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Abstract

This paper discusses the measurement of ex-ante inequality of opportunity when the

outcome is binary. We argue that the use of scale but not translation invariant inequality

measures such as the dissimilarity index are problematic, since they rely too much on the

average level of access. We propose first a decomposition of these measures in a level and a

dispersion effect and second an adapted index satisfying translation invariance. In two short

illustrations we show that the conclusions differ substantially between the two methods and

that the appropriate between scale and translation invariant measures is crucial.

Keywords: inequality of opportunity, binary indicator, HOI, ordered variables, translation

invariance

JEL-Classification: C18, D63, I24, O54

1 Introduction

Inequality of opportunity is defined as being the part of inequality that can be attributed to

circumstances beyond the control of the individual, thus the part for which people cannot be

held responsible (Roemer, 1998). The remaining inequality in a given outcome might be due

to different effort levels and other factors such as luck. Research on the measurement of this

decomposition of inequality has flourished over the last years. Many proposals share the common

idea of regressing the analyzed outcome exclusively on circumstances beyond individuals’ control.

aThis is a working paper version and we are very happy to receive comments and suggestions. Click here
(http://econ.chavezjuarez.com/vcheck.php?i=iopbinary&v=20130815) to see if you have the newest version
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The idea behind this approach is that all variation explained by circumstances can be directly

attributed to inequality of opportunity. A metric measure is obtained by applying a common

inequality measure to the distribution of outcomes conditional on the set of circumstances. The

choice of the used inequality measure depends on the type of the outcome variable and the

required properties such as scale or translation invariance1. For the case of continuous variables,

proposals by Ferreira and Gignoux (2011) and Ferreira and Gignoux (2013) include both scale

and translation invariant inequality measure. In this paper we focus on the case of a binary or

an ordered outcome, for which pioneering work was done by Paes de Barros et al. (2008). To

the extent of our knowledge, no translation invariant measure was used in the context of binary

indicator variables. We show that the absence of translation invariance in the inequality measure

might be problematic, especially when comparing the inequality of opportunity in outcomes with

different average levels of access. In an illustration we show that the higher degree of inequality

of opportunity in access to higher education as compared to secondary education is mainly due

to changes in the average access rates and not to the dispersion of the probability in having

access. We propose two ways of analyzing and solving this problem.

First, we show that some inequality measures can be easily decomposed in a level and a

dispersion part, allowing us to decompose differences between two outcomes or changes over

time in a level- and a dispersion effect. This decomposition does not directly solve the problem,

but allows us to understand the importance of it.

Second, we modify the dissimilarity index used in Paes de Barros et al. (2008) in such a way

that it becomes translation invariant. The empirical illustration shows that the results are very

different compared to what is obtained with the original method and that the issue is therefore

potentially of importance. We do not claim that our modified index is better than the original

proposal. However, we argue that depending on what we really want to measure, the small

changes in the index can have important consequences.

In section 2 we describe first the general approach to assess ex-ante inequality of opportu-

nity with a special focus on binary outcome variables. Following this introduction to existent

methods, we describe our concerns about the missing translation invariance in the analysis of

binary outcomes and finally we introduce the two aforementioned approaches to deal with our

concerns. In section 3 we present an illustration of the different methods and finally in section

4 we conclude the paper.

1Scale invariant and translation invariant inequality measures are also known as relative and absolute inequal-
ity measures respectively. We use the terms scale and translation invariance throughout the paper to avoid any
confusion with the relative (θr) and absolute (θa) measures of inequality of opportunity, which we will introduce
in section 2.
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2 Methodology

2.1 General approach to assess ex-ante inequality of opportunity

Different research proposals over the last years brought forward different methods to assess ex-

ante inequality of opportunity. Most of these proposals are of the same family, where inequality is

measured on the outcome variable conditioned on circumstances. Let y be the outcome variable

of interest and C a matrix of circumstances beyond the control of the individual. We can now

compute the conditional expectation of y given C

ŷ = E[y|C] (1)

There are many possibilities to estimate ŷ, including non-parametric methods and parametric

methods such as OLS for continuous and probit/logit for dichotomous variables (Ferreira and

Gignoux, 2011; Paes de Barros et al., 2007; Checchi and Peragine, 2010). All variation in ŷ is due

to the circumstances considered in matrix C. In a situation of perfect equality of opportunity

this should be simple the population average for everybody. Thus, all the variability in ŷ can be

attributed to inequality of opportunity and therefore we can simply apply a standard inequality

measure I(.) on ŷ:

θa = I(ŷ) (2)

The choice of the appropriate inequality measure depends again on the scope of the analysis

and the dependent variable. For instance, Paes de Barros et al. (2008) use the dissimilarity

index, Ferreira and Gignoux (2011) the mean logarithmic deviation and Ferreira and Gignoux

(2013) the variance. By dividing this index by the same inequality measure applied on the actual

outcome vector, we obtain a relative measure of inequality of opportunity:

θr =
I(ŷ)

I(y)
(3)

This last step is only possible when the inequality measure I(.) is equally defined for ŷ and y,

which is for example not the case when the actual outcome is binary and ŷ is the estimated

probability.

The choice of the appropriate inequality measure I(.) is crucial and depends mainly on

the outcome variable. Income is probably the simplest example since most of the inequality

measures are designed for this outcome. Ferreira and Gignoux (2011) use the mean logarithmic

deviation because it satisfies all the common desired properties of inequality measures and is

additively decomposable. This last property is very useful when using the type2 approach. In

contrast, estimating inequality of opportunity for an achievement test at school requires very

2Types are groups of individuals sharing the same characteristics
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different properties, because the outcome variable (test score) has no inherent scale. In this

paper we understand a variable with no inherent scale as being a variable that can be multiplied

and translated by positive scalars without losing its meaning. Therefore, Ferreira and Gignoux

(2013) propose to estimate only the relative measure of inequality of opportunity and to use the

variance as inequality measure. The advantage of the variance is its translation invariance and

once the relative measure is estimated, the ratio of two variances ensures as well scale invariance

of the inequality measure.

In the context of binary outcome variables the same questions are at stake. Paes de Barros

et al. (2008) propose to use the dissimilarity index given by:

θa = D(ŷ) =
1

2Nŷ

N∑
i=1

|ŷi − ŷ| (4)

where ŷi = E[y|Ci] and ŷ = 1
N

∑N
i=1 ŷi. This measure of inequality is scale but not translation

invariant. Paes de Barros et al. (2008) discuss alternative formulations of D along with the

properties and argue that the measure has to be invariant to balanced growth. Balanced growth

means to distribute any additional outcome (e.g. income) in the same way previous outcome was

distributed, which corresponds precisely to the property of scale invariance. They argue that

this property is very important and suggest therefore to use the dissimilarity index in equation

(4) instead of alternative formulations. D(ŷ) is used to compute the Human Opportunity Index

(HOI), where it serves as an inequality penalty to the average access to the outcome in question

(Paes de Barros et al., 2009)

We argue in the next subsection that the lack of translation invariance has some potentially

unwanted consequences.

2.2 Concerns about missing translation invariance

Compared to continuous outcomes, the assessment of inequality of opportunity for binary or

ordered3 variables is generally more complicated, however, in at least one point these variables

have an advantage. The conditional probabilities are defined on the interval [0,1], making the

property of scale invariance of the inequality measure dispensable. Since the variable is clearly

defined on the same scale for whatever binary outcome we analyze, the measure of inequality

does not have to be invariant to changes in the scale.

The possibility of not respecting scale invariance enables us to focus on translation in-

variance, since both cannot be satisfied simultaneously by any meaningful inequality measure

(Zheng, 1994)4.

Our concern is that translation invariance, as opposed to scale invariance, is crucial for the

3We generally discuss the case of binary variables where ŷ = P (y = 1|C). However, this method can be easily
extended to ordered variables by setting a certain threshold ỹ and computing ŷ = P (y ≥ ỹ|C)

4See Ferreira and Gignoux (2013) for a discussion on this impossibility to satisfy both properties
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estimation of inequality of opportunity when the outcome is dichotomous. Assume for instance

a country where only one person has access to schooling5. Such a situation would be a serious

problem of development, since the average level of education would be virtually zero. However,

in terms of inequality one cannot say that it’s the most extreme case of inequality. However, this

is exactly what measures like the Gini index would suggest. On the other extreme, having all

but one child in school would be the same in terms of inequality, however, the Gini index, would

indicate a completely different result, indicating almost no inequality at all. We argue that in

both cases the inequality should not be considered as being high since all but one individual

have exactly the same level.

A different way to look at the problem is by comparing inequality in access to education to

inequality in exclusion from education. We argue that in this context, exclusion is the contrary

to access and therefore we describe the same situation. Hence, the inequality of opportunity

measure should be the same in the two definitions.

Proposition 1. The level of inequality in the access to a certain good equals the level of inequality

in the exclusion from the same good. This is

I(p) = I(1− p) (5)

where p is a vector of probabilities and therefore 0 ≤ pi ≤ 1 ∀ i.

In the next two sections, we propose two ways to deal with the aforementioned concern and

to quantify the level and the dispersion effects.

2.3 Decomposition in dispersion and level effects

Before proposing a translation invariant measure of inequality of opportunity in the next section,

we first focus on a decomposition of changes in common inequality measures into a part due to

changes in the dispersion of the distribution and to changes in the average level.

Let d(y) be a measure of dispersion and l(y) the average level of the vector y and let us

define an inequality measure that takes these two values as argument:

I[d(y), l(y)] (6)

Now, let us introduce subscripts to indicate two different vectors (e.g. two moments in time, two

regions, etc.) and let us simplify the notation by omitting the vector (d1 ≡ d(y1)). By taking

the difference of the inequality measures applied to the two vectors, we have:

∆I = I(d1, l1)− I(d0, l0) (7)

5One person has a probability of 1 and the other children a probability of 0.
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where we can add and subtract identical terms and rearrange:

I(d1, l1)− I(d0, l0) = [I(d1, l1)− I(d0, l1)]︸ ︷︷ ︸
dispersion effect

+ [I(d0, l1)− I(d0, l0)]︸ ︷︷ ︸
level effect

(8)

in order to get a decomposition of the total difference in a part due to the dispersion and a part

due to the average level.

Coming back to the example of the dissimilarity index introduced before, it is relatively

easy to see that the whole index has a component measuring dispersion and a component of

the level, which ensures in the end scale invariance. For the sake of readability, we discuss this

decomposition of the dissimilarity index on a generic vector y instead of ŷ we used in equation

(4)

D(y) =

∑N
i=1 |yi − y|

2N︸ ︷︷ ︸
dispersion

× 1

y︸︷︷︸
level

(9)

Using subscript 0 for the first and 1 for the second period, we can decompose the change in the

dissimilarity index according to equation 8 as follows:

D(y1)−D(y0) =

[∑N1
i |y1,i − y1|

2N1y1
−
∑N0

i |y0,i − y0|
2N0y1

]
︸ ︷︷ ︸

dispersion effect

+

[∑N0
i |y0,i − y0|

2N0y1
−
∑N0

i |y0,i − y0|
2N0y0

]
︸ ︷︷ ︸

level effect

(10)

This decomposition of an inequality measure is not limited to the dissimilarity index. Let

us take the Gini index given by:

G(y) =

∑n
i=1

∑n
j=1 |yi − yj |

2yn(n− 1)
(11)

Thus, the decomposition is given by:

G(y1)−G(y0) =

dispersion effect︷ ︸︸ ︷[∑n1
i=1

∑n1
j=1 |y1,i − y1,j |

2y1n1(n1 − 1)
−
∑n0

i=1

∑n0
j=1 |y0,i − y0,j |

2y1n0(n0 − 1)

]

+

[∑n0
i=1

∑n0
j=1 |y0,i − y0,j |

2y1n0(n0 − 1)
−
∑n0

i=1

∑n0
j=1 |y0,i − y0,j |

2y0n0(n0 − 1)

]
︸ ︷︷ ︸

level effect

(12)

Such a decomposition does not allow us to eliminate our concerns on the use of the dis-
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similarity index, but it allows us to quantify and illustrating the sources of the changes. We

illustrate this decomposition using data from Mexico and estimating the access to education in

section 3. Before that, we first introduce in the next section a translation invariant version of

the dissimilarity index.

2.4 Translation invariant version

In order to satisfy proposition 1, we need a translation invariant measure of inequality, in contrast

scale invariance is not required, since the (probability of) access to a certain good is defined on

the interval [0,1] exclusively. Starting from the dissimilarity index, we can simply leave aside

the element ensuring scale invariance (see equation 9), giving us:

D̃(y) =
1

2N

N∑
i=1

|yi − y| where 0 ≤ D̃(y) ≤ 1

4
(13)

in order to normalize the indicator to the interval of [0,1], we can simply multiply it by 4,

which is

D∗(y) =
2

N

N∑
i=1

|yi − y| (14)

This is simply twice the average absolute distance to the population mean.

Properties of D∗

This slightly modified version of the dissimilarity index shares the basic properties such as

anonymity, reflexivity and transitivity with the original dissimilarity index. Properties that are

specific to D∗ include:

• Normalized scale: 0 ≤ D∗(y) ≤ 1 where the value of 0 is attained when everybody has the

same (conditional) outcome and 1 whenever half of the population has the value of 1 and

the other half zero.

• Translation invariance: D∗(y) = D∗(y + λ) where λ is a constant.

• Inversion invariant according to proposition 1: D∗(y) = D∗(1−y) whenever 0 ≤ yi ≤ 1 ∀ i

• Proportional to multiplications: D∗(ϕy) = ϕD∗(y) where ϕ is a positive scalar.

The proofs of these properties are presented in appendix A.
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3 Illustration: inequality of opportunity in access to education

In section 2 we discussed scale and translation invariance in the measure of inequality of op-

portunity in an analytical way. Let us now turn to an empirical illustration to show how this

discussion actually matters when estimating inequality of opportunity. We propose two related

illustrations estimating inequality of opportunity in education using data from Mexico. In the

first illustration, we focus on different education levels and the corresponding levels of inequality

of opportunity. In the second illustration we focus on the evolution over time of inequality of

opportunity in education.

3.1 Different schooling levels, different levels of inequality of opportunity?

Methodology used in this example

We apply the methodology proposed by Paes de Barros et al. (2008). In a first step, we define

the conditional probability of having access to a certain level of education as ŷi:

ŷi = P (yi > τ |Ci) (15)

where τ is the threshold education level and Ci is a matrix of circumstances. This probability

can be estimated through logit or probit models6. This expected probability is then used to

compute a measure of inequality. Along with the dissimilarity index proposed by Paes de

Barros et al. (2008), we also include the Gini index and our modified dissimilarity index. The

differences between our index and the first two helps us highlighting the importance of the

different approaches.

Data

The data for this illustration come from the Mexican Family Life Survey7 (MxFLS). We

estimated the conditional probability of achieving different levels of schooling. The thresholds

were chosen according to the Mexican Schooling System and represent finished levels of schooling.

The first category is to have access to schooling in general, hence the binary indicator is 1 if the

individual has at least 1 year of schooling. The subsequent thresholds are 6 for finished primary

school, 9 for finished secondary school, 12 for high school and 16 for college. We limit our sample

to individuals no longer attending school and not being older than 25 years, giving us a sample

of 5’535 people. The matrix of circumstances includes the family log income and father’s and

mother’s years of education, an ability measure and a dummy for indigenous people. Parental

years of education are included as a set of dummy variables to achieve the highest possible

flexibility of the model.

6Alternative estimation methods including non-parametric methods can also be applied in this case.
7Available under http://www.ennvih-mxfls.org and described in Rubalcava and Teruel (2006)
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Results

First, we look at the decomposition of the changes from one threshold to the next in the Gini

index by performing the decomposition as proposed in equation (12).

Table 1: Decomposition of changes in the Gini coefficient

Gini Total Difference Difference
Coeffcient difference due to dispersion due to level

At least 1 year of schooling 0.019
Finished primary or more 0.139 0.121 0.106 0.015
Finished secondary or more 0.229 0.090 -0.043 0.133
Finished high school or more 0.411 0.182 -0.456 0.638
College or more 0.520 0.108 -0.174 0.282

Note: The difference refers to the value of a row minus the value of the preceding row. The
decomposition is done using equation 12

Table 1 displays the decomposition of the change in the Gini index from one category to the

next. The Gini index constantly increases with the level of education, suggesting that inequality

of opportunity becomes higher the higher the evaluated schooling level is. The increase of

the Gini index from “At least 1 year of schooling” to “Finished primary or more” is of 0.121

and almost all of it is due to a larger dispersion, only 0.015 is due to the level effect. For

the remaining comparisons, the level effect becomes larger and the dispersion effect smaller and

getting even negative. Comparing primary and secondary education shows impressively that the

dispersion goes down but the Gini increases a lot due to the lower average. We have therefore

contradictory effects for most of the changes and can see clearly that the sharp increase in

inequality of opportunity is exclusively due to the level effect.

We can have a look at the same story considering it graphically. Figure 1 displays different

measures of inequality of opportunity for different levels of education in Mexico. The clear

positive trend from Table 1 can be seen for both the Gini and the Dissimilarity index.

The two remaining lines are corrected measures, where the line entitled Counterfactual DI

is the counterfactual dissimilarity index when assuming the average access of the population to

be equal to the secondary school level for all levels. This is the reason why the line is exactly

at the same position for the threshold of 9 years. It can be clearly observed, that the shape is

very different, suggesting that the highest dispersion of access probabilities is for primary and

secondary school, while it goes down for higher levels of education. The same story is told by the

last indicator, the D∗(y) introduced in equation 14. Again, the highest dispersion is observed

for the middle education levels.

The differences between the two pattern underline that the discussion on scale and translation

invariance is not anecdotal, since depending on which we put the emphasis, the results are

substantially different. According to scale invariant measure policy should probably focus on

reducing inequality in opportunity at the highest levels of education, while the recommendation
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Figure 1: Inequality of opportunity in access to education (different measures)

from the translation invariant measure would be to pay special attention to secondary education.

3.2 Decomposing the change over time

In a second illustration, we now focus on the change over time of inequality in the access to

secondary education, applying exactly the same methodology as before, but for different samples

over time.

Data

We make use of the bi-annual Encuesta Nacional de Ingresos y Gastos de los Hogares (ENIGH)

from Mexico for the period from 1994 to 2010. The ENIGH is a nationally representative survey

with sample sizes of over 50’000 for the most recent years. We construct a dummy variable

for people having secondary education or more as a dependent variable. This indicator is then

explained by circumstances including gender and parental education and literacy. To ensure

comparability across years, we limit the samples to the age range of 15 to 25 years.

Results

Figure 2 displays the level of inequality of opportunity using the Gini index. The line in

the middle shows the actual value of the index. The other two lines are counterfactual curves

where the average access was set to the levels of 1994 (light gray rhombus) and 2010 (dark gray

rectangles) respectively.

Looking at the Gini index, a clear and constant decrease of inequality can be observed. Look-
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Figure 2: Inequality of opportunity in access to secondary schooling

ing at the two counterfactual curves the story is different. From 1994 to 2000 there was basically

no change, while from 2000 on the inequality level went down constantly. The fact of having

two counterfactual lines here is due to the general problem of reference in such decomposition

exercises. Actually, we could use any of the years as reference. The differences are not very

large and more importantly the pattern are essentially the same in the two cases here.

Table 2 provides the numerical analysis of the same exercise by displaying the changes of the

Gini index between two time periods and the decomposition in dispersion and level effect. The

comparison is done for two consecutive periods and with respect to the first period (1994). Both

effects are generally negative, however, the dispersion effect if dominated by the level effect,

suggesting that the overall decrease in inequality of opportunity is more due to the change in

the average access to secondary schooling than to a reduction in the different probabilities.

The relative share of importance is roughly two thirds for the level effect and one third for the

dispersion effect.

4 Conclusion

In this paper we rose the concern of unwanted effects in the measurement of inequality of op-

portunity when the outcome is a binary indicator due to the missing translation invariance of

the inequality measures used. First we propose a decomposition of commonly used inequality

indexes such as the Gini index into a level and a dispersion effect. This allows us to illustrate

that measuring inequality of opportunity with a scale invariant measure yields to substantially

different results from a measurement based on a translation invariant inequality indicator. We
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Table 2: Decomposition of changes in the Gini coefficient over time

Compared to previous period Compared to 1994
Year Gini ∆tot ∆d ∆l ∆tot ∆d ∆l

1994 0.2120
1996 0.1930 -0.0190 -0.0063 -0.0127 -0.0190 -0.0063 -0.0127
1998 0.1814 -0.0117 -0.0028 -0.0088 -0.0306 -0.0088 -0.0218
2000 0.1806 -0.0007 0.0093 -0.0101 -0.0314 0.0010 -0.0324
2002 0.1653 -0.0153 -0.0056 -0.0097 -0.0467 -0.0046 -0.0420
2004 0.1399 -0.0254 -0.0102 -0.0152 -0.0721 -0.0144 -0.0576
2006 0.1271 -0.0128 -0.0103 -0.0025 -0.0849 -0.0245 -0.0604
2008 0.1099 -0.0172 -0.0138 -0.0034 -0.1021 -0.0376 -0.0645
2010 0.1092 -0.0007 0.0005 -0.0013 -0.1028 -0.0366 -0.0662

Note: The difference refers to the value of a row minus the value of the preceding row in the first
decomposition and minus the value for 1994 in the second. The decomposition is done using equation
12. ∆tot is the total difference, ∆d the difference due to changes in dispersion and ∆l the level effect.

propose a modified dissimilarity index which is twice the average absolute distance to the popula-

tion average. This new indicator is translation invariant, a property we believe to be important

in the measurement of inequality of opportunity with binary indicators, since otherwise the

results could be driven by the level of access rather the disparities in access.

Based on our illustrations and methodological discussion, we recommend to consider the

decomposition of inequality measures into level and dispersion effect whenever comparing two

measures of inequality. Understanding where the differences come from is crucial for sound con-

clusions. In the analysis of inequality of opportunity when the outcome is binary, we recommend

the use of the adapted index proposed in this paper, since it satisfies the proposition that in-

equality of opportunity in the access to a good equals inequality of opportunity in the exclusion

from that same good. To ensure a complete understanding of inequality of opportunity, the use

of both translation and scale invariant measures might be needed.
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A Proofs

In this short appendix we present the simple proofs of the properties presented in section 2.4.

To simplify the notation, we use the expected value notation instead of the sum:

D∗(y) = 2E [|y − E[y]|] (16)

Normalized range between 0 (no inequality) and 1 (highest possible inequality)

To show that the lower bound of the index is 0 is easy, just let yi = ȳ ∀ i. In this case we

have:

D∗(y) = 2E [|y − E[y]|] = 2E [|ȳ − ȳ|] = 0 (17)

To show, that the maximum value is attained whenever half of the population has the value of

zero and the other half the value of 1, we proceed in two steps. First, we show that in this case,

the value of D∗(y) is equal to 1. We know that ȳ = 1
21 + 1

20 = 1
2 . Thus, the index D∗(y) is given

by:

D∗(y) = 2

(
1

2
|0− 1

2
|+ 1

2
|1− 1

2
|
)

= 2

(
1| ± 1

2
|
)

= 1 (18)

We can move in two ways away from that situation, first by changing the level of the two groups

and second by changing the proportions. It is thus sufficient to show that in both cases we end
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up with a lower value of D∗() to proof that we actually found the maximum value. We start

by changing the values of both groups. Now, let us add a mean preserving transfer from people

with the value of 1 to those with the value of 0. In this case we get:

D∗(y) = 2

(
1

2
|0 + ε− 1

2
|+ 1

2
|1− ε− 1

2
|
)

= 2|1
2
− ε| < 1 (19)

And finally let us show that whenever the proportions are not equal, the value of the index is

also smaller. We change a proportion of ε from the group with 0 outcome to the group of 1

outcome. The average access is then: ȳ = (1
2 − ε)0 + (1

2 + ε)1) = 1
2 + ε. The index is therefore

given by:

D∗(y) = 2

(
(
1

2
− ε)|0− 1

2
− ε|+ (

1

2
+ ε)|1− 1

2
− ε|

)
(20)

since both terms in absolute values are by definition between 0 and 1, we can drop the absolute

values and get:

D∗(y) = 2

(
(
1

2
+ ε)(

1

2
− ε) + (

1

2
− ε)(1

2
+ ε)

)
= 1− 4ε2 < 1 (21)

Translation invariance

To proof that D∗(y) is translation invariant we add a vector containing the constant λ to

each element of the initial vector and solve to get D∗(y) again.

D∗(y + λ) = 2E [|y + λ− E[y + λ]|] = 2E

|y + λ− E[y]− E[λ]︸︷︷︸
=λ

|


= 2E [|y + λ− E[y]− λ]|] = 2E [|y − E[y]|] = D∗(y) (22)

Inversion invariant

Similarly, we can show easily that D∗(y) satisfied proposition 1 saying that D(y) = D(1− y):

D∗(1− y) = 2E [|1− y − E[1− y]|] = 2E [|1− y − E[1] + E[y]]

= 2E [|1− y − 1 + E[y]|] = 2E [|y − E[y]|] = D∗(y) (23)

Proportional to multiplication

Finally, let us show that D∗(ϕy) = ϕD∗(y) where ϕ is a positive scalar.

D∗(ϕy) = 2E [|ϕy − E[ϕy]|] = 2E [|ϕy − ϕE[y]|]

= 2E [|ϕ(y − E[y])|] = ϕ2E [|(y − E[y])|] = ϕD∗(y) (24)
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