop from 50% to 25%. Recognizing this shortcoming, Klasen
and Misselhorn (2008) suggest to focus on absolute poverty changes instead. Removing
the log from the headcount in eq. (5) turns it into a model of semi-elasticities and alters
the interpretation.6 The coefficients now measure the percentage point change in the
population that is below the poverty line for a given rate of change in income or inequality.
Likewise, eqs. (2) and (3) can be written as semi-elasticities by replacing the inverse Mills
ratio with the standard normal pdf. Contrary to elasticities, the semi-elasticities approach
zero as mean income becomes large. Klasen and Misselhorn (2008) also report that their
models fit the data better and suggest that the specification in absolute changes captures
more of the inherent non-linearity. Nevertheless, given the underlying identity, the fit
typically found in the literature (.55 ≤ R2 ≤ .73) is not particularly high.

There are advantages to relying on a linear framework other than mere simplicity,
such as the well-known robustness properties of popular estimators. Nevertheless, a
specification like eq. (5) suffers from several problems. First, it completely disregards the
information provided by poverty levels, most likely introduces negative serial correlation,
and compounds pre-existing measurement error.7 Second, after differencing removes the
time-constant unobserved effects, the added interaction terms reintroduce the unobserved
effects present in the lagged levels. Hence, the coefficients are likely to be biased no
matter if the model is estimated using Ordinary Least Squares (OLS), Instrumental
Variables (IV) or Generalized Methods of Moments (GMM) if time invariant measurement
differences exist.8 Third and most fundamentally, the intrinsic non-linearity of the (semi-)
elasticities is due to the bounded nature of the dependent variable which is not taken into
account by linear specifications. The poverty headcount is a proportion and thus only
takes on values in the unit interval (Hit ∈ [0, 1]). As a result, the linear estimates are

5For recent estimates of the simple empirical elasticity (d lnHit/d ln rgdpcit, where rgdpcit is real
GDP per capita), see Ram (2013).

6The term semi-elasticity refers here to the quantity ∂ ln y
∂x = ∂y

∂x
1
y rather than the more usual ∂y

∂ ln x =
∂y
∂xx.

7If the errors in the original process (say, yit = α + β(xit + νit) + εit, where νit is a mean zero
process uncorrelated with xit ) are not autocorrelated, then differencing introduces correlation: ∆εit has
a term in common with ∆εi,t−1, so E[∆εit∆εi,t−1] = E[−ε2i,t−1] = −σ2

ε . Furthermore, any attenuation

bias is magnified by the first-difference transformation: plim(β̂FD) = βσ2
∆x/(σ

2
∆x +σ2

∆ν) where typically
σ2

∆ν = 2σ2
ν but σ2

∆x < 2σ2
x. Autocorrelation in the mismeasured variables further reduces the signal to

noise ratio and increases the attenuation bias.
8Cf. Kalwij and Verschoor (2007), who first show a simpler linear model in differences to remove the

unobserved effects and then estimate interaction models with unobserved effects reintroduced.
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unlikely to work well for values distant from the mean and can easily take on implausible
values (e.g. ε̂Hȳit > 0) for some combinations of income and inequality. Any version of the
linear model will only poorly approximate the non-linear shape. Yet for these estimates
to be relevant for any particular country or region, we are precisely interested in temporal
and/or regional elasticities and not just the overall cross-country mean elasticities.

2.2 Alternative approaches: non-linear models of poverty

We propose modeling the conditional expectation of the poverty headcount using non-
linear parametric fractional response models. To the best of our knowledge, this paper is
the first to use such an approach for estimating poverty elasticities.

Some weaknesses of the linear specifications have been highlighted before. Chambers
and Dhongde (2011) argue that the functional form is the source of the non-linearity.
They estimate non-parametric models of the conditional mean of the headcount (Hit =
m(ȳit, Git)+εit) and then obtain average elasticities. However, non-parametric techniques
are often inefficient, cannot handle many covariates (due to the curse of dimensionality),
and cannot easily deal with measurement error. It is generally difficult to test more
involved hypotheses in a non-parametric framework. Nevertheless, we fully agree with
Chambers and Dhongde (2011) that non-linear estimation of the conditional mean
matters.

We follow Papke and Wooldridge (1996), who first suggested modeling proportions
using fractional logit or fractional probit to estimate models of the form E[yi|xi] = F (x′iβ),
where yi ∈ [0, 1] and F (·) is the logistic or normal cdf. Applying this approach to our
problem, we may approximate eq. (1) with

E[Hit|ȳit, Git] = Φ(α + β ln ȳit + γ lnGit) for i = 1, . . . , N ; t = 1, . . . , T (6)

where ln z is absorbed into the constant and we also take the logarithm of the Gini
(mostly for convenience). Naturally, we expect β < 0 and γ > 0. In motivating this
model, we temporarily assume away all econometric complications such as unobserved
heterogeneity, endogeneity and unbalancedness. These assumptions are relaxed in the
next subsection.

Since F (·) is invertible, it can be used as a ‘link function’ in the spirit of the GLM
literature (e.g. MacCullagh and Nelder, 1989). Thus, we may also write eq. (6) as
Φ−1 (E[Hit|ȳit, Git]) = α + β ln ȳit + γ lnGit. In other words, the inverse normal cdf
linearizes the conditional mean. Figures B-1 and B-2 in Appendix B use this property
to plot Φ−1(Hit) against ln ȳit and lnGit for each region, including a regression line. The
result is striking. This simple transformation is extremely successful in removing the
intrinsic non-linearity of the poverty headcount.

It is now straightforward to define the estimated income elasticity as

ε̂Hȳit =
∂Ê[Hit|ȳit, Git]

∂ȳit

ȳit

Ê[Hit|ȳit, Git]
= β̂ × λ

(
α̂ + β̂ ln ȳit + γ̂ lnGit

)
(7)

and the estimated Gini elasticity as

ε̂HGit =
∂Ê[Hit|ȳit, Git]

∂Git

Git

Ê[Hit|ȳit, Git]
= γ̂ × λ

(
α̂ + β̂ ln ȳit + γ̂ lnGit

)
. (8)
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Contrary to the linear model, the elasticities in eqs. (7) and (8) closely mimic the
properties and structure of the analytical elasticities in eqs. (2) and (3). The non-
linearity arises simply from the bounded functional form and is not artificially captured
by interaction terms. However, it is important to note that we do not require log normality
but implicitly assume that an unspecified two-parameter distribution sufficiently describes
the poverty headcount up to statistical error. We simply derived a more natural model
of the poverty headcount as a function of income and inequality which happens to look
a lot like its theoretical counterpart.

This approach has several advantages. We directly take the information provided by
poverty levels into account, the model predictions will strictly lie in the unit interval,
and the same model is able to estimate both elasticities and semi-elasticities. As
a result of respecting the bounded nature of the headcount, the elasticities will also
approach zero when the inverse Mills ratio becomes vanishingly small and are likely
to closely approximate values further away from the mean of the covariates. Hence,
they share important properties of their theoretical counterparts based on the log
normal assumption. Furthermore, we can directly predict the poverty headcount for
interesting combinations of income and inequality rather than going the roundabout way
of estimating the elasticities in one model and then projecting poverty separately.

2.3 Econometrics of fractional response models

Since there is no free lunch in econometrics, the apparent gains over the linear approach
must come at a price. In non-linear models it is generally harder to deal with unobserved
heterogeneity, measurement error and unbalancedness. While until a few years ago
there was relatively little research on this issue, we can now draw on an increasingly
well developed framework. Papke and Wooldridge (2008) extend fractional response
models to balanced panels with unobserved heterogeneity and endogenous covariates,
Wooldridge (2010a) develops the theory for unbalanced panels, and Wooldridge (2012)
derives a general set-up for one-step estimators in non-linear models. Other contributions
to the field are Loudermilk (2007), Cook, Kieschnick, and McCullough (2008), Ramalho,
Ramalho, and Murteira (2011), and Tiwari and Palm (2011).

To simplify the exposition, we stack the coefficients β = (β1, β2, . . . , βk)
′ and covariates

xit = (xit,1, xit,2, . . . , xit,k)
′. The ideal model we would like to estimate is

E[Hit|xi, µi] = E[Hit|xit, µi] = Φ(x′itβ + µi) for i = 1, . . . , N ; t = 1, . . . , T (9)

where we assume that all covariates are strictly exogenous conditionally on the unobserved
effects (µi), and that the panel is balanced. We introduced unobserved country-level
effects to capture time-persistent differences in measurement or deviations from a two-
parameter distribution, which may be arbitrarily correlated with the elements in xit.

The key problem with such an approach is that the unobserved effects are not identified
when T is fixed and N −→ ∞, leading to biased estimates of the parameter vector.
This is the incidental parameters problem of Neyman and Scott (1948).9 In addition,
the partial effects needed for calculating the elasticities are not identified either. Papke
and Wooldridge (2008) suggest to solve this problem by imposing some structure on the

9This bias tends to become small as T gets large, but there are no benchmark simulations for the
fractional probit case that we know of and in our case T̄ is small. Papke and Wooldridge (2008) explain
why replacing the standard normal cdf by the logistic cdf is not a good solution for this problem.
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correlation between the unobserved effects and the covariates using a device developed by
Mundlak (1978) and Chamberlain (1984). This approach is generally known as correlated
random effects (CRE). Concretely, we let

µi|(xi1, . . . ,xiT ) ∼ N (ϕ+ x̄′iθ, σ
2
u) (10)

where x̄i = T−1
∑T

t=1 xit is the time average of all the included time-varying regressors,
xit no longer contains a constant, and ui = µi−ϕ− x̄′iθ with ui|(xi1, . . . ,xiT ) ∼ N (0, σ2

u).
The covariates are still strictly exogenous conditionally on the unobserved effects. In
linear models, this specification is equivalent to the traditional ‘fixed effects’ model and
thus, in terms of accounting for unobserved effects, achieves the same aim as specifying
a difference equation.

Plugging eq. (10) into eq. (9), we can rewrite our model of interest as

E[Hit|xi, µi] = Φ(ϕ+ x′itβ + x̄′iθ + ui) (11)

E[Hit|xi] = E[Φ(ϕ+ x′itβ + x̄′iθ + ui)|xi] = Φ (ϕu + x′itβu + x̄′iθu) (12)

where the subscript u denotes scaling of the coefficients by the factor (1 +σ2
u)
−1/2. Going

from eq. (11) to eq. (12) applies iterated expectations and the last equality follows from
mixing (compounding) independent mean-zero normals.

If these assumptions hold, then the scaled coefficients and average partial effects
(APEs) of all time-varying covariates are identified. However, survey-specific (non-
classical) measurement error in income is likely to lead to overestimating the income
elasticity in absolute value (Ravallion and Chen, 1997). In addition, classical
measurement error may attenuate the income coefficient and thus work in the opposite
direction. Suppose we do not observe true income but ln ȳit = ln ȳ∗it + υit, where
ln ȳ∗it is the true value of log mean income/ expenditure and υit is a composite error
process with a classical and a non-classical component. We can view this as an omitted
variable problem. Going back to the simplest model, we have E[Hit|x1it, ȳ

∗
it, µi] 6=

E[Hit|x1it, ȳit, µi] = Φ(x′1itβ +ψ(ln ȳ∗it + υit) + µi) = Φ(x′1itβ +ψ ln ȳit−ψυit + µi), where
x1it is xit without the mismeasured ln ȳit, and υit is also potentially correlated with the
time-constant unobserved effects (cov(υit, µi) 6= 0). Inference using observed income will
lead to underestimating or overestimating the effect depending on which type of error is
stronger.

Building on Rivers and Vuong (1988) and the general result from Blundell and Powell
(2004), Papke and Wooldridge (2008) suggest a simple two-step control function estimator
for such endogeneity problems. Provided we have an m × 1 vector of time-varying
instruments (zit) that are relevant but not correlated with υit, we can estimate a log-
linear model ln ȳit = ϕ1 + x′1itβ1 + z′itγ1 + x̄′iθ1 + νit in the first step and then obtain the
residuals ν̂it. It is important to note here that we redefine x̄i = (x̄1i, z̄i); that is, x̄i now
contains the time averages of all strictly exogenous variables including the instruments.
In the second step, we specify the residual-augmented model of E[Hit|x1it, zit, ȳit, νit] =
Φ (ϕk + x′1itβk + x̄′iθk + ψk ln ȳit + ρkν̂it). Here, too, the Chamberlain-Mundlak device
concerns both the strictly exogenous variables and the excluded instruments. The
subscript k denotes a new scale factor (1 + σ2

k)
−1/2. The solution is to simply condition

on an estimate of the omitted variable (ν̂it). A test of ρ̂k = 0 corresponds to a test of
exogeneity and does not depend on the first step under the null (see Hausman, 1978).
The asymptotic standard errors must be adjusted for the uncertainty of the first step and
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can be derived via the delta method or approximated with the panel bootstrap.
Accounting for unbalancedness adds another layer of complication. Contrary to linear

models with CRE, where most estimators need little or no practical adjustments to
work with unbalanced panels, estimates from non-linear CRE models are inconsistent
if applied to unbalanced panel data. The main problem is that both the estimates and
the variances of the correlated random effects can differ depending on the sample size.
Wooldridge (2010a) proposes to also directly model this dependence. Assuming that
selection is conditionally independent, we can extend our model by letting the unobserved
effects vary depending on the panel size: E[µi|wi] =

∑T
r=1 δTi,rϕkr +

∑T
r=1 δTi,rx̄

′
iθkr,

where wi is a vector of functions of the conditioning variables sufficient to represent
the distribution D[µi|(sit, sitx1it, sitzit, sit ln ȳit)] = D[µi|wi]; further, sit is a selection
indicator and δTi,r is the Kronecker delta which is equal to unity if Ti = r and
zero otherwise. The coefficients are still scaled by (1 + σ2

k)
−1/2. Without further

assumptions, this implies that we cannot use the observations where Ti = 1 as these
have no separately identifiable panel dimension. Hence, they drop out of the estimating
equation. Additionally, we also let the conditional variance depend on the panel size such
that var(µi|wi) = σ2

µ exp(
∑T−1

r=2 δTi,rωr), where the omegas represent unknown variance
parameters and σ2

µ is the variance of the unobserved heterogeneity when Ti = T .10,11 The

result is a variable scale factor: (1 + σ2
µ exp(

∑T−1
r=2 δTi,rωr))

−1/2.
A convenient reparameterization arises when we treat the overall variance as

heteroskedastic and assume that D[µi|wi] is normal (see Wooldridge, 2010a). Dividing
the conditional expectation by exp(

∑T−1
r=2 δTi,rω̃r), where ω̃r denotes a new set of unknown

parameters for the overall variance, we again obtain a constant scale factor. Then, the
reparametricized two-step unbalanced CRE model is

E[Hit|xit, νit,wi] =Φ


x′1itβh + ψh ln ȳit + ρhν̂it +

∑T
r=2 δTi,rϕhr +

∑T
r=2 δTi,rx̄

′
iθhr

exp
(∑T−1

r=2 δTi,rω̃r

)1/2


 (13)

where the explanatory variables at t are (1,x′1it, ln ȳit, ν̂it, δTi,2x̄
′
i, . . . , δTi,T x̄

′
i) and the

variance depends on a set of dummy variables shifting from Ti = 2 to Ti = T−1 with Ti =
T as the base. The subscript h denotes the new scale factor. The specification nests the
balanced case. If the panel is balanced, the numerator has only one set of time averages
and a constant in addition to the time-varying covariates, while the denominator is unity.
The first estimation step is also augmented to accommodate the varying panel sizes. We
obtain the residuals via ν̂it = ln ȳit − z′itγ̂1 − x′1itβ̂1 −

∑T
r=2 δTi,rϕ̂1r −

∑T
r=2 δTi,rx̄

′
iθ̂1r,

where x′1it includes time dummies and x̄′i their time averages. The heterogeneity related
to the instruments (the z̄i time averages in x̄i) is interacted with the panel size dummies
and thus enters the first step flexibly. This, too, simplifies back to the earlier result in
the balanced case if we remove the redundant variables (i.e. the averages of time effects).

Obviously this is a complicated model to fit but it can be estimated by any

10As Wooldridge (2010a) points out, it is possible to model the conditional expectation and variance
even more flexibly by allowing for additional intercepts, trends, and variances/covariances to approximate
the non-parametric relationship from Altonji and Matzkin (2005).

11We could also let the conditional variance depend on inequality (which can be motivated by assuming
log normality of income). This relaxes an implicit assumption, namely that the marginal proportional

rate of substitution (MPRSt = −ε̂Hȳt /ε̂HGt ) is constant. The models fit marginally better but the
substantive implications change very little. Additional results are available on request.
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software that has a heteroskedastic probit implementation without any restrictions on
the dependent variable (Wooldridge, 2010a).12 Since this is a quasi-maximum likelihood
estimator (QMLE), the standard errors based on the inverse information matrix will be
too conservative and need to be adjusted for clustering at the country level (for details
see Papke and Wooldridge, 1996; 2008; Wooldridge, 2010b). Apart from the assumptions
made to restrict the unobserved heterogeneity and endogeneity, fractional probit only
requires correct specification of the conditional mean irrespective of the true distribution
of the dependent variable (Gourieroux, Monfort, and Trognon, 1984). Hence, it is as
robust as non-linear least squares but potentially more efficient.

We still need to define the average partial effects (APEs) and elasticities. Both can be
derived from the average structural function (ASF) computed over the selected sample
(see Blundell and Powell, 2004; Wooldridge, 2010a) which makes clear that only the
APEs of time-varying covariates are in fact identified. Let the linear predictors inside
the cumulative normal be m′it1ξ̂1 for the main equation and m′it2ξ̂2 for the variance

equation. Then, ÂSF(xt) = N−1
∑N

i=1 Φ
(
m′it1ξ̂1/exp(m′it2ξ̂2)1/2

)
, where xt refers to all

time-varying covariates including mismeasured income, and the coefficients are the scaled
QMLE estimates. We always need to average over the cross-section dimension in order
to get rid of the unobserved effects, varying panel sizes, and endogeneity/ measurement
error. The APE at time t of a particular continuous variable is simply the derivative of
the ASF with respect to that variable. We usually plug in interesting values for xt and
obtain the APEs assuming the entire sample shares these characteristics.

Analogously, the elasticity with respect to any xk ∈ xt (provided that xk is in logs
and does not show up in the variance equation) is

ε̂Hxkt = β̂k ×N−1

N∑

i=1

exp
(
−m′it2ξ̂2/2

)
λ
(
m′it1ξ̂1/exp(m′it2ξ̂2)1/2

)
(14)

and the semi-elasticity (η̂Hxkt ) is the derivative of the ASF with respect to xk; that is, the
average partial effect (APE). We also average over time in order to obtain a scale factor.

The basic structure is exactly the same as in the simpler versions derived in the
previous section with the addition of a variance equation adjusting for the degree of
unbalancedness. If the panel is balanced, the non-redundant sums inside the linear
predictors simplify and we again obtain the CRE analogues of eqs. (7) and (8).

3 Data

Based on the World Bank’s PovcalNet database13, we compile a new and comprehensive
data set consisting of 809 nationally-representative surveys spanning 124 countries from
1981 to 2010.14 Smaller panels of this data have been used in previous studies (e.g.
Chambers and Dhongde, 2011; Kalwij and Verschoor, 2007; Adams, 2004) and the World
Bank’s methodology is described in more detail in Chen and Ravallion (2010). Here we
only briefly summarize the main features.

12However, most implementations (e.g. Stata’s hetprob) only allow binary dependent variables. We
implement the estimator in a new module called fhetprob (see Bluhm, 2013, forthcoming).

13The data is publicly available at http://iresearch.worldbank.org/PovcalNet (last accessed May
20 2013, last updated April 18 2013).

14Supporting materials and the panel data set are available at www.richard-bluhm.com/data/.
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All data originate from household surveys. Our primary measure of poverty is the
headcount index (Hit) given a poverty line (z) of 2$ a day or 60.83$ a month. The
poverty headcount at the 1.25$ a day or 38$ a month poverty line is used as a secondary
measure. The data also contains measures of mean monthly per capita household income
or consumption expenditures (ȳit)

15, the Gini coefficient of inequality (Git) for income
or consumption expenditures, the surveyed population (popit),

16 and a set of indicators
distinguishing if the survey uses income or consumption as a welfare measure and whether
unit-level or grouped-level (deciles or finer quantiles) data are used. About 63% of the
data come from expenditure surveys and about 74% are estimated from grouped data.
All monetary quantities are in constant international dollars at 2005 PPP-adjusted prices.

Some countries17 do not conduct nationally representative surveys but instead report
urban and rural data separately. We simply weigh the poverty and income data using
the relative urban/rural population shares to construct national series. Since the Gini
is not subgroup decomposable, we employ a mixing of two log normal distributions
approximation to estimate a national Gini coefficient (Young, 2011).18 If only one urban
or rural survey is available in any given year, we usually drop the survey, except in
the case of Argentina where urbanization is near or above 90% for most of the sampled
period and we thus consider the urban series nationally representative. This results in an
unbalanced panel of 124 countries, with an average time series (T̄ ) of about 6.5 surveys
for a total of 809 observations, spanning 30 years. Table 1 provides summary statistics
for the entire panel. In Appendix B, Table B-1 presents summary statistics by region,
and List B-1 lists the countries and the corresponding numbers of surveys in the sample.

Table 1 – Summary statistics

Mean Std. Deviation Min Max N
Main variables
Hit – Headcount (2$) 0.303 0.286 .0002 .9845 809
Hit – Headcount (1.25$) 0.182 0.219 .0002 .9255 789
Git – Gini coefficient 0.424 0.102 .2096 .7433 809
ȳit – Mean income or expenditure in $ per month 194.59 125.90 14.93 766.78 809
PCEPit – Consumption (PWT) in $ per month 338.64 234.59 14.39 1231.21 795
Survey type dummies
Consumption (Grouped) 0.611 0.488 0 1 809
Consumption (Unit) 0.015 0.121 0 1 809
Income (Grouped) 0.132 0.339 0 1 809
Income (Unit) 0.242 0.429 0 1 809

For the linear models in log differences, we also construct a second data set of ‘poverty
spells’ at the country level (data in changes). Manually defining poverty spells serves two
purposes. First, we only use data from runs of the same survey type to avoid introducing
artificial changes when there is a switch from income to expenditure surveys or vice versa

15Computed as a simple per capita average without equivalence scaling.
16Several entries in the PovcalNet population data are clearly mistaken, zero or missing. We fix the

values/series using data from the World Development Indicators.
17China, India and Indonesia.
18PovcalNet omits weighting some recent data. To use a single consistent method, we apply Young’s

formula in all cases where separate urban and rural surveys are combined. The approximation is very

accurate. The formula is G =
∑K
i=1

∑K
j=1

sisj ȳi
Ȳ

(
2K

[
ln ȳi−ln ȳj+ 1

2σ
2
i + 1

2σ
2
j

(σ2
i +σ2

j )1/2

]
− 1
)

where K is the total

number of subgroups, si is the population share of the i-th subgroup and Ȳ is the population-weighted
mean income across all subgroups.
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(same for unit and grouped-level data; we assume the grouping does not change). Second,
we annualize all differences to mitigate any biases arising from estimating elasticities over
very different time periods. This leads to a smaller data set of 648 observations in 104
countries, as differencing requires Ti ≥ 2. Most studies using poverty differences lose
additional observations when the poverty headcount is zero at the beginning or end of
a spell (e.g. Kalwij and Verschoor, 2007), implying a relative change in the poverty
headcount of negative or positive infinity. This problem does not occur in our data, but
more importantly, our approach does not require such ad hoc adjustments.

We add per capita consumption data from national accounts to the survey-based
panel, which we later use as instruments for mean survey income and require for the
poverty projections. Personal consumption expenditures are retrieved from both from
the World Development Indicators (WDI) and Penn World Table 7.1 (PWT), denoted
PCEW

it and PCEP
it respectively.19 The PWT version is preferred in the estimations; for

the poverty projections a “merged” series (PCEit) is constructed using the WDI series
as a benchmark but replacing it with PWT data if coverage over 1981-2010 is better.
Both series are in constant 2005 prices, but the PWT adjust the original 2005 ICP data
and interpolate differently between benchmark years (Deaton and Heston, 2010). For the
projections, we also use estimates of the total population from 2010 to 2030 based on the
medium fertility variant from the World Population Prospects (the 2010 revision).

4 Results

4.1 Fractional response models

Table 2 presents our main results, with each specification progressively addressing
more estimation issues (unobserved effects, unbalancedness and measurement error). In
all specifications, we include time averages to proxy for time invariant measurement
differences across different countries (unobserved effects). We also include survey type
dummies (consumption or income, grouped or unit data) as reported poverty is typically
lower in income surveys than consumption surveys and the availability of grouped versus
unit-level data in PovcalNet may proxy for other systematic survey differences. In
addition, time dummies allow for unspecified common year effects.

Model (1) includes correlated random effects but entirely ignores unbalancedness. As
expected, the coefficient on average income is negative and the coefficient on inequality
is positive. Since the estimated coefficients are arbitrarily scaled, the adjacent column
reports the average partial effects (APEs) and we report the scale factor separately in
the bottom panel. The APEs in model (1) imply the following semi-elasticities. On
average, one percent income growth leads to a 0.284 percentage point reduction in the
population that is poor and a corresponding one percent increase in inequality leads to
a 0.232 percentage point increase in poverty. Turning to elasticity concepts, the average
income elasticity across the entire estimation sample is about −1.83 (SE = 0.084) and
the average Gini elasticity is about 1.5 (SE = 0.167). Hence, a one percent increase in
income leads to about a 1.83 percent decrease in poverty. These two estimates are located
near the lower bound of the results typically found in the literature.20

19Monthly PCEPit is computed as (kcit/100 × rgdplit/12), where kcit is the consumption share and
rgdplit is GDP per capita (Laspeyres) in 2005 constant prices. Similarly, PCEWit is household final
consumption expenditure in 2005 prices divided by the population and converted to monthly figures.

20The typical range for the income elasticity in earlier studies is from about 2 to 5, while the range
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Our first specification could be biased due to the strong unbalancedness of the panel
and the presence of time-varying measurement error in income and inequality. Model
(2) addresses unbalancedness by including panel size dummies, interactions of the time
averages with the panel size dummies, and a separate variance equation. We consider
this our best specification without correcting for measurement error. The substantive
conclusions change very little. The APE of income is virtually unchanged and the APE
of inequality increases by about one standard error. Clearly, varying panel sizes introduce
little bias on average. Nonetheless, they may still have a non-negligible effect on the
(semi-)elasticites at particular points in time.

Table 2 – Fractional probit models (QMLE) – Dependent variable: Hit, 2$ a day

(1) (2) (3)
Regular Unbalanced Unbalanced + Two-Step

Hit APEs Hit APEs Hit APEs

ln ȳit -1.263 -0.284 -0.880 -0.281 -1.049 -0.339
(0.054) (0.012) (0.048) (0.011) (0.198) (0.035)

lnGit 1.032 0.232 0.786 0.251 0.775 0.251
(0.114) (0.026) (0.098) (0.026) (0.163) (0.032)

ν̂it 0.133
(0.113)

CRE (Corr. Rand. Effects) Yes Yes Yes
Survey type dummies Yes Yes Yes
Time dummies Yes Yes Yes
Panel size dummies No Yes Yes
Panel size dummies × CRE No Yes Yes
Variance equation No Yes Yes

Scale factor 0.225 0.319 0.323
N × T̄ 789 789 775
N 104 104 103
pseudo R2 0.992 0.996 0.997
lnL -219.3 -315.6 -313.4√
MSE 0.0355 0.0238 0.0235

Notes: 20 observations with Ti = 1 not used in estimation. In models (1) and (2), the standard
errors of the coefficients are robust to clustering at the country level and the standard errors of the
APEs are computed via the delta method. We include the time averages of the survey type and
time dummies in (2) and (3), but constrain their coefficients to be equal across the panel sizes. The
standard errors of the coefficients and the APEs in model (3) account for the first stage estimation
step with a panel bootstrap using 999 bootstrap replications. The linear projection in the first stage
uses lnPCEPit as an instrument for ln ȳit. The first-stage cluster-robust F-statistic in (3) is 28.05.
Model (3) also excludes West Bank and Gaza entirely (2 observations) and 12 observations from
ECA countries pre-1990 for lack of PCE data.

Our preferred specification, model (3), is the empirical counterpart of the two-step
estimator presented in eq. (13). We account for measurement error in income by
instrumenting survey mean incomes or expenditures with per capita consumption

for the Gini elasticity is much wider. Newer studies suggest the income elasticity is closer to 2. This is
largely owed to parameter instability in linear approximations and changing data coverage. However, as
Chambers and Dhongde (2011) report, estimates of the income elasticity using the new 2005 PPPs are
also universally lower (in absolute value) than estimates based on the earlier 1993 PPPs.
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from the national accounts (PCEP
it ). The main identifying assumption is that any

measurement error in per capita consumption from the national accounts is orthogonal
to survey-based measurement error in income or expenditures. As both expenditure
measures are estimated very differently in practice, this is a plausible and common
identification strategy (Ravallion, 2001). Figure B-3 in Appendix B highlights the
strength of the first stage relationship. It shows a partial regression plot of mean incomes
or expenditures from the surveys against per capita consumption from the National
Accounts, after taking out the variation in the Gini, the time averages of the Gini and
PCEP

it , panel size dummies, survey dummies and time dummies.
Ignoring the first-stage variability of income, we find some evidence of measurement

error (cluster robust t-stat ≈ 1.69).21 After accounting for the two-step nature the
evidence for measurement error is considerably weaker (panel bootstrap t-stat ≈ 1.18).
The APE of income, on the other hand, is larger in absolute value, hence we conclude that
the coefficient of income in models (1) and (2) is attenuated towards zero. These results
suggest that classical attenuation bias is more of a problem than systematic survey bias
due to under-reporting or over-reporting of incomes and expenditures. Since the biases
arising from these two types of measurement error are likely to run in opposing directions,
our estimates imply that they are not fully offsetting as in Ravallion and Chen (1997).

The unbiased average-income semi-elasticity of poverty estimated in model (3) is
considerably larger in absolute value than in the previous two specifications. A one
percent increase in incomes leads to a 0.339 percentage point reduction in the population
that is poor. Likewise, the average elasticity increased (¯̂εHȳ ≈ 2.21, SE = 0.156) and is
now closer to the conventional estimates of about two. The inequality elasticity remains
about the same (¯̂εHG ≈ 1.64, SE = 0.188). In fact, there may also be non-negligible
measurement error in observed inequality as measured by the Gini coefficient. However,
since inequality is most often estimated from household surveys and estimates based on
alternative sources such as tax records are not available on a cross-country basis, we are
lacking a corresponding instrument for the Gini coefficient.

Is there evidence of additional non-linearity missing in the non-linear functional form
of the poverty headcount? To examine this possibility, we add squares (m′it1ξ̂1)2 and
cubes (m′it1ξ̂1)3 of the linear predictors in models (1) and (2) for a RESET-type test as
suggested by Papke and Wooldridge (1996). In the most basic model (1), this yields a
robust χ2

2-statistic of 4.65 for a p-value of 0.098, giving no reason for concern. For the
heteroskedastic model (2), the RESET test provides some evidence of additional non-
linearity (robust χ2

2 = 9.15, p > 0.01). However, there is no theoretical reason to expect
additional powers or interactions of income and inequality to enter the model.

At first sight, all three models may suggest an only moderately larger effect of income
growth when holding inequality constant relative to changes in inequality, and vice versa.
This does not imply that both variables have the same scope for change or have to
change independently for that matter. We estimate the impact of each component and
not its contribution to overall poverty reduction (for estimates of the contributions see
Kraay, 2006). While there is substantial variation in inequality, it shows no systematic
trend over the sample period from 1981 to 2010.22 In contrast, incomes and expenditures
have increased substantially in all regions over the same time span (see Table B-5 in
Appendix B). Moreover, the effect of income growth is not constant. In these models, it

21As mentioned earlier, the Hausman (1978) test does not depend on the first stage under the null.
22In a simple regression of the Gini coefficient on time, we cannot reject the null hypothesis that the

time trend is zero (cluster robust t-stat ≈ 0.07 and p > 0.94).
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depends strongly on the levels of inequality and income. Thus there is a ‘double dividend’
to improvements in distribution (Bourguignon, 2003) and substantial heterogeneity in the
estimated poverty (semi-)elasticities across time and space – an issue to which we return
shortly.

Perhaps the most striking fact about all three specifications is how well they fit. For
more intuitive comparisons, the last row shows the square root of the mean squared
residual for each model – a model metric suggested by Wooldridge (2010a). Already in
the first model, we predict the observed poverty headcount for each country-year with
about three and a half percentage points accuracy and with better than two and a half
percentage points accuracy in the preferred specification. This truly reflects an identity
relationship. A simple pseudo-R2 measure of the correlation between the observed and
fitted values for models (1) to (3) suggests near perfect fit (R2 > 0.99). Figure 1
illustrates this point and shows the shape of the estimated effects. Using our preferred
specification, we plot both the observed headcount and the predicted headcount over
the range of observed mean income or expenditures (left panel) and inequality (right
panel). The quality of the non-linear approach is readily apparent as the fit is very close
at either bound (near unity or near zero) and the model does not predict nonsensical
values. Further, the variation in the observed values is completely covered by the model
predictions. In linear models, neither of these two outcomes is guaranteed.

Figure 1 – Data versus fitted values, preferred specification, 2$ a day
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For comparison, Table B-2 in Appendix B reproduces the linear approach of the previous
literature using the data in levels and the poverty spell data in differences. The differences
in the estimated average elasticities are not large, as is typical for comparisons between
linear and non-linear approaches. We do not discuss these results in detail since they
suffer from the expected problems (see Section 2). First, when switching from fixed
effects to annualized differences in the simple models with only income and inequality,
measurement error increases and attenuates the income coefficient. Second, the models
with interaction terms do not fit nearly as well as those reported earlier and many
coefficients are insignificant. Third, the two-step GMM results for the interaction models
are unstable and not able to convincingly solve the problem of measurement error. The
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last model, which is in the spirit of the preferred specification of Kalwij and Verschoor
(2007), even implies a negative Gini elasticity and all coefficients are estimated with great
imprecision. In sum, these models do not perform well in comparison to their fractional
response counterparts and are thus unlikely to produce reliable estimates over a wide
range of circumstances.

Conversely, the strength of the fractional response approach lies in its ability to deliver
much more precise estimates of effects other than the overall mean. Table 3 and Table 4
illustrate this point by estimating the income elasticities and Gini elasticities over different
time periods for the six geographic regions in our sample. They are computed according
to eq. (14) by plugging in the different time period and region specific means of income
(ln ȳit) and inequality (lnGit), and then averaging over the entire sample population. The
standard errors of the elasticities are computed via a panel bootstrap and thus account for
the uncertainty of the first stage. We present regional and temporal elasticities here but
also provide estimates for the semi-elasticities in Table B-3 and Table B-4 in Appendix B
for comparison.

Table 3 – Predicted regional income elasticities, preferred specification, 2$ a day

Time period
1981–1989 1990–1994 1995–1999 2000–2004 2005–2010

East Asia and Pacific -0.991 -1.029 -1.237 -1.139 -1.578
(0.030) (0.033) (0.055) (0.043) (0.101)

Eastern Europe and Central Asia -4.358 -2.892 -2.700 -2.846 -3.304
(0.555) (0.309) (0.277) (0.304) (0.384)

Latin America and Caribbean -2.284 -2.374 -2.425 -2.349 -2.985
(0.243) (0.257) (0.271) (0.258) (0.366)

Middle East and North Africa -2.176 -2.116 -2.024 -1.966 -2.501
(0.203) (0.188) (0.168) (0.161) (0.246)

South Asia -0.548 -0.629 -0.810 -1.024 -1.192
(0.053) (0.048) (0.030) (0.032) (0.046)

Sub-Saharan Africa -0.831 -0.437 -0.436 -0.592 -0.632
(0.027) (0.039) (0.040) (0.035) (0.033)

Notes: Standard errors obtained via a panel bootstrap using 999 replications. The predicted
elasticities are based on estimated APEs at each region/time-period mean of ln ȳit and lnGit.

There is considerable regional and temporal heterogeneity in the estimated income
elasticities. However, its origins are very mechanical. As the theoretical derivations
in Section 2 show and our estimates make clear, the income elasticity is an increasing
function of income. In other words, regional heterogeneity of the income elasticity is
mainly due to income heterogeneity. More affluent regions (Eastern Europe and Central
Asia, Latin America and the Caribbean, and the Middle East and North Africa) have
higher income elasticities than poorer regions (East Asia and Pacific, South Asia and Sub-
Saharan Africa). Income dynamics over time are also clearly visible. In Eastern Europe
and Central Asia, for example, income is comparatively high before the post-communist
transition, sharply collapses throughout the 1990s and then recovers during the 2000s.
Compared to earlier results (e.g. Kalwij and Verschoor, 2007), we find markedly higher
average income elasticities in more affluent regions and lower elasticities in poorer regions.
Throughout Table 3, the standard errors are small compared to the point estimates and
remain very accurate for regions with more extreme values (e.g. very low income and
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above average inequality in Sub-Saharan Africa in the 1980s).
Table B-3 in Appendix B presents the region and time specific income semi-elasticities

of poverty. There the picture is reversed. Comparatively more affluent regions have less
people near the poverty line, and thus the poverty reduction potential from a one percent
increase in incomes is much smaller in terms of the population lifted out of poverty.
This dynamic is again best visible in Eastern Europe and Central Asia, where absolute
poverty at the 2$ a day poverty line is almost non-existent just before the post-communist
transition and then rises sharply in the 1990s as incomes decline. Correspondingly, the
semi-elasticity is close to zero in the 1980s but then it increases as more people fall
into poverty. Likewise, the biggest poverty reduction potential in 2005-2010 was in East
Asia, South Asia and Sub-Saharan Africa. This highlights an important point. For
development policy, we really care more about poverty reduction in terms of the percent of
the population lifted out of poverty rather than relative changes in the poverty headcount.
Hence, semi-elasticities are the pertinent concept (see also Klasen and Misselhorn, 2008).

Table 4 – Predicted regional Gini elasticities, preferred specification, 2$ a day

Time period
1981–1989 1990–1994 1995–1999 2000–2004 2005–2010

East Asia and Pacific 0.732 0.760 0.914 0.841 1.165
(0.105) (0.101) (0.113) (0.108) (0.144)

Eastern Europe and Central Asia 3.219 2.136 1.994 2.102 2.440
(0.510) (0.307) (0.283) (0.296) (0.353)

Latin America and Caribbean 1.687 1.753 1.791 1.735 2.205
(0.186) (0.198) (0.199) (0.189) (0.269)

Middle East and North Africa 1.607 1.563 1.495 1.452 1.847
(0.197) (0.198) (0.196) (0.185) (0.253)

South Asia 0.405 0.464 0.598 0.756 0.880
(0.093) (0.097) (0.095) (0.107) (0.127)

Sub-Saharan Africa 0.614 0.322 0.322 0.437 0.467
(0.087) (0.055) (0.060) (0.066) (0.069)

Notes: Standard errors obtained via a panel bootstrap using 999 replications. The predicted
elasticities are based on estimated APEs at each region/time-period mean of ln ȳit and lnGit.

The region and time specific Gini elasticities in Table 4 show where the potential of
redistributive policies in terms of proportionate reductions in the poverty headcount was
largest over the last three decades. Unsurprisingly, these regions are Eastern Europe and
Central Asia, Latin America and the Caribbean, and the Middle East and North Africa
– all of which have above average inequality. Sub-Saharan Africa starts out with high
inequality in the 1980s23 but incomes are very low relative to the poverty line, so that the
Gini elasticity is small. This is the flip side of the dependency on initial levels: countries
can be so poor and unequal that the immediate effects of equalization and income growth
on relative changes in the poverty headcount are comparatively small. However, here too,
the semi-elasticities presented in Table B-4 in the Appendix help to clarify the picture.
There the relative position of poorer and richer countries is reversed. The potential for
reducing poverty through redistribution in terms of percent of the population that is poor
was larger in poorer regions throughout the entire period from 1981 to 2010.

23The population-weighted mean Gini in the 1980s is 0.4608.
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The ‘double dividend’ of reductions in inequality is illustrated in Figure 2 by graphing
the estimated poverty elasticities or semi-elasticities over different combinations of income
and inequality. Again, we compute these estimates according to eq. (14) by plugging in the
different values for mean income or expenditures (ln ȳit) and inequality (lnGit), and then
averaging over the entire sample. As Figure 2a illustrates, on top of the direct poverty
alleviating effect of income redistribution towards the poor, a lower level of inequality
also raises the income elasticity in absolute value at every point. However, the magnitude
of both elasticities is steeply increasing in the level of income; that is, the return to either
income growth or equalization is bigger, the higher the income level. This may invite
the conclusion that growth matters more at lower levels of income, while redistribution
is only important for high income and high inequality countries. This, precisely, is the
misleading feature of relative changes.

Figure 2 – Predicted income and Gini elasticities and semi-elasticities of poverty, 2$ a day
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Figure 2b shows the predicted income and Gini semi-elasticities of poverty. The picture
is very different and in many ways more intuitive. If the shortfall is too large – the mass
of the income distribution is too far to the left of the poverty line – then both the income
and the Gini semi-elasticities approach zero. However, if the country is very affluent –
the mass of the income distribution is far to the right of the poverty line – then both
semi-elasticities also approach zero. In between those two extremes, improvements in the
income distribution can make a very large difference in terms of percent of the population
lifted out of poverty, both, directly through redistribution and indirectly through growth.
At ȳt/z = 1, for example, a Gini of 0.25 implies that one percent income growth leads to a
0.584 percentage point reduction in the poverty headcount and a Gini of 0.55 implies that
one percent income growth leads to a 0.378 percentage point reduction in the poverty
headcount. Especially at very low average income levels the initial income distribution is
decisive. It practically determines whether there is any substantial potential for poverty
alleviation through income growth at all (in terms of percent of the population that
is poor). Moreover, as the Gini semi-elasticity also depends on the level of inequality,
further improvements in the income distribution will have a larger effect on poverty
reduction at lower levels of inequality. Contrary to Figure 2a, this suggests that poverty
reduction strategies should focus both on income growth and equalization, especially
in least developed countries and high inequality countries where the total returns to
redistribution are large. Again, for policy questions, these relationships are much more
pertinent than relative changes in the poverty headcount.

Could the decomposition be improved by allowing for other “more ultimate”
determinants of poverty? If the assumption of log normality is justified, mean income
and the Gini fully describe the distribution of incomes and expenditures, and there is
logically no scope for other variables to enter. Yet this assumption is restrictive and
we deliberately do not rely on log normality. In fact, we expect it to be violated at
least for some cases (see, e.g., the host of alternative distributions analyzed by Bresson,
2009). More realistic distributions usually have more than one shape parameter to better
capture skewness, long tails or the existence of multiple modes. “Ultimate factors” could
thus be proxies for systematic deviations from equiproportional shifts in the distribution
of incomes and expenditures. Weak institutions, for example, may explain the fact that
the rich receive more of the gains. Table B-6 in Appendix B extends the heteroskedastic
fractional probit models with data on institutions, human capital, access to credit and
trade openness. The APEs of income and inequality are not affected by the inclusion of
additional covariates and the APEs of other determinants are virtually zero. Thus we
conclude that with only two variables, several dummies and correlated random effects,
these specifications are essentially saturated. The fractional response approach leaves
little room for misspecification of the decomposition.

While the literature on poverty reduction has produced mixed results so far, it is
largely consistent with this view. Prominent examples are two studies by Dollar and
Kraay (2002, 2004), who find that trade, inflation and other factors influence the incomes
of the poorest quintile, while several other variables do not. However, they emphasize
that these effects run predominantly through growth of GDP per capita. The interesting
link is between some factor X and income or inequality, not between X and a measure of
poverty. Usually such a “first stage” relationship has a dedicated literature that explicitly
attempts to resolve causality issues and provides an appropriate theoretical background.
Thus if we are interested in the effects of, say, institutions on poverty it is not only
sufficient but, in our opinion, much more relevant to investigate the effects of institutions
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on income (e.g. see Acemoglu et al., 2001; Acemoglu and Johnson, 2005) and inequality
(e.g. see Engerman and Sokoloff, 1997; Easterly, 2007). Separating these two estimation
steps is important, as the impacts of income and distributional changes themselves depend
on the initial levels of income and inequality.

4.2 Projecting poverty

Parts of the previous literature highlight that estimates of income and inequality
elasticities or semi-elasticities are particularly useful for poverty simulations (e.g. Klasen
and Misselhorn, 2008) and hence model fit is very important. Fractional response models
provide a new, powerful and simple method of predicting poverty.

To illustrate the appeal and accuracy of this approach, we compare the predictions
of our model for 2010 to the official World Bank data and then extrapolate poverty
well into the medium-term future until 2030. Clearly, this is a hypothetical exercise
and is not intended to replace any official estimates by the World Bank or national
authorities. Rather it allows us to make somewhat more sophisticated predictions than
back-of-the-envelope trend extrapolations and can provide a useful benchmark for setting
global poverty reduction goals. Using fractional response models for this purpose has the
added advantage that we can predict poverty responses to any combination of shifts in
mean income and inequality. Further, these models have the attractive feature that the
implied changes in the elasticities of poverty at different income and inequality levels are
automatically taken into account.

In fact, even the official World Bank regional poverty figures involve a considerable
amount of interpolation and extrapolation since most household surveys are not
undertaken annually (for details see Chen and Ravallion, 2004). The basic steps are as
follows. The World Bank first calculates poverty in the given survey year by fitting Lorenz
curves to either the unit-level or grouped-level data. Then, average real household income
is lined up to a reference year by interpolating between surveys or extrapolating with the
growth rate of personal consumption expenditures per capita (PCEit). Afterwards, the
poverty headcount is recalculated using the new income level and the same Lorenz curve
as before. If two surveys are available, one before and one after the reference year, the
poverty headcount is a weighted average of the two estimates for the reference year.

Our method is similar in spirit. We proceed in four steps. First, we extrapolate the
last available survey income to 2010 using actually observed country growth rates in PCE
from the WDI, or PWT if the former is missing. Inequality is kept constant at the latest
observed value. Second, we project mean income into the future using each country’s
average growth rate of PCE over the last 15 years. We assume that growth is distribution
neutral, which is in line with the absence of any significant correlation between changes
in inequality and income growth (see Figure B-4 in the Appendix). Third, we predict the
poverty headcount in 5-year intervals from 2010 to 2030 using our preferred specification
without adjusting for measurement error in income (Model 2 in Table 2).24 We typically
do not need estimates of the measurement errors in income or inequality for forecasting
purposes, but we implicitly assume that their contribution remains stable over time.
Finally, the world total and the regional aggregates are estimated as population-weighted
averages of our country level estimates using population data from the World Population

24Note that although our preferred specification is only estimated on the sub-sample where Ti ≥ 2,
we can use the model estimates to predict poverty for the entire sample (Ti ≥ 1). We only lack estimates
of the panel size effects for Ti = 1, so we assign these observations to the adjacent group (Ti = 2).
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Prospects. We do not provide standard errors for the point estimates since these are
subject to fundamental uncertainty in the assumed PCE growth rates.

Table 5 shows the results and Table B-5 in Appendix B provides regional PCE
growth rates highlighting the assumptions behind these forecasts. The comparison of
the official World Bank poverty figures and our estimates in 2010 illustrates that our
approach produces meaningful results. For three regions, our estimates are within a
percentage point of the official figures, for another two regions, they are within less than
2.5 percentage points, and only for East Asia and Pacific, we estimate a much lower
poverty level in 2010. Our results closely match the World Bank’s results for the world
total. Using the World Bank population data, our estimates imply 2,383.43 million
people under the 2$ line worldwide in 2010 versus 2,395.21 million as reported by the
World Bank.

Table 5 – Poverty projections (Ĥit × 100), preferred specification, 2$ a day

2010 2010 2015 2020 2025 2030
Official Estimate Estimate Estimate Estimate Estimate

East Asia & Pacific 29.73 26.70 16.80 10.53 6.92 4.86
Europe & Central Asia 2.35 2.98 1.88 1.17 0.73 0.46
Latin America & the Caribbean 10.37 10.62 8.96 7.59 6.46 5.52
Middle East & North Africa 12.04 14.57 11.36 8.86 6.92 5.41
South Asia 66.71 68.36 57.50 46.09 35.29 26.06
Sub-Saharan Africa 69.87 69.02 64.74 60.73 57.20 54.02

World Total 40.67 40.47 33.64 28.01 23.55 20.09

Notes: Regional aggregates are based on the World Bank classification of low and middle income
countries in 1990. High income countries in 1990 are assumed to have no poor. The projections are
for 123 countries. West Bank and Gaza is excluded as we lack both PCE and population data.

The anticipated regional trends from 2010 to 2030 are highlighted in Figure 3. The left
panel shows the regional poverty rates and the right panel plots the regional distribution of
the poor population. Given past growth trajectories, poverty in Sub-Saharan Africa and
South Asia remains the fundamental development challenge of the twenty-first century.
Estimated poverty in Sub-Saharan Africa is very high in 2010 (69.02%) and projected
to remain high through 2030 (54.02%) on the entire subcontinent in spite of sustained
income growth (about 2.3% p.a.). In South Asia, too, poverty is equally high in 2010
(68.36%) but projected to fall by more than half (to 26.06% in 2030). By 2030, about
half of the world’s poor will live in Sub-Saharan Africa, followed closely by South Asia.

Poverty in the East Asia and Pacific region, on the contrary, largely takes care of itself
if incomes and consumption expenditures keep growing at the impressive rates of the last
15 years. We project poverty in East Asia (4.86%) to be below poverty levels in Latin
America (5.52%) by 2030, and second only to Eastern Europe and Central Asia where
absolute poverty virtually disappears (down to 0.46%). Most of the progress in East Asia
is due to rapid income and expenditure growth in China. However, this prediction may
not hold if a middle-income slow-down occurs in China as some observers suggest (see,
e.g., Eichengreen, Park, and Shin, 2013).

Progress in Latin America and the Caribbean, and the Middle East and North Africa
is noticeably slower in spite of the assumption of robust yet moderate income growth
(about 2.2% and 2.9% p.a., respectively) and comparatively large income elasticities.
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Figure 3 – Predicted regional poverty, 2$ a day, 2010 to 2030
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Notes: Regional aggregates are based on the World Bank classification of low and middle income
countries in 1990. High income countries in 1990 are assumed to have no poor. The projections
are for 123 countries. West Bank and Gaza is excluded as we lack both PCE and population data.
Population data is the medium fertility variant from the World Population Prospects.

This suggests that the countries in these regions should reinforce their poverty alleviation
efforts. However, for the Middle East and North Africa these numbers could be too
optimistic given the recent social upheavals and volatile economic growth that ensued.

Part of this pattern follows directly from the process of “bunching up above 1.25$ a
day and just below 2$ a day” occurring in East Asia and, to a lesser extent, in South Asia
over the last two decades (Chen and Ravallion, 2010). These two regions have a relatively
large population near the poverty line and hence most of the advances are projected to
occur there. Latin America and the Caribbean, as well as the Middle East and North
Africa, are richer and require stronger income growth to continuously reduce poverty.
Sub-Saharan Africa, on the other hand, has a considerable proportion of the population
far below the 2$ a day line in 2010 (with 48.47% poor at 1.25$ a day). It is facing a lower
income elasticity and thus requires exceptionally strong income growth to make significant
strides against poverty. As highlighted in the previous section, this heterogeneity in the
income elasticity is mainly due to income differences.

We repeat the same exercise for the 1.25$ a day poverty line. Table B-8 and Figure B-
5 in Appendix B show the results based on the estimates presented in Table B-7. The
performance of our method is similar and, when compared to the World Bank approach,
is just slightly less accurate for the 2010 baseline. The broad patterns are also similar but
start from much lower poverty levels. It is worth noting that the gap between Sub-Saharan
Africa and South Asia is even wider for extreme poverty. All regions are predicted to
have a poverty headcount below 7% in 2030, except Sub-Saharan Africa where we project
poverty levels to remain at about 35%. In 2030, it is likely that the great majority of the
world’s extremely poor population will live on the Sub-Saharan subcontinent.

What do these results imply for the post-2015 development agenda? We suggest that
a new goal to at least halve the 2$ a day poverty level within 20 years should be the
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bare minimum if we want to ensure steady progress. It could be combined with a more
ambitious goal for extreme poverty (1.25$ a day) and significant resources targeted at
Sub-Saharan Africa and South Asia. Shifting the policy focus to a higher poverty line
makes a lot of sense. For most of the developing world the 1.25$ a day poverty line will
become nearly irrelevant. In fact, as long as incomes continue to grow, any absolute
poverty measure will become less relevant over time when it is set too low and 2$ a day
can hardly be described as generous. China, for example, recently updated its national
poverty line from less than 1$ a day to about 1.80$ a day. Raising the headline poverty
threshold ensures the goal remains relevant as time passes.

Even the lower bound of this poverty reduction goal would not necessarily be self-
fulling. A lasting slump in the developed world coupled with the possibility of China
entering a middle-income trap could make it a challenge to preserve historical income
growth rates throughout the medium-term future. In addition, income growth does not
need to be distribution-neutral and anti-poverty policies will be more successful if they
are accompanied by an improving income distribution. In any case, we now have a
baseline to calculate goals against and to asses counterfactual assumptions. This can
inform discussions on the post-2015 development agenda and help to identify reasonable
benchmarks.

5 Conclusion

In this paper we derive a new approach to decomposing the poverty headcount and
show that this fractional response approach outperforms earlier linear approximations.
Our main point is that the well-established non-linearity of the income and inequality
elasticities of poverty arises primarily from the bounded nature of the poverty headcount.
Once this inherent non-linearity is taken into account, we can derive an empirical
approximation of the poverty decomposition that implies income and inequality (semi-)
elasticities with desirable properties.

We use this new approach to estimate income and inequality (semi-)elasticities of
poverty based on a large new data set. Fractional response models fit the data extremely
well. We provide evidence that the average income elasticity is around two and the
average inequality elasticity is about one and a half. However, since these two averages
are not very informative, we show that differences in income and inequality levels create
strong regional heterogeneity in the estimated elasticities and semi-elasticities. Studies
based on linear approximations do not fully capture this heterogeneity. Compared to
earlier results, our approach provides estimates that are often substantially different,
very stable and considerably more accurate. This holds for a wide range of different
combinations of income and inequality. While our approach restricts the nature of
the unobserved heterogeneity (measurement differences), it requires no distributional
assumptions other than a correctly specified conditional mean. In addition, we show that
classical measurement error in income attenuates the elasticity estimates and outweighs
systematic survey bias pointing in the opposite direction.

Functional form matters a lot when estimating poverty decompositions. Elasticities
and semi-elasticities of poverty estimated with fractional response models have properties
closely resembling those of their theoretical counterparts derived under the assumption of
log normality. Moreover, we emphasize that semi-elasticities rather than elasticities are
the policy relevant metric. This non-linearity also has direct implications for a reduced-
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form literature interested in the poverty effects of more ultimate determinants or more
policy-oriented variables. The focus should be first on how a particular variable of interest
leads to changes in mean incomes and changes in distribution and, only in a second step,
on how these changes bring about different poverty outcomes. Only in this manner, the
non-linearity of the poverty-income-inequality relationship is properly taken into account.

To further illustrate the potential of the fractional response approach, we provide
poverty projections from 2010 until 2030 based on the simple assumption that average
historical consumption growth continues into the medium-term future. We show that the
regional landscape of poverty is likely to change dramatically over the next two decades.
Two findings stand out in particular. First, poverty in Sub-Saharan Africa and South
Asia will remain the overarching challenge in the twenty-first century. Second, in all other
regions poverty is projected to fall rapidly, so that there is a strong rationale for setting
the post-2015 development goals on the basis of the 2$ a day poverty line.

It is tempting to interpret our findings as evidence of the primacy of growth. Yet, we
are by no means arguing that income growth is all that matters for poverty reduction.
It is important to emphasize that the causal effect of any particular policy on aggregate
household income and the relative distribution of income cannot be discerned from a
decomposition exercise such as this. What it does is help to identify how a given change
in average income or in distribution translates into poverty outcomes, and not how that
change is brought about. Hence, the importance of institutions, trade and a host of
other factors for poverty alleviation remains undiminished. There is a potentially large
‘double dividend’ to be reaped if growth can be achieved in combination with simultaneous
reductions in inequality.

Other important questions remain open. More work is needed on identifying viable
paths of poverty alleviation that actually combine redistribution with growth. Such
analyses require a more sophisticated political economy of redistribution and poverty than
currently available. In addition, the issue of statistical discrepancies between expenditure
surveys, national accounts and consumption proxies, and what these discrepancies imply
for the confidence we place into poverty estimates, is just beginning to be explored. In
our view, these are exciting areas for future research.
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Appendix A

Let the poverty line (z) be fixed and assume the poverty headcount is described by a
two-parameter distribution, so that H(ȳt/z, σt) = H(ȳt, σt) = Ht. A Taylor linearization
of H(·) about (ȳt, σt) gives

H(ȳt + dȳt, σt + dσt) = H(ȳt, σt) +
∂Ht

∂ȳt
dȳt +

∂Ht

∂σt
dσt + ξt (A-1)

where dx denotes a differential change in x, and ξt is a second-order remainder. This is
easily extended to allow for a vector of Lorenz curve parameters as in Kakwani (1993).

Subtracting H(ȳt, σt) from both sides, dropping the remainder by approximation,
dividing through by Ht (provided Ht > 0), and multiplying the first (second) term by
ȳt/ȳt (σt/σt), we arrive at eq. (4) from the main text:

dHt

Ht

≈
(
∂Ht

∂ȳt

ȳt
Ht

)
dȳt
ȳt

+

(
∂Ht

∂σt

σt
Ht

)
dσt
σt

= εHȳt
dȳt
ȳt

+ εHσt
dσt
σt
. (A-2)

If we do not divide by Ht, we get a decomposition of the (non-relative) change of poverty
in terms of income and inequality semi-elasticities (as in Klasen and Misselhorn, 2008).

Similar steps starting from H(ȳt, Gt) lead to a decomposition in terms of mean income
and Gini. Using the chain rule for elasticities, an expression for the Gini elasticity is

εHGt = εHσt

(
dGt

dσt

σt
Gt

)−1

(A-3)

enabling us to write

dHt

Ht

≈ εHȳt
dȳt
ȳt

+ εHGt
dGt

Gt

= εHȳt
dȳt
ȳt

+ εHσt

(
dGt

dσt

σt
Gt

)−1
dGt

Gt

(A-4)

where eqs. (2) and (3) give εHȳt and εHσt under log normality, but we still need an
expression for dGt/dσt to get an explicit formula for εHGt .

Even though we restricted our attention to one inequality parameter, the results thus
far are quite general. Now if we also assume log normality, we arrive at an explicit form
for the Gini elasticity. Using σt =

√
2Φ−1(Gt/2 + 1/2), we have

dGt

dσt
=

d[2Φ
(
σt/
√

2
)
− 1]

dσt
=
√

2φ

(
σt√

2

)
. (A-5)

Inverting and substituting eq. (A-5) together with eq. (3) from the main text into
eq. (A-3) gives the Gini elasticity

εHGt =

(
ln(ȳt/z)

σt
+

1

2
σt

)(
σt
Gt

√
2φ

(
σt√

2

))−1

λ

(− ln(ȳt/z)

σt
+

1

2
σt

)
(A-6)

where σt =
√

2Φ−1(Gt/2 + 1/2). This result corrects for the missing σt/Gt in Kalwij
and Verschoor (2007, p. 824). The Gini semi-elasticity (ηHGt ) is just eq. (A-6) with φ(·)
replacing λ(·). Clearly, both the Gini elasticity and the Gini semi-elasticity are highly
non-linear functions, as illustrated in Figure 2.
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Appendix B

Figure B-1 – Transformed headcount (2$ a day) and log mean income, by region
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Figure B-2 – Transformed headcount (2$ a day) and log Gini, by region
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Table B-1 – Summary statistics by region (unweighted)

Variable Mean Standard Deviation Min Max
East Asia and Pacific (N=80)

Hit – Headcount (2$) 0.502 0.267 0.023 0.978
Git – Gini coefficient 0.392 0.058 0.275 0.509
ȳit – Mean income or expenditure 107.86 78.39 25.02 399.76

Eastern Europe and Central Asia (N=254)
Hit – Headcount (2$) 0.110 0.169 0.000 0.857
Git – Gini coefficient 0.330 0.056 0.210 0.537
ȳit – Mean income or expenditure 251.99 136.11 37.66 766.78

Latin America and Caribbean (N=274)
Hit – Headcount (2$) 0.204 0.122 0.002 0.775
Git – Gini coefficient 0.523 0.054 0.344 0.633
ȳit – Mean income or expenditure 246.63 90.55 55.53 671.04

Middle East and North Africa (N=37)
Hit – Headcount (2$) 0.166 0.111 0.003 0.466
Git – Gini coefficient 0.380 0.042 0.301 0.474
ȳit – Mean income or expenditure 165.26 56.59 84.02 306.33

South Asia (N=35)
Hit – Headcount (2$) 0.672 0.226 0.122 0.936
Git – Gini coefficient 0.343 0.067 0.259 0.627
ȳit – Mean income or expenditure 67.78 39.20 30.71 204.98

Sub-Saharan Africa (N=129)
Hit – Headcount (2$) 0.708 0.202 0.018 0.985
Git – Gini coefficient 0.453 0.087 0.289 0.743
ȳit – Mean income or expenditure 67.62 54.04 14.93 465.80

Notes: Mean income or expenditure in $ per month. 809 observations, 124 countries in total,
unbalanced sample from 1981 to 2010.

List B-1 – Included countries (number of surveys)

Albania (5), Algeria (2), Angola (2), Argentina (21), Armenia (11), Azerbaijan (3), Bangladesh (8),
Belarus (14), Belize (7), Benin (1), Bhutan (2), Bolivia, Plurinational State of (11), Bosnia and
Herzegovina (3), Botswana (2), Brazil (26), Bulgaria (7), Burkina Faso (4), Burundi (3), Cambodia (5),
Cameroon (3), Cape Verde (1), Central African Rep. (3), Chad (1), Chile (10), China (16), Colombia
(14), Comoros (1), Congo, Dem. Rep. of (1), Congo, Rep. of (1), Costa Rica (23), Cote D’Ivoire
(9), Croatia (7), Czech Rep. (2), Djibouti (1), Dominican Rep. (16), Ecuador (12), Egypt (5), El
Salvador (14), Estonia (9), Ethiopia (4), Fiji (2), Gabon (1), Gambia (2), Georgia (14), Ghana (5),
Guatemala (8), Guinea (4), Guinea-Bissau (2), Guyana (2), Haiti (1), Honduras (20), Hungary (10),
India (5), Indonesia (13), Iran, Islamic Rep. of (5), Iraq (1), Jamaica (7), Jordan (7), Kazakhstan
(11), Kenya (4), Kyrgyzstan (10), Lao People’s Dem. Rep. (4), Latvia (11), Lesotho (4), Liberia
(1), Lithuania (9), Macedonia, Rep. of (10), Madagascar (6), Malawi (3), Malaysia (9), Maldives
(2), Mali (4), Mauritania (6), Mexico (11), Micronesia, Federated States of (1), Moldova, Rep. of
(15), Montenegro (4), Morocco (5), Mozambique (3), Namibia (2), Nepal (4), Nicaragua (4), Niger
(4), Nigeria (5), Pakistan (8), Palestinian Territory, Occupied (2), Panama (13), Papua New Guinea
(1), Paraguay (14), Peru (16), Philippines (9), Poland (18), Romania (15), Russian Federation (13),
Rwanda (3), Saint Lucia (1), Sao Tome and Principe (1), Senegal (4), Serbia (9), Seychelles (1),
Sierra Leone (1), Slovakia (7), Slovenia (6), South Africa (5), Sri Lanka (6), Sudan (1), Suriname (1),
Swaziland (3), Syrian Arab Rep. (1), Tajikistan (5), Tanzania, United Rep. of (3), Thailand (14),
Timor-Leste (2), Togo (1), Trinidad and Tobago (2), Tunisia (6), Turkey (11), Turkmenistan (3), Uganda
(7), Ukraine (13), Uruguay (7), Venezuela, Bolivarian Rep. of (13), Vietnam (6), Yemen (2), Zambia (7).
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Figure B-3 – Partial regression plot – first stage
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Notes: The figure plots two residual series, so that the plotted slope is identical to the slope of

lnPCEPit in the first stage. On the x-axis: ˜lnPCEPit = lnPCEPit − x′1itβ̂1 −
∑T
r=1 δTi,rϕ̂1r −∑T

r=1 δTi,rx̄
′
iθ̂1r. On the y-axis: l̃n ȳit = ln ȳit − x′1itβ̂1 −

∑T
r=1 δTi,rϕ̂1r −

∑T
r=1 δTi,rx̄

′
iθ̂1r. In both

cases, x′1it includes only the log of Gini but x̄′i contains the time averages of lnGit and lnPCEPit .
Both regressions also contain survey type and time dummies, as well as their time averages.

Figure B-4 – Inequality changes and income growth, 1981–2010

-0.1

0.0

0.1

-0.25 0.00 0.25 0.50
Annualized Change in Log Mean Income (∆ ln ȳit)
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Table B-2 – Linear models – Dependent variable: lnHit, 2$ a day

OLS Two-Step GMM
(1) (2) (3) (4) (5) (6)

Within Differences Differences Differences Differences Differences
R+C ’97 R+C ’97 Bourg. ’03 R+C ’97 Bourg. ’03 K+V ’07

∆ ln ȳit -1.895 -0.268 -2.028 2.046 -0.362
(0.170) (0.617) (0.271) (1.043) (3.216)

∆ ln ȳit × lnGi,t−1 1.108 3.445 2.097
(0.671) (1.192) (2.315)

∆ ln ȳit × ln(ȳi,t−1/z) -0.552 -0.995 -0.517
(0.179) (0.258) (0.785)

∆ lnGit 2.336 -0.527 1.664 1.257 -8.222
(0.311) (1.449) (1.008) (4.127) (11.185)

∆ lnGit × lnGi,t−1 -1.769 -1.416 -8.164
(1.586) (3.929) (8.296)

∆ lnGit×ln(ȳi,t−1/z) 1.261 -0.315 -1.382
(0.427) (1.172) (1.996)

ln ȳit -2.114
(0.204)

lnGit 3.024
(0.409)

lnGi,t−1 -0.129
(0.134)

ln(ȳi,t−1/z) -0.023

¯̂εHȳ -2.114 -1.895 -1.755 -2.028 -1.905 -2.684
¯̂εHG 3.024 2.336 2.201 1.664 2.206 -2.345

N × T̄ 648 648 648 641 641 641
N 104 104 104 102 102 102
Hansen’s J (p-val.) – – – 0.0418 0.579 0.639

Notes: All standard errors are robust to clustering at the country-level. The GMM results
are estimated using two-step efficient GMM. Model (4) uses as instruments ∆PCEit, PCEi,t−1,
ln ȳi,t−1 and lnGi,t−1. Model (5) uses as instruments ∆PCEit, PCEi,t−1, ∆PCEit × lnGi,t−1,
∆PCEit× ln(ȳi,t−1/z), ln ȳi,t−1, ln ȳi,t−1× lnGi,t−1, ln ȳi,t−1× ln(ȳi,t−1/z), lnGi,t−1 and lnGi,t−1×
lnGi,t−1. Model (6) uses the same instruments as model (5) but ln ȳi,t−1 and lnGi,t−1 instrument
for themselves. All models include a constant (not shown) and model (1) includes a time trend
(not shown). Models (2) and (4) are similar to Ravallion and Chen (1997) but we update their
approach by also including the Gini as in Adams (2004), models (3) and (5) are similar to the
“improved standard model 2” in Bourguignon (2003), and model (6) is in the spirit of the preferred
specification in Kalwij and Verschoor (2007). The latter also use the annualized log difference of the
population (∆ ln popit) as an instrument and rely on real GDP per capita instead of real per capita
consumption. A first-stage F -test shows that ∆ ln popit is an extremely weak instrument. Kalwij
and Verschoor (2007) also use interactions of lagged inequality and lagged income with regional
dummies as instruments. However, first stage diagnostics suggest a weak IV problem (the F -stat
with regional dummy interactions is always lower than without) and thus we opt for a simpler
instrument set. Further, in model (5) and equation (5) we do not include the lagged levels of income
and inequality. Model (6) includes them for comparison with Kalwij and Verschoor (2007).
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Table B-3 – Predicted regional income semi-elasticities, preferred specification

Time period
1981–1989 1990–1994 1995–1999 2000–2004 2005–2010

East Asia and Pacific -0.568 -0.573 -0.585 -0.583 -0.552
(0.034) (0.036) (0.046) (0.042) (0.051)

Eastern Europe and Central Asia -0.031 -0.214 -0.260 -0.225 -0.134
(0.008) (0.015) (0.020) (0.015) (0.010)

Latin America and Caribbean -0.374 -0.348 -0.334 -0.355 -0.194
(0.028) (0.025) (0.024) (0.026) (0.013)

Middle East and North Africa -0.405 -0.422 -0.447 -0.463 -0.313
(0.034) (0.037) (0.042) (0.043) (0.024)

South Asia -0.418 -0.458 -0.526 -0.572 -0.585
(0.023) (0.019) (0.022) (0.036) (0.044)

Sub-Saharan Africa -0.532 -0.354 -0.353 -0.440 -0.459
(0.024) (0.020) (0.020) (0.015) (0.015)

Notes: Standard errors obtained via a panel bootstrap using 999 replications. The predicted semi-
elasticities are based on estimated APEs at each region/time-period mean of ln ȳit and lnGit.

Table B-4 – Predicted regional Gini semi-elasticities, preferred specification

Time period
1981–1989 1990–1994 1995–1999 2000–2004 2005–2010

East Asia and Pacific 0.419 0.423 0.432 0.431 0.408
(0.053) (0.053) (0.055) (0.054) (0.053)

Eastern Europe and Central Asia 0.023 0.158 0.192 0.166 0.099
(0.007) (0.015) (0.019) (0.017) (0.012)

Latin America and Caribbean 0.276 0.257 0.247 0.262 0.143
(0.046) (0.043) (0.043) (0.045) (0.029)

Middle East and North Africa 0.299 0.311 0.330 0.342 0.231
(0.041) (0.040) (0.041) (0.044) (0.025)

South Asia 0.309 0.338 0.389 0.423 0.432
(0.056) (0.055) (0.052) (0.054) (0.055)

Sub-Saharan Africa 0.393 0.261 0.261 0.325 0.339
(0.050) (0.037) (0.040) (0.042) (0.043)

Notes: Standard errors obtained via a panel bootstrap using 999 replications. The predicted semi-
elasticities are based on estimated APEs at each region/time-period mean of ln ȳit and lnGit.
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Table B-5 – Growth in personal consumption expenditures per capita (in %)

Region Last 5 years Last 10 years Last 15 years Last 20 years

East Asia and Pacific 6.843 5.962 5.647 5.967
(1.041) (0.782) (0.837) (0.757)

Europe and Central Asia 4.532 6.033 4.793 2.856
(1.039) (1.063) (0.496) (0.423)

Latin America and the Caribbean 3.364 2.399 2.222 2.267
(0.746) (0.303) (0.172) (0.151)

Middle East and North Africa 2.705 3.778 2.911 2.499
(0.634) (0.560) (0.370) (0.349)

South Asia 5.563 4.684 4.123 3.636
(0.865) (0.556) (0.537) (0.438)

Sub-Saharan Africa 1.710 2.765 2.338 1.742
(1.599) (0.682) (0.577) (0.414)

N × T̄ 615 1222 1795 2332
N 123 123 123 123

Notes: Cluster robust standard errors in parentheses. Regional means are population weighted.
Only the third column is relevant for the projections.
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Table B-6 – Fractional probit models (QMLE) – Dependent variable: Hit, 2$ a day

(1) (2) (3) (4)
Institutions Human Capital Credit Trade
Hit APEs Hit APEs Hit APEs Hit APEs

ln ȳit -0.888 -0.285 -0.878 -0.284 -0.950 -0.289 -0.708 -0.302
(0.050) (0.012) (0.060) (0.011) (0.036) (0.009) (0.032) (0.012)

lnGit 0.779 0.250 0.805 0.261 0.765 0.233 0.581 0.248
(0.107) (0.028) (0.104) (0.027) (0.102) (0.027) (0.097) (0.033)

Executive Constraints 0.005 0.001
(0.005) (0.001)

Year of Schooling -0.002 -0.001
(0.017) (0.006)

Private Credit / GDP -0.007 -0.002
(0.040) (0.012)

Trade Openness 0.005 0.002
(0.017) (0.007)

Scale factor 0.321 0.324 0.304 0.426
N × T̄ 678 705 697 385
N 85 87 93 81
AIC 894.8 914.1 887.6 552.5
lnL -276.4 -286.1 -282.8 -163.2√
MSE 0.0203 0.0211 0.0201 0.0233

Notes: The estimation samples are smaller due to less data coverage and all observations with Ti = 1
are not used in estimation. All models include time averages (CRE), time dummies, survey dummies,
panel size dummies and interactions between the panel size dummies and the time averages (CRE).
The time averages are recomputed for each sample size. The coefficients of the time average of the
survey dummies and time effects are constrained to be equal across the panel sizes. The variance
equation depends on the panel size. The standard errors of the coefficients are robust to clustering
at the country level and the standard errors of the APEs are computed via the delta method. Data
on Executive Constraints is from the Polity IV database. Human capital is measured as Total Years
of Schooling from Barro and Lee (2012). We linearly interpolate the quinquennial data to an annual
series. Financial development measured as Private Credit / GDP is from Beck, Demirgüç-Kunt,
and Levine (2010). De jure Trade Openness is the binary measure developed by Sachs and Warner
(1995) and extended by Wacziarg and Welch (2008).
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Table B-7 – Fractional probit models (QMLE) – Dependent variable: Hit, 1.25$ a day

(1) (2) (3)
Regular Unbalanced Unbalanced + Two-Step

Hit APEs Hit APEs Hit APEs

ln ȳit -1.212 -0.216 -0.668 -0.218 -0.800 -0.263
(0.056) (0.010) (0.038) (0.008) (0.180) (0.034)

lnGit 1.238 0.221 0.726 0.237 0.714 0.235
(0.121) (0.022) (0.074) (0.020) (0.180) (0.032)

ν̂it 0.104
(0.104)

CRE (Corr. Rand. Effects) Yes Yes Yes
Survey type dummies Yes Yes Yes
Time dummies Yes Yes Yes
Panel size dummies No Yes Yes
Panel size dummies × CRE No Yes Yes
Variance equation No Yes Yes

Scale factor 0.179 0.326 0.329
N × T̄ 768 768 754
N 103 103 102
pseudo R2 0.988 0.995 0.995
lnL -172.4 -244.7 -243.7√
MSE 0.0339 0.0214 0.0220

Notes: The 1.25$ a day sample is smaller as for 20 observation we only have data at the 2$ a day
line. 21 observations with Ti = 1 are not used in estimation. In models (1) and (2), the standard
errors of the coefficients are robust to clustering at the country level and the standard errors of the
APEs are computed via the delta method. We include the time averages of the survey type and
time dummies in (2) and (3), but constrain their coefficients to be equal across the panel sizes. The
standard errors of the coefficients and the APEs in model (3) account for the first stage estimation
step with a panel bootstrap using 999 bootstrap replications. The linear projection in the first stage
uses lnPCEPit as an instrument for ln ȳit. The first-stage cluster-robust F-statistic in (3) is 24.40.
Model (3) also excludes West Bank and Gaza entirely (2 observations) and 12 observations from
ECA countries pre-1990 for lack of PCE data.
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Table B-8 – Poverty projections (Ĥit × 100), preferred specification, 1.25$ a day

2010 2010 2015 2020 2025 2030
Official Estimate Estimate Estimate Estimate Estimate

East Asia & Pacific 12.48 9.63 5.09 2.76 1.60 1.00
Europe & Central Asia 0.66 0.74 0.44 0.27 0.16 0.10
Latin America & the Caribbean 5.53 5.59 4.84 4.22 3.70 3.26
Middle East & North Africa 2.41 3.43 2.48 1.82 1.37 1.06
South Asia 31.03 33.81 23.89 16.09 10.53 6.89
Sub-Saharan Africa 48.47 46.87 42.95 39.84 37.20 34.86

World Total 20.63 20.44 15.82 12.66 10.58 9.27

Notes: Regional aggregates are based on the World Bank classification of low and middle income
countries in 1990. High income countries in 1990 are assumed to have no poor. The projections are
for 123 countries. West Bank and Gaza is excluded as we lack both PCE and population data.

Figure B-5 – Predicted regional poverty, 1.25$ a day, 2010 to 2030
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