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Abstract 
 

A paper by Caves, Christensen, Diewert (Econometrica 50,1393-1414, 1982) led to much 
interest in what they called the “Malmquist index”; a distance function method for 
representing technology in order to define families of input, output and productivity 
indexes. Since then there have been attempts to decompose the Malmquist productivity 
index into technical change, efficiency change and scale change components. 
Determining the appropriate way to do this has led to a healthy debate. This paper revisits 
this debate of how to decompose a Malmquist productivity index, with a focus on 
extracting technical progress, technical efficiency change, and returns to scale 
components.  
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1. Introduction 
 
The “Malmquist index”, as defined by Caves, Christensen and Diewert (1982) (CCD), 
has attracted much interest in the literature on productivity analysis. This theoretical 
index is a distance function method for representing technology in order to define 
families of input, output and productivity indexes. CCD proposed a method for 
estimating a theoretical Malmquist productivity index for a firm using Törnqvist input 
and output indexes, augmented by exogenous estimates of local returns to scale; the 
assumptions they used were relaxed by Diewert and Fox (2010), which resulted in a 
variant of the original results.  
 
Since the contribution of CCD, and particularly following Färe, Groskopf, Norris and 
Zhang (1994), there have been attempts to decompose the Malmquist productivity index 
into technical change, efficiency change and scale change components using the linear 
programming based “Data Envelopment Analysis” approach to implementing the 
Malmquist index. Determining the appropriate way to do this has led to a significant 
debate; see, for example, Ray and Desli (1997), Färe, Groskopf, Norris and Zhang (1994), 
Balk (2001), Lovell (2003) and Groskopf (2003) .  
 
This paper revisits this debate of how to decompose a Malmquist productivity index, with 
a focus on extracting technical progress, technical efficiency change, and returns to scale 
components.  
 
 
2. Malmquist Input Indexes 
 
Caves, Christensen and Diewert (1982) (CCD) used the distance function method for 
representing a technology in order to define families of input, output and productivity 
indexes. The distance function was introduced into the economics literature in the 
consumer context by Malmquist (1953) and in the production context by Shephard (1953) 
(1970). The CCD definitions for Malmquist output and input indexes were generalized by 
Bjurek (1996) to cover applications of these indexes when estimates of best practice 
technologies are available.  In this section and the following one, we give the basic 
theoretical definitions for the CCD-Bjurek input and output indexes. These input and 
output indexes are then used in order to define a family of Malmquist productivity 
indexes. 
 
Let St be a reference production possibilities set for a production unit for periods t = 0,1. 
This reference technology could be determined via a data envelopment application1

                                                   
1 See Charnes, Cooper and Rhodes (1978) and Charnes and Cooper (1985) on early applications of DEA. 

 or 
could be estimated via econometric techniques. It represents the best practice or efficient 
technology set for period t. We assume that St is a nonempty closed subset of the 
nonnegative orthant in Euclidean M+N dimensional space. If (y,x) belongs to St, then the 
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nonnegative vector of M outputs y ≡ [y1,...,yM] ≥ 0M can be produced using the period t 
technology by the vector of N nonnegative inputs x ≡ [x1,...,xN] ≥ 0N.2

 
 

Using the period t reference technology set St and given a nonnegative, nonzero output 
vector y > 0M and a strictly positive input vector x >> 0N, the period t input distance 
function Dt for periods t = 0,1 can be defined as follows: 
 
(1) Dt(y,x) ≡ max δ>0 {δ: (y,x/δ)∈St}. 
 
Thus given the nonnegative, nonzero vector of outputs y and the strictly positive vector 
of inputs x, Dt(y,x) is the maximal amount that the input vector x can be deflated so that 
the deflated input vector x/Dt(y,x) can produce the vector of outputs y using the period t 
technology St.  
 
Instead of deflating the input vector x so that the resulting deflated vector is just big 
enough to produce the vector of outputs y, we could think of deflating the output vector 
so that the resulting deflated output vector is just producible by the input vector x. Thus 
given y > 0M and x >> 0N and the period t reference technology St, the period t output 
distance function dt for periods t = 0,1 can be defined as follows: 
 
(2) dt(y,x) ≡ min δ>0 {δ: (y/δ,x)∈St}. 
 
It is not immediately clear that the maximum in (1) or the minimum in (2) will exist. In 
fact, in order to obtain the existence of the functions Dt and dt defined by (1) and (2), 
some restrictions on the production possibilities sets St are required (in addition to the 
assumption that St is a closed, nonempty subset of the nonnegative orthant). In the 
technical Appendix, we postulate a simple set of restrictions on the St which will 
guarantee the existence of these input and output distance functions. 
 
Given a reference output vector y > 0M and two strictly positive input vectors x0 >> 0N 
and x1 >> 0N, the input distance function Dt(y,x) that corresponds to the period t reference 
technology St can be used to define the following family of Malmquist input indexes,3

 

  
Q(x0,x1,y,t): 

(5) Q(x0,x1,y,St) ≡ Dt(y,x1)/Dt(y,x0). 
 
A value of the index greater than one implies that the input vector x1 is larger than the 
input vector x0, using y as a reference output and the period t best practice technology, St, 

                                                   
2 Notation: y ≥ 0M means each component of the vector y is nonnegative, y >> 0M means that each 
component is strictly positive, y > 0M means y ≥ 0M but y ≠ 0M and p⋅y denotes the inner product of the 
vectors p and y. 
3 The use of input distance functions to define input indexes can be traced back to Hicks (1961) and 
Moorsteen (1961). Fisher and Shell (1972; 51), Diewert (1980; 462) and Caves, Christensen and Diewert 
(1982; 1396) all used variants of this concept in the context of production theory. The basic idea of the 
index was developed in the consumer theory context by Malmquist (1953). The general definition of the 
input index given by (5) is due to Bjurek (1996; 307). [Check Balk 1998 and others] 
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as the reference technology. In the following sections, x0 will be interpreted as the input 
vector that corresponds to a production unit that operates in period 0 and x1 will be 
interpreted as the input vector that corresponds to a production unit that operates in 
period 1. If N = 1, so that there is only one input, then Q(x1

0,x1
1,y,St) equals x1

1/x1
0.4

 

 The 
geometry of the Malmquist input index for two inputs is illustrated in Figure 1.   

 
 
Given a reference technology set St and a reference output vector y > 0M, the set of inputs 
x that can produce the vector of outputs y is St(y) ≡ {x : (y,x)∈St}. In Figure 1, this set of 
feasible inputs lies on and above the kinked boundary line I-I. Note that the period 1 
input vector x1 ≡ [x1

1,x2
1] lies in the interior of St(y) while the period 0 input vector x0 ≡ 

[x1
0,x2

0] is exterior to St(y). Define δ0 ≡ Dt(y,x0) so that x0/δ0 is on the boundary line I-I. 
It can be seen that δ0 is less than one and δ0 equals OA/OD, the distance OA divided by 
the distance OD. Define δ1 ≡ Dt(y,x1) so that x1/δ1 is on the boundary line I-I. It can be 
seen that δ1 is greater than one and, δ1 equals OC/OB. Thus the input index Q(x0,x1) is 
equal to [OC/OB]/[OA/OD] = [OC/OB][OD/OA] where the distance ratios OC/OB and 
OD/OA are both greater than one in this case. It can be seen that if both input vectors x0 
and x1 are on the frontier of the input production possibilities set St(y) (i.e., they are both 
on the boundary line I-I), then Q(x0,x1) equals one and the input vectors are regarded as 
having equivalent size. If x0 is below the boundary line I-I and x1 is on the boundary line 
or above it, then Q(x0,x1) is greater than one and x0 is regarded as being a smaller amount 

                                                   
4 Let N = 1 and let y > 0M, x0 > 0 and x1 > 0. Let St satisfy the regularity conditions P1-P4 to be introduced 
below. Then it can be verified that (x: (y,x)∈St) is the set {x : x ≥ g(y) > 0} where g(y) is the minimum 
amount of input required to produce the vector of outputs y using the technology set St. Thus Dt(y,x0) = 
max δ {δ : (y,x0/δ)∈St} = max δ {δ: x0/δ ≥ g(y)} = δ0 where δ0 = x0/g(y) > 0. Similarly Dt(y,x1) = x1/g(y) > 0. 
Thus Q(x0,x1,y,St) ≡ Dt(y,x1)/Dt(y,x0) = x1/x0.      

x2 

x1 

x1 

x0 

St(y) ≡ {x : (y,x)∈St} 

         O              A      B         C         D 

Figure 1: The Geometry of the Malmquist Input Index 
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of aggregate input than the amount represented by x1. This is the idea behind the 
Malmquist (1953) index, which was originally developed in the consumer context.  
 
Now suppose that the strictly positive vector x0 in Figure 1 were shifted down to the point 
A on the x1 axis. It can be seen that in this case, Dt(y,x0) is not well defined; i.e., the x1 
axis never touches the input production possibilities set St(y). Thus the restriction that the 
vectors x0 and x1 be strictly positive is required in order to ensure that the Malmquist 
input index is well defined. The example in Figure 1 is also consistent with the free 
disposability of inputs and this is another restriction on the technology we require in 
order for the input distance functions to be well defined.  
 
We will now list our regularity conditions on the reference technology set St that will 
ensure that the input distance function Dt(y,x) is well defined. Suppose that the reference 
technology set St satisfies the following regularity conditions: 
 
P1. S is a nonempty closed subset of the nonnegative orthant in Euclidean M+N 
dimensional space. 
P2. For every y ≥ 0M, there exists an x ≥ 0N such that (y,x)∈S. 
P3. (y,x1)∈S, x2 ≥ x1 implies (y,x2)∈S. 
P4. y > 0M implies that (y,0N)∉S. 
 
Then in the Appendix, we show that Dt(y,x) satisfies the following regularity conditions 
with respect to x over the positive orthant, ΩN ≡ {x: x >> 0N} in N dimensional space: for 
y > 0M, Dt(y,x) is positive, (positively) linearly homogeneous, nondecreasing (increasing 
if all inputs increase) and continuous function of x over ΩN. 
 
Let St satisfy properties P1-P4 and let y > 0M. We now look at the axiomatic properties of 
Q(x0,x1,y,St) defined by (5) above with respect to the two input vectors, x0 and x1. For 
brevity, we denote Q(x0,x1,y,St) by Q(x0,x1). Using the properties of the input distance 
function Dt(y,x) listed in the paragraph above, it is reasonably straightforward to show 
that Q(x0,x1) satisfies the following 12 properties for x0 = [x1

0,...,xN
0] >> 0N and x1 = 

[x1
1,...,xN

1] >> 0N: 
 
A1. Identity: Q(x,x) = 1; i.e., if the period 0 and 1 quantity vectors are equal to x >> 0N, 
then the index is equal to unity. 
 
A2: Weak Monotonicity in Current Period Quantities: Q(x0,x1) ≤ Q(x0,x) if x1 < x ; i.e., if 
any period 1 quantity increases, then the quantity index increases or remains constant. 
 
A3: Strong Monotonicity in Current Period Quantities: Q(x0,x1) < Q(x0,x) if x1 << x ; i.e., 
if all period 1 input quantities increase, then the quantity index increases. 
 
A4: Weak Monotonicity in Base Period Quantities: Q(x0,x1) ≥ Q(x,x1) if x0 < x; i.e., if 
any period 0 quantity increases, then the quantity index decreases or remains constant. 
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A5: Strong Monotonicity in Base Period Quantities: Q(x0,x1) > Q(x,x1) if x0 << x; i.e., if 
all period 0 input quantities increase, then the quantity index decreases. 
 
A6: Proportionality in Current Period Quantities: Q(x0,λx1) = λQ(x0,x1) if λ > 0; i.e., if 
all period 1 quantities are multiplied by the positive number λ, then the resulting quantity 
index is equal to the initial quantity index multiplied by λ. 
 
A7: Inverse Proportionality in Base Period Quantities: Q(λx0,x1) = λ−1Q(x0,x1) if λ > 0; 
i.e., if all period 0 quantities are multiplied by the positive number λ, then the resulting 
quantity index is equal to the initial quantity index multiplied by 1/λ. 
 
A8: Mean Value Test: min n{xn

1/xn
0: n = 1,...,N} ≤ Q(x0,x1) ≤ max n{xn

1/xn
0: n = 1,...,N}; 

i.e., the input quantity index lies between the smallest and largest quantity relatives.5

 
 

A9: Time Reversal Test: Q(x1,x0) = 1/Q(x0,x1); i.e., if the data for periods 0 and 1 are 
interchanged, then the resulting quantity index should equal the reciprocal of the original 
quantity index. 
 
A10: Circularity: Q(x0,x1)Q(x1,x2) = Q(x0,x1); i.e., the quantity index going from period 0 
to 1 times the quantity index going from period 1 to 2 equals the quantity index going 
from period 0 to 2 directly. 
 
The circularity and identity tests imply the time reversal test; (just set x2 = x0).  Thus the 
circularity test is essentially a strengthening of the time reversal test.  
 
A11: Commensurability: Q(λ1x1

0,...,λNxN
0;λ1x1

1,...,λNxN
1) = Q(x1

0,...,xN
0;x1

1,...,xN
1) = 

Q(x0,x1) for all λ1 > 0, ... , λN > 0; i.e., if we change the units of measurement for each 
input, then the input quantity index remains unchanged. 
 
A12: Continuity: Q(x0,x1) is a jointly continuous function of x0 and x1 for x0 >> 0N and x1 
>> 0N. 
 
O’Donnell (2009) considered many of the above axioms and some additional axioms for 
input quantity indexes. The above axioms are essentially the modification of the axioms 
used by Diewert (1992) for bilateral price indexes of the form P(p0,p1,q0,q1) except that Q 
replaces P, x0 and x1 replace p0 and p1 and tests involving changes in q0,q1 are deleted. 
 
Recall that (5) defines an entire family of Malmquist input quantity indexes, 
Q(x0,x1,y,St); i.e., for each reference output vector y > 0M and for each reference 
technology set St , there is a possibly different input quantity index Q(x0,x1,y,St). The 
question we now have to address is: if we are comparing the inputs of two different 

                                                   
5 Let β ≡ max n {xn

1/xn
0: n = 1,...,N}. Then x1 ≤ βx0 using the positivity of x0. Thus Q(x0,x1) ≤ Q(x0,βx0) 

(using A2) = βQ(x0,x1) (using A6) = β (using A1). Similarly, let α ≡ min n {xn
1/xn

0: n = 1,...,N}. Then x1 ≥ 
αx0 using the positivity of x0. Thus Q(x0,x1) ≥ Q(x0,αx0) (using A2) = αQ(x0,x1) (using A6) = α (using A1). 
This proof follows that of Eichhorn (1978; 155) in the price index context.  
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production units who have the observed output and input vectors (y0,x0) and (y1,x1), what 
is an appropriate choice of the reference output vector y and the reference technology set 
St to insert into the definition of the Malmquist input quantity index Q(x0,x1,y,St)? 
 
From the viewpoint of the period 0 production unit, the most appropriate choice of a 
reference output vector y would seem to be the actual output vector produced by the unit 
in period 0, which is y0. Similarly, the most appropriate reference technology for the 
period 0 production unit would appear to be the period 0 best practice technology, S0. 
Thus from the viewpoint of the period 0 production unit, the most appropriate input 
quantity index would appear to be the Laspeyres type Malmquist input index, QL(x0,x1), 
defined as follows: 
 
(6) QL(x0,x1) ≡ Q(x0,x1,y0,S0) = D0(y0,x1)/D0(y0,x0).      
 
From the viewpoint of the period 1 production unit, the most appropriate choice of a 
reference output vector y is the output vector produced by the unit in period 1, which is y1. 
Similarly, the most appropriate reference technology for the period 1 production unit is 
the period 1 best practice technology, S1. Thus from the viewpoint of the period 1 
production unit, the most appropriate input quantity index is the Paasche type Malmquist 
input index, QP(x0,x1), defined as follows: 
 
(7) QP(x0,x1) ≡ Q(x0,x1,y1,S1) = D1(y1,x1)/D1(y1,x0).  
 
Since we have two separate relevant input quantity indexes6

 

 when comparing the relative 
size of the input vectors of two production units, it is natural to take a symmetric average 
of the two indexes defined by (6) and (7) in order to obtain a “final” measure of the 
relative magnitude of the input vector x1 relative to x0. But what form of average should 
we take? Caves, Christensen and Diewert (1982; 1397) found it convenient to take the 
geometric average of the above two indexes; i.e., define 

(8) QCCD(x0,x1) = [QL(x0,x1)QP(x0,x1)]1/2. 
 
However, Caves, Christensen and Diewert chose the geometric average of the Laspeyres 
and Paasche type Malmquist input indexes because it led to an exact bilateral index 
number formula when they made various translog assumptions on the underlying 
technology. In our present context, we want to avoid the use of price information so we 
need another justification for taking the geometric mean of QL and QP as opposed to 
taking some other form of average.    
 
In the present context, we should choose the form of average strategically so that the 
resulting index satisfies an important test or property. The important property that we will 
choose to focus on is the Time Reversal Test; see A9 above.    
 
                                                   
6 The two input indexes defined by (6) and (7) were the ones that were introduced by Caves, Christensen 
and Diewert (1982; 1396). Diewert (1992; 235) also endorsed these two input indexes as being “natural” 
input indexes. 
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At this point, we need a bit of background information on the properties of averages or 
means. Let a and b be two positive numbers.  Diewert (1993b; 361) defined a symmetric 
mean of a and b as a function m(a,b) that has the following properties: 
 
(9)   m(a,a) = a for all a > 0  (mean property); 
(10) m(a,b) = m(b,a) for all a > 0, b > 0 (symmetry property); 
(11) m(a,b) is a continuous function for a > 0, b > 0 (continuity property); 
(12) m(a,b) is a strictly increasing function in each of its variables (increasingness 
        property). 
 
It can be shown that if m(a,b) satisfies the above properties, then it also satisfies the 
following property:7

 
 

(13) min {a,b} ≤ m(a,b) ≤ max {a,b} (min-max property); 
 
i.e., the mean of a and b, m(a,b), lies between the maximum and minimum of the 
numbers a and b.  Since we have restricted the domain of definition of a and b to be 
positive numbers, it can be seen that an implication of (13) is that m also satisfies the 
following property: 
 
(14)  m(a,b) > 0 for all a > 0, b > 0 (positivity property). 
 
If in addition, m satisfies the following property, then Diewert (1993b) defined m to be a 
homogeneous symmetric mean: 
 
(15) m(λa,λb)  = λm(a,b) for all λ > 0, a > 0, b > 0. 
 
With the above material on homogeneous, symmetric means in hand, we can prove the 
following proposition: 
 
Proposition 1: The CCD input quantity index QCCD(x0,x1) defined by (8) above is the 
only index satisfying the Time Reversal Test A9 that is a homogeneous symmetric 
average of the Laspeyres and Paasche Malmquist input quantity indexes, QL and QP 
defined by (6) and (7). 
 
Proof: Assume that the homogeneous mean function m satisfies the positivity and 
homogeneity properties, (14) and (15) above. 
 
Let x0 >> 0N and x1 >> 0N. Define a ≡ QL(x0,x1) > 0 and b ≡ QP(x0,x1) > 0. Looking at 
definitions (6) and (7), it can be seen that if we reverse the order of time: 
 
(16) QL(x1,x0) = 1/a = 1/QL(x0,x1) ; QP(x1,x0) = 1/b = 1/QP(x0,x1).     
 
Define the mean input quantity index Q using the function m as follows: 

                                                   
7 To prove this, use the technique of proof used by Eichhorn and Voeller (1976; 10). 
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(17) Q(x0,x1) ≡ m(QL(x0,x1),QP(x0,x1)) = m(a,b). 
 
where we have used the definitions of the numbers a and b above.  For Q to satisfy the 
time reversal test, the following equation must be satisfied:  
 
(18) Q(x1,x0) = m(QL(x1,x0),QP(x1,x0))  
                      = m(a−1,b−1)                                                                                      using (16) 
                      = 1/Q(x0,x1) 
                      = 1/m(a,b)                                                                                        using (17). 
 
Using the positivity of a and b and property (14) for m, (18) can be rewritten as follows: 
 
(19) 1 = m(a,b)m(b−1,a−1) 
          = am(1,b/a)a−1m(a/b,1)                                                        using property (15) for m 
          = m(1,x)m(x−1,1)                                                                 letting x ≡ b/a 
          = m(1,x)x−1m(1,x)                                                               using property (15) for m. 
 
Equation (19) can be rewritten as: 
 
(20) x = [m(1,x)]2. 
 
Take the positive square root of both sides of (20) and obtain 
 
(21) m(1,x) = x1/2. 
 
Using property (15) for m again, we have 
 
(21) m(a,b) = am(1,b/a) 
                   = a[b/a]1/2                                                                     using (21) 
                   = a1/2b1/2. 
 
Now substitute (21) into (17) and we find that Q(x0,x1) = QCCD(x0,x1).              Q.E.D.  
                                              
The above proof is a modification of a proof due to Diewert (1997; 138) in the price 
index context. 
 
Using the mathematical properties of the input distance functions D0(y0,x) and D1(y1,x) 
with respect to the strictly positive input vector x, it is straightforward to establish the 
following Proposition: 
 
Proposition 2:  Let the technology sets S0 and S1 satisfy properties P1-P4 and let y0 > 0M 
and y1 > 0M. Then the Caves, Christensen and Diewert Malmquist input quantity index 
QCCD(x0,x1) defined by (8) above satisfies the axioms A1-A12 listed above for all x0 >> 
0N and x1 >> 0N. 
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The above Proposition implies that QCCD(x0,x1) satisfies the circularity test A10 and this 
is true but note that this circularity test is conditional on only the two production 
possibility sets S0 and S1 and the two reference output vectors y0 and y1. Thus the index 
QCCD(x0,x1) should be more properly denoted by QCCD(x0,x1;y0,y1;S0,S1) and the 
circularity test that QCCD satisfies is the following one: for all x0 >> 0N, x1 >> 0N and x2 
>> 0N, we have: 
 
(22) QCCD(x0,x1;y0,y1;S0,S1)QCCD(x1,x2;y0,y1;S0,S1) = QCCD(x0,x2;y0,y1;S0,S1). 
 
Thus there is a certain lack of symmetry in the index when input comparisons are made 
between three or more production units. Hence the CCD Malmquist input index is best 
suited for bilateral comparisons between a pair of production units (or the same 
production unit over two time periods) rather than multilateral comparisons between 
many production units.          
 
We now turn our attention to Malmquist output indexes. 
 
3. Malmquist Output Indexes 
 
Given a strictly positive reference input vector x >> 0N and two nonnegative, nonzero 
output vectors y0 > 0M and y1 > 0M, the output distance function dt(y,x) defined by (2) 
that corresponds to the period t reference technology St can be used to define the 
following family of Malmquist output indexes,8

 
  q(y0,y1,x,St): 

(23) q(y0,y1,x,St) ≡ dt(y1,x)/dt(y0,x). 
 
A value of the index greater than one implies that the output vector y1 is larger than the 
output vector y0, using x as a reference output and the period t best practice technology, 
St, as the reference technology. In the following sections, y0 will be the output vector that 
corresponds to a production unit that operates in period 0 and y1 will be the output vector 
that corresponds to a production unit that operates in period 1. If M = 1, so that there is 
only one output, then q(y1

0, y1
1,x,St) equals y1

1/y1
0. 9

 

 The geometry of the Malmquist 
output index for two inputs is illustrated in Figure 2.   

                                                   
8 The general definition of the output index given by (23) is due to Bjurek (1996; 307). [Check Balk 1998 
and others] 
9 Let M = 1 and let x >> 0N, y0 > 0 and y1 > 0. Let St satisfy the regularity conditions P1 and P5-P7. Then it 
can be verified that (y : (y,x)∈St) is the set {y : 0 ≤ y ≤ f(x)} where f(x) > 0 is the maximum amount of the 
single output that can be produced by the strictly positive input vector x using the technology set St. Thus 
dt(y0,x) = min δ {δ: (y0/δ,x)∈St} = min δ {δ: y0/δ ≤ f(x)} = δ0 where δ0 = y0/f(x) > 0. Similarly dt(y1,x) = 
y1/f(x) > 0. Thus q(y0,y1,x,St) ≡ dt(y1,x)/dt(y0,x) = y1/y0.   
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Given a reference technology set St and a reference input vector x >> 0N, the set of 
outputs y that can be produced by the vector of inputs x is St*(x) ≡ {y : (y,x)∈St}. In 
Figure 2, this set of feasible inputs is a subset of the nonnegative orthant and lies on and 
below the kinked boundary line I-I. Note that the period 1 output vector y1 ≡ [y1

1,y2
1] lies 

outside of St*(x) while the period 0 output vector y0 ≡ [y1
0,y2

0] is in the interior of St*(x). 
Define δ0 ≡ dt(y0,x) so that y0/δ0 is on the boundary line I-I. It can be seen that δ0 is less 
than one and δ0 equals OA/OD, the distance OA divided by the distance OD. Define δ1 ≡ 
dt(y1,x) so that y1/δ1 is on the boundary line I-I. It can be seen that δ1 is greater than one 
and, δ1 equals OC/OB. Thus the output index q(x0,x1) is equal to [OC/OB]/[OA/OD] = 
[OC/OB][OD/OA] where the distance ratios OC/OB and OD/OA are both greater than 
one in this case. It can be seen that if both output vectors y0 and y1 are on the frontier of 
the input production possibilities set St*(x) (i.e., they are both on the boundary line I-I), 
then q(y0,y1) equals one and the output vectors are regarded as having equivalent size. If 
y0 is below the boundary line I-I and y1 is on the boundary line or above it, then q(y0,y1) 
is greater than one and y0 is regarded as being a smaller amount of aggregate output than 
the amount represented by y1. Note that we do not require y0 and y1 to be strictly positive 
vectors in order for the output index to be well defined; we need only y0 > 0M and y1 > 0M.  
 
We will now list our regularity conditions on the reference technology set St that will 
ensure that the output distance function dt(y,x) is well defined. Suppose that the reference 
technology set St satisfies condition P1 listed in the previous section and the following 
three additional regularity conditions : 
 
P5. x ≥ 0N, (y,x)∈S implies 0M ≤ y ≤ b(x)1M where 1M is a vector of ones of dimension M 
and b(x) ≥ 0 is a finite nonnegative bound. 
P6. x >> 0N implies that there exists y >> 0M such that (y,x)∈S. 

y2 

y1 

y1 

y0 

         O              A      B         C         D 

Figure 2: The Geometry of the Malmquist Output Index 

I 

I 

y0/δ0 

y1/δ1 

St*(x) 
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P7. (y1,x)∈S, 0M ≤ y0 ≤ y1 implies (y0,x)∈S. 
 
In the Appendix, we show that dt(y,x) satisfies the following regularity conditions with 
respect to y over the nonnegative orthant excluding the origin, ΩM

* ≡ {y: y > 0N}: for x 
>> 0N, dt(y,x) is positive, (positively) linearly homogeneous, nondecreasing (increasing if 
all outputs increase) and continuous function of y over ΩM

*. 
 
Let St satisfy properties P1 and P5-P7 and let x >> 0N. We now look at the axiomatic 
properties of q(y0,y1,x,St) defined by (23) above with respect to the two output vectors, y0 
and y1. For brevity, we denote q(y0,y1,x,St) by q(y0,y1). Using the properties of the output 
distance function dt(y,x) listed in the paragraph above, it is straightforward to show that 
q(y0,y1) satisfies the 12 properties A1-A12 listed in the previous section, where Q(x0,x1) 
is replaced by q(y0,y1) for y0 > 0M and y1 > 0M.10

 
  

Recall that (23) defines an entire family of Malmquist output quantity indexes, 
q(y0,y1,x,St); i.e., for each reference input vector x >> 0N and for each reference 
technology set St , there is a possibly different output quantity index q(y0,y1,x,St). Thus 
we now have to address the same type of question that we addressed in the previous 
section: if we are comparing the outputs of two different production units who have the 
observed output and input vectors (y0,x0) and (y1,x1), what is an appropriate choice of the 
reference input vector x and the reference technology set t to insert into the definition of 
the Malmquist output quantity index q(y0,y1,x,St)? 
 
From the viewpoint of the period 0 production unit, the most appropriate choice of a 
reference input vector x would seem to be the actual input vector used by the unit in 
period 0, which is x0 (which we assume is a strictly positive vector). Similarly, the most 
appropriate reference technology for the period 0 production unit would appear to be the 
period 0 best practice technology, S0. Thus from the viewpoint of the period 0 production 
unit, the most appropriate output quantity index would appear to be the Laspeyres type 
Malmquist output index, qL(y0,y1), defined as follows: 
 
(24) qL(y0,y1) ≡ q(y0,y1,x0,S0) = d0(y1,x0)/d0(y0,x0).      
 
From the viewpoint of the period 1 production unit, the most relevant choice of a 
reference input vector x is the input vector used by the unit in period 1, which is x1 
(where we assume x1 >> 0N). Similarly, the most relevant reference technology for the 
period 1 production unit is the period 1 best practice technology, S1. Thus from the 
viewpoint of the period 1 production unit, the most appropriate output quantity index is 
the Paasche type Malmquist output index, qP(y0,y1), defined as follows: 
 
(25) qP(y0,y1) ≡ q(y0,y1,x1,S1) = d1(y1,x1)/d1(y0,x1).  
 

                                                   
10 The continuity property A12 holds only for strictly positive y vectors; i.e., we can establish the continuity 
of q(y0,y1) for y0 >> 0M and y1 >> 0M. 
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Since we have two separate relevant output quantity indexes 11

 

 when comparing the 
relative size of the output vectors of two production units, it is natural to take a 
symmetric average of the two indexes defined by (24) and (25) in order to obtain a 
“final” measure of the relative magnitude of the output vector y1 relative to y0. But what 
form of average should we take? Caves, Christensen and Diewert (1982; 1401) found it 
convenient to take the geometric average of the above two indexes; i.e., define 

(26) qCCD(y0,y1) = [qL(y0,y1)qP(y0,y1)]1/2. 
 
The use of the geometric average of qL and qP instead of some other form of average can 
be justified if we want the average Malmquist output index to satisfy the time reversal 
test A9 (adapted to the output context); i.e., we can establish the following Proposition, 
using the same method of proof as was used in the proof of Proposition 2 in the previous 
section: 
 
Proposition 3: The CCD output quantity index qCCD(y0,y1) defined by (26) above is the 
only index satisfying the (modified) Time Reversal Test A9 that is a homogeneous 
symmetric average of the Laspeyres and Paasche Malmquist output quantity indexes, qL 
and qP defined by (24) and (25). 
 
The modified Tests A1-A11 simply replace the strictly positive input quantity vectors x0 
and x1 by the nonnegative, nonzero output vectors y0 > 0M and y1 > 0M. We denote the 
modified tests as B1-B11. For example, the first two modified tests are the following 
ones: 
 
B1. Identity: q(y,y) = 1; i.e., if the period 0 and 1 quantity vectors are equal to y > 0M, 
then the output quantity index is equal to unity. 
 
B2: Weak Monotonicity in Current Period Quantities: q(y0,y1) ≤ q(y0,y) if y0 > 0M and 0M 
< y1 < y ; i.e., if any period 1 quantity increases, then the quantity index increases or 
remains constant. 
 
However, the modified test A12 requires that the two output vectors y0 and y1 be strictly 
positive so that the test B12 is the following one: 
 
B12: Continuity: q(y0,y1) is a jointly continuous function of y0 and y1 for y0 >> 0M and y1 
>> 0M. 
 
Assuming that x >> 0N, using the mathematical properties of the output distance 
functions d0(y,x) and d1(y,x) with respect to the nonnegative, nonzero output vector y that 
are established in the Appendix, it is straightforward to prove the following Proposition: 
 
Proposition 4:  Let the technology sets S0 and S1 satisfy properties P1 and P5-P7 and let 
x0 >> 0N and x1 >> 0N. Then the Caves, Christensen and Diewert Malmquist output 
                                                   
11  The two output indexes defined by (24) and (25) were the ones that were introduced by Caves, 
Christensen and Diewert (1982; 1400). 
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quantity index qCCD(y0,y1) defined by (26) above satisfies the axioms B1-B11 for all y0 > 
0M and y1 > 0M and B12 for all y0 >> 0M and y1 >> 0M. 
 
The above Proposition implies that qCCD(y0,y1) satisfies the circularity test B10 and this is 
true but note that this circularity test is conditional on only the two production possibility 
sets S0 and S1 and the two reference input vectors x0 and x1. Thus the index qCCD(y0,y1) is 
more properly denoted by qCCD(y0,y1,x0,x1;S0,S1) and the circularity test that qCCD 
satisfies is the following one: for all y0 > 0M, y1 > 0M and y2 > 0M, we have: 
 
(27) qCCD(y0,y1,x0,x1;S0,S1)qCCD(y1,y2,x0,x1;S0,S1) = qCCD(y0,y2,x0,x1;S0,S1). 
 
Thus as was the case for the CCD input index, the CCD Malmquist output index is best 
suited for bilateral comparisons between a pair of production units (or the same 
production unit over two time periods) rather than multilateral comparisons between 
many production units.          
 
We now turn our attention to productivity indexes. 
 
4. Malmquist-Bjurek Productivity Indexes 
 
Having defined families of input and output indexes using distance functions in the 
previous two sections, it is natural to define a family of productivity indexes as the ratio of 
a family of output indexes to a family of input indexes. Our goal is to compare the 
productivity of two production units, 0 and 1, in the same industry which have the 
observed output and input vectors (y0,x0) and (y1,x1) respectively. We assume that the 
input vectors are strictly positive, so that x0 >> 0N and x1 >> 0N, and we assume that the 
output vectors are nonnegative but nonzero so that y0 > 0M and y1 > 0M. Our definition of 
the productivity index will also require a nonnegative, nonzero reference output vector y 
> 0M and a strictly positive reference input vector x >> 0N. Finally, the definition requires 
a reference technology set St which satisfy the regularity conditions P1-P7. Recall the 
family of Malmquist input indexes, Q(x0,x1,y,t) defined by (5) above, and the family of 
Malmquist output indexes, q(y0,y1,x,t) defined by (23) above. These two families of 
indexes can be used in order to define the following family of Malmquist-Bjurek 
productivity indexes:  
 
(28) Π(x0,x1,y0,y1,x,y,St) ≡ q(y0,y1,x,St)/Q(x0,x1,y,St)  
                                         = [dt(y1,x)/dt(y0,x)/[Dt(y,x1)/Dt(y,x0)]. 
 
If Π(x0,x1,y0,y1,x,y,St) is greater (less) than one, we say that production unit 1 is more 
(less) productive than production unit 0; if Π(x0,x1,y0,y1,x,y,St) equals one, then the units 
have equal levels of productivity. At this level of generality, the index defined by (28) is 
due to Bjurek (1996; 308). Special cases of this type of index were described by Hicks 
(1961; 22) (1981; 256), Moorsteen (1961; 462) and Diewert (1992; 240). The 
mathematical properties of Π with respect to x0,x1,y0,y1 are of course determined by the 
mathematical properties of the input index Q(x0,x1,y,t) with respect to x0 and x1 and the 
mathematical properties of the output index q(y0,y1,x,t) with respect to y0 and y1; see 



 15 

sections 2 and 3 above for these properties. It can be verified that if N = 1 and M = 1 so 
that there is only one input and one output, then the Bjurek productivity index collapses 
to [y1/y0]/[x1/x0], which is also equal to [y1/x1]/[y0/x0], the growth in Total Factor 
Productivity going from the production unit 0 inputs and outputs to the production unit 1 
inputs and outputs. Thus if Π(x0,x1,y0,y1,x,y,St) is greater than one, production unit 1 can 
produce more aggregate output per unit aggregate input than production unit 0. 
 
As usual, when faced with a family of indexes, we need to determine which member of 
the family should be chosen for empirical applications. Again following the lead of Caves, 
Christensen and Diewert (1982) and Bjurek (1996; 310), it is natural to pick the two 
members of the family of indexes defined by (28) that are of most relevance to the two 
production units being compared. The most relevant productivity comparison for unit 0 is 
the Laspeyres version of (28), which is ΠL defined below by (29), where we pick the 
reference output and input vectors, y and x, to be the observed vectors for unit 0, y0 and 
x0, and we pick the reference technology set St to be S0, the best practice technology set 
for production unit 0. Thus define the Bjurek-Laspeyres productivity index between 
production units 0 and 1 as: 
 
(29) ΠL(x0,x1,y0,y1) ≡ q(y0,y1,x0,S0)/Q(x0,x1,y0,S0)  
                                = [d0(y1,x0)/d0(y0,x0)]/[D0(y0,x1)/D0(y0,x0)].  
 
Similarly, the most relevant productivity comparison for unit 1 is the Paasche version of 
(28), ΠP defined below by (30), where we pick the reference output and input vectors, y 
and x, to be the observed vectors for unit 1, y1 and x1, and we pick the reference 
technology set St to be S1, the best practice technology set for production unit 1. Thus 
define the Bjurek-Paasche productivity index between production units 0 and 1 as: 
 
(30) ΠP(x0,x1,y0,y1) ≡ q(y0,y1,x1,S1)/Q(x0,x1,y1,S1)  
                                = [d1(y1,x1)/d1(y0,x1)]/[D1(y1,x1)/D1(y1,x0)].  
 
Finally, Bjurek (1996; 310-311) suggested that a good productivity index would result 
(that remedied some of the problems with existing productivity indexes) if we took the 
geometric mean of the indexes defined by (29) and (30). Thus we define the Bjurek 
productivity index as follows: 
 
(31) ΠB(x0,x1,y0,y1) ≡ [ΠL(x0,x1,y0,y1)ΠP(x0,x1,y0,y1)]1/2 

= {[d0(y1,x0)/d0(y0,x0)][D0(y0,x0)/D0(y0,x1)][d1(y1,x1)/d1(y0,x1)][D1(y1,x0)/D1(y1,x1)]}1/2. 
 

Thus the Bjurek productivity index is the product of two sets of output distance function 
ratios times two sets of input distance function ratios—a rather complicated function. 
 
When comparing the productivity levels of two production units, it is very useful to have 
the productivity measure satisfy the time reversal test; i.e., if we have a productivity 
measure Π(x0,x1,y0,y1) that compares the productivity level of production unit 1, 
characterized by the input-output data (x1,y1), with the productivity level of production 
unit 0, characterized by the input-output data (x1,y1), then the comparison should not 
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depend materially on which unit is being compared to which; i.e., it would be desirable if 
the productivity measure satisfied the following time reversal test: 
 
(32) Π(x1,x0,y1,y0) = 1/Π(x0,x1,y0,y1). 
 
It is straightforward to establish the following counterpart to Proposition 3 above: 
 
Proposition 5: The Bjurek productivity index ΠB(x0,x1,y0,y1) defined by (31) above is the 
only productivity index satisfying the Time Reversal Test (32) that is a homogeneous 
symmetric average of the Laspeyres and Paasche productivity indexes, ΠL(x0,x1,y0,y1) 
and ΠP(x0,x1,y0,y1)  defined by (29) and (30). 
  
Our goal in this paper is to decompose (31) into the product of readily interpreted 
explanatory factors; namely changes in the technical efficiency of the production units, 
technical progress due to a change in the reference best practice technology set from S0 to 
S1 and a measure of returns to scale. Hence in the following sections, we will consider 
some definitions for these explanatory variables based on distance function 
representations.  
 
5. Radial Measures of Technical Efficiency 
 
Our measures of technical efficiency for the two production units being compared are 
conventional Debreu (1951) Farrell (1957; 254) radial measure of efficiency loss except 
that we use output measures of loss rather than the input oriented measures they used. 
 
We suppose that there are best practice technology sets S0 and S1 (satisfying properties 
P1 and P5-P7) that are relevant for production units 0 and 1; i.e., the observed output and 
input vector for unit 0 belongs to the period 0 best practice technology set S0 and the 
observed output and input vector for unit 1 belongs to the period 1 best practice 
technology set S1 but that these observed vectors are not necessarily on the frontiers of 
these best practice sets. We assume that yt > 0M and xt >> 0N for t = 0,1 and we also 
assume that: 
 
(33) (y0,x0)∈S0 ; (y1,x1)∈S1. 
 
For production units t = 0,1, the output technical efficiency of unit t, εt, is defined as 
follows: 
 
(34) εt ≡ dt(yt,xt) ≡ min δ {δ: (yt/δ,xt)∈St} ≤ 1 
 
where the inequalities in (34) follow from assumptions (33) using a feasibility 
argument.12

 
      

                                                   
12 Our regularity conditions also imply that ε0 > 0 and ε1 > 0. 
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If ε0 = 1, then production unit 0 is regarded as being efficient since the point (y0,x0) is on 
the frontier of the period 0 best practice production possibilities set. Similarly, if ε1 =1, 
then production unit 1 is regarded as being efficient. Alternatively, if ε0 < 1, then 
production unit 0 is clearly not efficient since an efficient period 0 producer could 
produce the output vector y0/ε0 which is strictly greater than y0 for all positive 
components of y0, using the same input vector x0. The amount that ε0 is less than one is a 
quantitative indicator of the inefficiency of production unit 0.13

 
 

For the case of a single output and a single input, the technical efficiency measures can 
be illustrated in Figure 3.  

 
The observed input for unit 0 is x0 and the corresponding amount of output produced is y0. 
Note that this point lies below the frontier of the period 0 best practice technology set, S0. 
The best practice technology can produce y0* > y0 units of output, using the same amount 
of input x0. Thus the technical efficiency of production unit 0 is ε0 ≡ d0(y0,x0) ≡ min δ {δ : 
(y0/δ,x0)∈S0} = δ0 = y0/y0* < 1. Similarly, the observed input for production unit 1 is x1 
and the corresponding amount of output produced is y1. This point lies below the frontier 
of the period 1 best practice technology set, S1. The best practice technology can produce 
y1* > y1 units of output, using the same amount of input x1. Thus the technical efficiency 
of production unit 1 is ε1 ≡ d1(y1,x1) ≡ min δ {δ: (y1/δ,x1)∈S1} = δ1 = y1/y1* < 1.  
 
                                                   
13 The problem with this radial measure of inefficiency is that we could have ε0 or ε1 equal to one 
(indicating that production unit 0 or 1 is efficient) but in fact, production need not be completely efficient. 
This problem can be illustrated using Figure 2 where it can be seen that y1/δ1 is on the frontier of the 
reference production possibilities set St but it is clear that y1/δ1 is not completely efficient since we could 
use the same reference input vector to produce a greater amount of output 1 without reducing the 
production of output 2. This problem and possible solutions are discussed in depth by Russell and Schworm 
(2009) (2010). In the present paper, we will work with the rather weak measures of technical efficiency 
defined by (34) for the sake of simplicity but this limitation of our analysis should be kept in mind. 

Figure 3: Decomposition Factors for the One Output One Input Case 
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We now turn our attention to defining measures of technical change. 
 
6. The Measurement of Technical Change 
 
In this section, we want to use output distance functions in order to construct measures 
indicating by how much the reference technology changes going from period 0 to 1.14

 
    

Let the reference technology sets S0 and S1 satisfy properties P1 and P5-P7. Assume that 
the reference input vector x is strictly positive and that the reference output vector is 
nonnegative and nonzero. Then the two output distance functions d0(y,x) and d1(y,x) are 
well defined by (2) above and we can use these functions to define the following family 
of Malmquist output based technical change measures:  
 
(35) τ(y,x,S0,S1) ≡ d0(y,x)/d1(y,x). 
 
Recall that the set of outputs y that are producible by the input vector x using the period t 
technology set St was denoted by St(x) ≡ {y: (y,x)∈St} for t = 0,1. It turns out that 
τ(y,x,S0,S1) defined by (35) is a radial measure of how much bigger (or smaller) the set 
S1(x) is relative to S0(x); i.e., if τ(y,x,S0,S1) > 1, then S0(x) is a strict subset of S1(x) and if 
if τ(y,x,S0,S1) < 1, then S1(x) is a strict subset of S0(x) as the proof of the following 
proposition will show. Thus if τ(y,x,S0,S1) is greater (less) than one, then we have 
technological progress (regress) in the best practice technology going from period 0 to 1. 
Note also that if we reverse the role of time, then we obtain the reciprocal of the original 
measure of technical change; i.e., τ(y,x,S1,S0) =1/τ(y,x,S0,S1).  
 
Proposition 6: Let x >> 0N and y > 0M and suppose that the reference technology sets S0 
and S1 satisfy properties P1 and P5-P7. Suppose that S0(x) is a subset of S1(x) so that the 
best practice technology does not suffer from technical regress at the reference input 
vector x. Then τ(y,x,S0,S1) ≥ 1. Conversely, suppose that S1(x) is a subset of S0(x). Then 
τ(y,x,S0,S1) ≤ 1. 
 
Proof: Let x >> 0N and y > 0M and suppose that S0(x) ⊂ S1(x). Using definition (35), we 
have: 
 
(36) τ(y,x,S0,S1) ≡ d0(y,x)/d1(y,x) 
            = min δ {δ: (y/δ,x)∈S0}/min δ {δ: (y/δ,x)∈S1} 
            = δ0/δ1 
 
where (y/δ0,x)∈S0 and (y/δ1,x)∈S1 and δ0 > 0, δ1 > 0. Note that y/δ0∈S0(x) and since 
S0(x) ⊂ S1(x), it can be seen that y/δ0∈S1(x) and hence, δ0 is feasible for the minimization 
problem min δ {δ: (y/δ,x)∈S1} = δ1. Thus 0 < δ1 ≤ δ0 and τ(y,x,S0,S1) ≥ 1. The second 
half of the Proposition follows in an analogous manner.                                            Q.E.D. 
 
                                                   
14 In the context of cross sectional comparisons of efficiency, we want to compare the best practice 
technology set in region 0 with the corresponding best practice set in region 1. 
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Unfortunately, the technical progress measure defined by (35) is not completely 
satisfactory as soon as there is more than one output. The problem is that in the many 
outputs case, we could have an outward shift in the reference production possibilities set 
going from period 0 to 1 that affects only a subset of the outputs and this can lead to a 
technical progress score of unity (indicating no technical progress) but in fact, there has 
been some technical progress. This is the same type of difficulty that we face when using 
radial measures of technical efficiency; see Russell and Schworm (2009) (2010) for a 
thorough discussion of these difficulties. In the present paper, we will ignore these 
difficult problems. 
 
As usual, it is useful to choose particular cases of the general measures of technical 
progress defined by (35) that are most relevant to the production units being compared. 
Thus it is natural to choose as the reference output and input vectors, y and x, the 
observed output and input vectors for production units 0 and 1. This leads to the 
following Laspeyres and Paasche type measures of technical progress:  
 
(37) τL ≡ τ(y0,x0,S0,S1) ≡ d0(y0,x0)/d1(y0,x0) ; 
(38) τP ≡ τ(y1,x1,S0,S1) ≡ d0(y1,x1)/d1(y1,x1) . 
    
These measures can be illustrated in the one output, one input case using Figure 3 above. 
 
We start by analyzing the Laspeyres type measure of technical progress defined by (37) 
above. Note that (x0,y0) lies below the period 0 best practice frontier. We need to hold x0 
constant and increase y0 to y0* so that the resulting input and output combination, (x0,y0*) 
lies on the period 0 best practice frontier. The distance d0(y0,x0) ≡ δ0* will deflate y0 onto 
the period 0 frontier; i.e., we have y0/δ0* = y0* so that δ0* = y0/y0*. Next we need to hold 
x0 constant and increase y0 to y0** so that the resulting input and output combination, 
(x0,y0**) lies on the period 1 best practice frontier. The distance d1(y0,x0) ≡ δ0** will 
deflate y0 onto the period 1 frontier; i.e., we have y0/δ0** = y0** so that δ0** = y0/y0**. Thus 
we have τL = d0(y0,x0)/d1(y0,x0) = δ0*/δ0** = [y0/y0*]/[y0/y0**] = y0**/y0* and it can be seen 
that this is a perfectly sensible proportional measure of the increase in output that is 
producible by the best practice technology going from period 0 to 1, using x0 as the 
reference amount of input.     
 
The analysis of the Paasche type measure of technical progress defined by (38) above 
proceeds in a similar manner. Note that (x1,y1) lies below the period 1 best practice 
frontier. We need to hold x1 constant and increase y1 to y1* so that the resulting input and 
output combination, (x1,y1*) lies on the period 1 best practice frontier. The distance 
d1(y1,x1) ≡ δ1* will deflate y1 onto the period 1 frontier; i.e., we have y1/δ1* = y1* so that 
δ1* = y1/y1*. Next we need to hold x1 constant and increase y1 to y1** so that the resulting 
input and output combination, (x1,y1**) lies on the period 0 best practice frontier. The 
distance d0(y1,x1) ≡ δ1** will deflate y1 onto the period 0 frontier; i.e., we have y1/δ1** = 
y1** so that δ1** = y1/y1**. Thus we have τP = d0(y1,x1)/d1(y1,x1) = δ1**/δ1* = 
[y1/y1**]/[y1/y1*] = y1*/y1** and it can be seen that this is a reasonable proportional 
measure of the increase in output that is producible by the best practice technology going 
from period 0 to 1, using x1 as the reference amount of input. 
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We would like a measure of technical change that is a symmetric average of the 
Laspeyres and Paasche measures, τL and τP defined above by (37) and (38). As usual, 
taking a geometric average often has nice properties. Thus define a Fisher (1922) type 
measure of technical change τF as the geometric average of τL and τP: 
 
(39) τF ≡ [τLτP]1/2. 
 
Note that both τL and τP satisfy a time reversal test; i.e., we have: 
 
(40) τL = τ(y0,x0,S0,S1) = 1/τ(y0,x0,S1,S0); 
(41) τP = τ(y1,x1,S0,S1) = 1/τ(y1,x1,S1,S0). 
 
It can be seen that there is a counterpart to Proposition 3 above in the present context: the 
only measure of technical change that is a homogeneous symmetric average of τL and τP 
and also satisfies the time reversal test is the Fisher measure of technical change τF 
defined by (39). 
 
Our final factor for the explanation of productivity change between two production units 
is returns to scale and we now turn to a discussion of possible measures of returns to 
scale. 
 
7. Global Measures of Returns to Scale 
 
The period 0 best practice technology will exhibit increasing returns to scale if increases 
in the rate of growth of inputs lead to a proportionally greater rate of growth in outputs 
for input-output combinations on the frontier of S0. This concept can be illustrated in the 
case of one output and one input by using Figure 3. All of the Malmquist input indexes in 
the case of one input will be equal to x1/x0. For our measure of output growth, we cannot 
use the observed output growth ratio y1/y0 because the points (x0,y0) and (x1,y1) are not 
on the frontier of S0. However, the points (x0,y0*) and (x1,y1**) are on the frontier of S0 
and it can be seen that our desired measure of period 0 efficient output growth (which 
corresponds to the input growth rate of x1/x0) is y1**/ y0*. Thus in the case of one output 
and one input, our Laspeyres type measure of returns to scale, ρL, is defined to be 
[y1**/y0*]/[x1/x0]. Note that y1** is y1 divided by the output distance δ1** ≡ d0(y1,x1) so that 
(y1**/δ1**,x1) is on the frontier of S0. Note also that y0* is y0 divided by the output distance 
δ0* ≡ d0(y0,x0) so that (y0*/δ0*,x0) is also on the frontier of S0. We will use these output 
distance functions to project the observed output vectors y0 and y1 onto the frontier of the 
period 0 best practice technology in the general case of many outputs and many inputs. 
Thus assume S0 satisfies P1 and P5-P7, y0 > 0M, y1 > 0M, x0 >> 0N and x1 >> 0N. Define 
the projections of y0 and y1 onto the efficient period 0 best practice frontier S0, y0* and 
y1**, as follows: 
 
(42) y0* ≡ y0/d0(y0,x0) ; y1** ≡ y1/d0(y1,x1). 
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Our Laspeyres type measure of returns to scale, ρL, is defined to be the Laspeyres type 
Malmquist output index, qL(y0*,y1**), defined by (24) above, divided by the Laspeyres 
type Malmquist input index, QL(x0,x1), defined by (6) above:15

 
 

(43) ρL ≡ [d0(y1**,x0)/d0(y0*,x0)]/[D0(y0,x1)/D0(y0,x0)] 
            = [d0(y0,x0)/d0(y1,x1)][d0(y1,x0)/d0(y0,x0)]/[D0(y0,x1)/D0(y0,x0)] 
                                                        using (42) and the linear homogeneity of d0(y,x0) in y 
            = [d0(y0,x0)/d0(y1,x1)]ΠL(x0,x1,y0,y1)    
 
where ΠL(x0,x1,y0,y1) is the Bjurek-Laspeyres productivity index between production 
units 0 and 1 defined by (29) above.  
 
Naturally, there is a companion Paasche type measure of returns to scale that is 
determined by the period 1 best practice technology set S1. This companion concept can 
again be illustrated in the case of one output and one input by using Figure 3. Again, all 
of the Malmquist input indexes in the case of one input will be equal to x1/x0. For our 
measure of output growth on the frontier of the set S1, we cannot use the observed output 
growth ratio y1/y0 because the points (x0,y0) and (x1,y1) are not on the frontier of S1. 
However, the points (x0,y0**) and (x1,y1*) are on the frontier of S1 and it can be seen that 
our desired measure of period 1 efficient output growth (which corresponds to the input 
growth rate of x1/x0) is y1*/ y0**. Thus in the case of one output and one input, our 
Paasche type measure of returns to scale, ρP, is defined to be [y1*/y0**]/[x1/x0]. Note that 
y1* is y1 divided by the output distance δ1* ≡ d1(y1,x1) so that (y1*/δ1*,x1) is on the frontier 
of S1. Note also that y0** is y0 divided by the output distance δ0** ≡ d1(y0,x0) so that 
(y0**/δ0**,x0) is also on the frontier of S1. We will use these output distance functions to 
project the observed output vectors y0 and y1 onto the frontier of the period 1 best 
practice technology in the general case of many outputs and many inputs. Thus assume S1 
satisfies P1 and P5-P7, y0 > 0M, y1 > 0M, x0 >> 0N and x1 >> 0N. Define the projections of 
y0 and y1 onto the efficient period 1 best practice frontier S1, y0** and y1*, as follows: 
 
(44) y0** ≡ y0/d1(y0,x0) ; y1* ≡ y1/d1(y1,x1). 
 
Our Paasche type measure of returns to scale, ρP, is defined to be the Paasche type 
Malmquist output index, qP(y0*,y1**), defined by (25) above, divided by the Paasche type 
Malmquist input index, QP(x0,x1), defined by (7) above: 
 
(45) ρP ≡ [d1(y1*,x1)/d0(y0**,x1)]/[D1(y1,x1)/D1(y1,x0)] 
            = [d1(y0,x0)/d1(y1,x1)][d1(y1,x1)/d1(y0,x1)]/[D1(y1,x1)/D1(y1,x0)] 
                                                        using (44) and the linear homogeneity of d1(y,x1) in y 
            = [d1(y0,x0)/d1(y1,x1)]ΠP(x0,x1,y0,y1)    
 

                                                   
15 Let N = 1 and M = 1. Then using the linear homogeneity properties of d0(y,x0) in y and the linear 
homogeneity properties of D0(y0,x) in x, it can be seen from the first equation in (43) that ρL = 
[y1**/y0*]/[x1/x0]; see Figure 3 for the geometric interpretation of this measure of returns to scale. 
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where ΠP(x0,x1,y0,y1) is the Bjurek-Paasche productivity index between production units 
0 and 1 defined by (30) above. 
 
Note that our measures of returns to scale have a “global” nature to them; i.e., they look 
at the average rate of growth of aggregate output between the two production units 
divided by the corresponding rate of growth of aggregate input where the output vectors 
are scaled to be on the efficient frontiers (on the frontier of S0 for the Laspeyres measure 
and on the frontier of S1 for the Paasche measure). These measures of returns to scale are 
different from the local measures of returns to scale introduced by Caves, Christensen 
and Diewert (1982), which relied on differentiability of the production surfaces. In our 
present approach, it is not necessary to make any differentiability assumptions. 
 
If we are in the one input, one output case and the period 0 production possibilities set is 
a closed convex cone, then we have a best practice period 0 production function that is 
linear and hence, it exhibits constant returns to scale. In this case, we would like our 
Laspeyres measure of returns to scale, ρL defined by (43), to equal one. Using the 
definitions of d0 and D0 and the geometry exhibited in Figure 3, it is straightforward to 
verify that ρL equals 1. Similarly, in the one output, one input case with the frontier of the 
period 1 technology equal to a linear production function through the origin, then it is 
straightforward to verify that ρP equals 1.16

 
 

Now consider the case of many outputs and many inputs and suppose that the period 0 
best practice technology S0 is a cone17

 

 (in addition to satisfying the regularity conditions 
P1-P7). It would be ideal if our Laspeyres type measure of returns to scale turned out to 
equal unity in this case but this need not be the case. The problem is that the output and 
input aggregates are formed in a more or less independent manner and mix effects can 
cause the output growth rate to differ from the input growth rate. However, it is possible 
to show that if the observed outputs and inputs of the two production units are 
proportional to each other, then ρL equals 1. Similarly, if S1 is a cone and the output and 
input vectors are proportional, then ρP equals 1. 

Proposition 7: Suppose the period 0 and 1 best practice production possibility sets S0 and 
S1 satisfy the regularity conditions P1-P7 and in addition, S0 and S1 are cones. Let x0 >> 
0N and y0 > 0M. Suppose in addition, that the two production units being compared have 
proportional output and input vectors; i.e., there exist α > 0 and β > 0 such that 
 
(46) x1 = αx0 ; y1 = βy0. 
 
Then the Laspeyres and Paasche type measures of returns to scale defined by (43) and 
(45) are equal to one; i.e., we have ρL = 1 and ρP = 1. 
 
Proof: Using the definition of the output distance function d0(y0,x0), we have the 
existence of a positive δ0 such that 

                                                   
16 Proposition 7 below can be used to formally establish these results for the M = 1 and N = 1 case. 
17 S0 is a cone if and only if (y,x)∈S0 and λ > 0 implies (λy,λx)∈S0.  
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(47) d0(y0,x0) ≡ min δ {δ: (y0/δ,x0)∈S0} = δ0 > 0. 
 
From (47), it can be seen that the largest positive multiple λ of y0, λy0, which is such that 
(λy0,x0)∈S0, is λ = 1/δ0. Similarly, using the definition of the output distance function 
d0(y1,x1), we have the existence of a positive δ1 such that 
 
(48) d0(y1,x1) ≡ min δ {δ: (y1/δ,x1)∈S0} = δ1 > 0. 
 
From (48), it can be seen that the largest positive multiple λ of y1, λy1, which is such that 
(λy1,x1)∈S0, is λ = 1/δ1.  
 
Using the linear homogeneity property of d0(y,x0) in y and assumptions (46), we have 
 
(49) d0(y1,x0)/d0(y0,x0) = d0(βy0,x0)/d0(y0,x0) = β > 0. 
 
Using the linear homogeneity property of D0(y0,x) in x and assumptions (46), we have 
 
(50) D0(y0,x1)/D0(y0,x0) = D0(y0, αx0)/D0(y0,x0) = α > 0. 
          
Using (47)-(50) and definition (43) for ρL, we have: 
 
(51) ρL = [δ0/δ1][β/α]. 
 
Using (48), it can be seen that (y1/δ1,x1)∈S0. Thus using (46), we have (βy0/δ1,αx0)∈S0. 
Since S0 is a cone and α > 0, we must have (βy0/αδ1,x0)∈S0 as well. Thus β/αδ1 is a 
feasible solution for the minimization problem in (47) and so we must have 
 
(52) δ0 ≤ β/αδ1. 
 
Using (47), it can be seen that (y0/δ0,x0)∈S0. Thus using (46), (y1/βδ0,x1/α)∈S0. Since S0 
is a cone and α−1 > 0, we must have (αy1/βδ0,x1)∈S0 as well. Thus α/βδ0 is a feasible 
solution for the minimization problem in (48) and so 
 
(53) δ1 ≤ α/βδ0.   
 
The inequalities (52) and (53) imply that ρL = 1 using (51). The proof that shows that ρP 
equals 1 is similar to the above proof.                                                                         Q.E.D. 
    
What happens to our measures of returns to scale if we compare unit 0 to unit 1 instead of 
comparing unit 1 to unit 0? Denote our original Laspeyres measure of returns to scale ρL 
as ρL(1/0) and our original Paasche measure of returns to scale ρP as ρP(1/0). Now 
reverse the role of time and interchange the data of the two units and interchange the 
reference best practice technology sets S0 and S1. Denote the resulting Laspeyres and 
Paasche type measures of returns to scale by ρL(0/1) and ρP(0/1). It can be shown that 
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these new measures of returns to scale are related to the old measures in the following 
way:18

 
 

(54) ρL(0/1) ≡ [d1(y1,x1)/d1(y0,x0)][d1(y0,x1)/d1(y1,x1)]/[D1(y1,x0)/D1(y1,x1)] = 1/ρP(1/0); 
(55) ρP(0/1) ≡ [d0(y1,x1)/d0(y0,x0)][d0(y0,x0)/d0(y1,x0)]/[D0(y0,x0)/D0(y0,x1)] = 1/ρL(1/0). 
 
Thus when we reverse the basis for comparing the two production units, the new 
Laspeyres type measure of returns to scale is equal to the reciprocal of the old Paasche 
type measure and the new Paasche type measure is equal to the reciprocal of the old 
Laspeyres type measure. The relations (54) and (55) suggest (as usual) that if we want a 
single measure of returns to scale that is a symmetric, homogeneous mean of ρL and ρP 
that is invariant to the way we compare the two production units, then taking the 
geometric mean of ρL and ρP leads to a “best” measure of returns to scale in the present 
context. Thus we define a Fisher type measure of best practice returns to scale ρF as the 
geometric average of ρL and ρP: 
 
(56) ρF ≡ [ρLρP]1/2. 
    
8. The Decomposition of Malmquist Productivity Indexes into Explanatory Factors 
 
In this section, we assume that the best practice production possibilities sets S0 and S1 
satisfy the regularity conditions P1-P7. Our goal is to compare the productivity of two 
production units where the observed input vector for unit t is xt >> 0N and the observed 
output vector for unit t is yt > 0M for t = 0,1. 
 
Recall that the Bjurek-Laspeyres productivity index between units 0 and 1 was 
ΠL(x0,x1,y0,y1) defined by (29) above. Equation (43) in the previous section can be 
manipulated to give us the following exact expression for this productivity index: 
 
(57) ΠL(x0,x1,y0,y1) = [d0(y1,x1)/d0(y0,x0)]ρL  
                                 = [d1(y1,x1)/d0(y0,x0)][d0(y1,x1)/d1(y1,x1)]ρL 
                                 = [ε1/ε0] τP ρL  
 
where the unit t technical efficiency measures εt are defined by (34), the Paasche measure 
of technical progress τP is defined by (38) and the Laspeyres measure of returns to scale 
ρL is defined by (43). Thus we have an exact decomposition of the Bjurek-Laspeyres 
productivity measure between units 0 and 1 into the product of the relative efficiency 
ratio ε1/ε0 times the Paasche measure of technical change between the two best practice 
technologies τP times the Laspeyres measure of returns to scale for the period 0 best 
practice technology ρL.        
 

                                                   
18 For the new measures, use the old definitions but interchange 0 and 1 everywhere in the old definitions. 
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In a similar fashion, recall that the Bjurek-Paasche productivity index between units 0 
and 1 was ΠP(x0,x1,y0,y1) defined by (30) above. Equation (45) in the previous section 
can be manipulated to give us the following exact expression for this productivity index: 
 
(58) ΠP(x0,x1,y0,y1) = [d1(y1,x1)/d1(y0,x0)]ρP  
                                 = [d1(y1,x1)/d0(y0,x0)][d0(y0,x0)/d1(y0,x0)]ρP 
                                 = [ε1/ε0] τL ρP  
   
where the unit t technical efficiency measures εt are defined by (34), the Laspeyres 
measure of technical progress τL is defined by (37) and the Paasche measure of returns to 
scale ρP is defined by (45). Thus we have an exact decomposition of the Bjurek-Paasche 
productivity measure between units 0 and 1 into the product of the relative efficiency 
ratio ε1/ε0 times the Laspeyres measure of technical change between the two best practice 
technologies τL times the Paasche measure of returns to scale for the period 1 best 
practice technology ρP.19

 
        

Recall that Bjurek’s recommended productivity index, ΠB(x0,x1,y0,y1) defined by (31), 
was the geometric mean of the above two productivity indexes. Using (57) and (58), we 
have the following exact decomposition of the Bjurek productivity index:    
 
(59) ΠB(x0,x1,y0,y1) ≡ [ΠL(x0,x1,y0,y1)ΠP(x0,x1,y0,y1)]1/2 
                                 = [ε1/ε0] τF ρF 
 
where τF is the geometric mean of  τL and τP and ρF is the geometric mean of ρL and ρP. 
The exact productivity decomposition given by (59) is our preferred decomposition of the 
Bjurek-Malmquist productivity index into explanatory factors.   
   

                                                   
19 Of course, a knowledge of the best practice technology sets S0 and S1 is required in order to be able to 
implement the decompositions (57) and (58). 



 26 

 
Appendix: Regularity Conditions on the Reference Technology and Properties of 
Distance Functions 
 
Recall definitions (1) and (2) in the main text which defined the input and output distance 
functions, Dt(y,x) and dt(y,x), which corresponded to the reference technology set St. In 
this Appendix, we will place restrictions on the sets St which are sufficient to ensure that 
the maximum in definition (1) and the minimum in definition (2) exist and are finite, 
provided that the output vector y is nonnegative and nonzero and the input vectors x is 
strictly positive.20

 
 

In order to simplify the notation, we will drop the superscript t in what follows. We 
assume that the production possibilities set S is given and for y > 0M and x >> 0N, the 
input distance function D and the output distance function d are defined as follows: 
 
(A1) D(y,x) ≡ max δ>0 {δ: (y,x/δ)∈S}. 
(A2) d(y,x) ≡ min δ>0 {δ: (y/δ,x)∈S}. 
 
Consider the following four properties for S: 
 
P1. S is a nonempty closed subset of the nonnegative orthant in Euclidean M+N 
dimensional space. 
 
P2. For every y ≥ 0M, there exists an x ≥ 0N such that (y,x)∈S. 
 
The interpretation of P2 is that every finite output vector y is producible by a finite input 
vector x. 
 
P3. (y,x0)∈S, x1 ≥ x0 implies (y,x1)∈S. 
 
Thus if S satisfies P3, then there is free disposability of inputs. 
 
P4. y > 0M implies that (y,0N)∉S. 
 
The interpretation of P4 is that zero amounts of all inputs cannot produce a positive 
output; i.e., there is no free lunch in production. 
 
Diewert and Fox (2010) showed that if y > 0M and x >> 0N and S satisfies Properties P1-
P4, then the input distance function D(y,x) is well defined as the maximum in (A1) with 
D(y,x) > 0. 
 

                                                   
20 Our regularity conditions are a weakening of the ones used by Diewert and Fox (2010), which in turn are 
a variant of the conditions used by Färe and Primont (1995). For discussions on regularity conditions, see 
Balk (1998) (2003), Coelli, Rao and Battese (1997), Färe and Lovell (1978) and Färe, Grosskopf and 
Lovell (1985). 
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In order to show that the output distance function d(y,x) defined by (A2) is well defined 
as a positive minimum, we will require an additional three properties for S: 
 
P5. x ≥ 0N, (y,x)∈S implies 0M ≤ y ≤ b(x)1M where 1M is a vector of ones of dimension M 
and b(x) ≥ 0 is a finite nonnegative bound. 
 
The interpretation of P5 is: bounded inputs imply bounded outputs. 
 
P6. x >> 0N implies that there exists y >> 0M such that (y,x)∈S. 
 
Thus the technology is such that every strictly positive input vector can produce a strictly 
positive vector of outputs.  
  
P7. (y1,x)∈S, 0M ≤ y0 ≤ y1 implies (y0,x)∈S. 
 
Thus if the input vector x can produce the output vector y1 and y0 is equal to or less than 
y1, then x can also produce the smaller vector of outputs, y0 (free disposability of outputs).  
 
Diewert and Fox (2010) showed that if y >> 0M and x >> 0N and S satisfies properties P1 
and P5-P7, then the output distance function d(y,x) is well defined as the minimum in 
(A2) with d(y,x) > 0.21

 
 

Note that the above results did not require any convexity assumptions on the technology 
set S. 
 
Since the two distance functions are the basic building blocks for the Malmquist input 
and output indexes, it is useful to develop their mathematical properties. Variants of the 
following Propositions are well known in the literature but our regularity conditions are a 
bit weaker than the conditions used by others. [Kevin: could you check this assertion?] 
 
Proposition 8: Suppose the production possibilities set S satisfies Properties P1-P4 listed 
above. Suppose the reference output vector y satisfies y > 0M and define the positive 
orthant in N dimensional Euclidean space by ΩN ≡ {x : x >> 0N}. Then the input distance 
function D(y,x) defined by (A1) above is (i) well defined and positive, (ii) nondecreasing, 
(iii) positively linearly homogeneous, (iv) increasing if all inputs increase and (v) 
continuous in x over ΩN. 
 
Proof of (i): Follows from Proposition 2 in Diewert and Fox (2010). 
 
Proof of (ii): Let y > 0M and 0N << x0 < x1. Using definition (A1) and property (i), we 
have the existence of a positive scalar δ0 such that: 
 
(A3) D(y,x0) ≡ max δ>0 {δ: (y,x0/δ)∈S} = δ0 > 0 

                                                   
21 However, their result can be strengthened: their assumption that y >> 0M can be relaxed to y > 0M as will 
be shown below. 
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where (y,x0/δ0)∈S. Since x1 > x0 and δ0 > 0,  
 
(A4) x1/δ0 > x0/δ0. 
 
Since (y,x0/δ0)∈S and (A4) holds, Property P3 implies that 
  
(A5) (y,x1/δ0)∈S. 
 
Thus 
 
(A6) D(y,x1) ≡ max δ>0 {δ: (y,x1/δ)∈S} 
                      ≥ δ0                       since by (A5) δ0 is feasible for the maximization problem 
                      = D(y,x0)              using (A3).  
 
Proof of (iii): Let y > 0M, x >> 0N and λ > 0. Then using property (i) and definition (A1), 
we have the existence of a positive scalar δ* such that 
 
(A7) D(y,x) ≡ max δ>0 {δ: (y,x/δ)∈S} = δ* > 0.  
 
Thus (y,x/δ*)∈S and since λ > 0, we also have 
 
(A8) (y,λx/λδ*)∈S. 
 
Now calculate the value of the input distance function D(y,λx): 
 
(A9) D(y,λx) ≡ max ε>0 {ε: (y,λx/ε)∈S}= ε* ≡ λδ**  ≥ λδ* = λD(y,x) 
 
where the inequality follows from the feasibility of λδ* for the maximization problem in 
(A9); see (A8). Note that we have defined δ** ≡ ε*/λ. 
 
Suppose the strict inequality in (A9) holds. Then δ** is such that 
 
(A10) D(y,λx) = λδ** > λδ*. 
 
The equality in (A10) implies that (y,λx/λδ**)∈S. But then we also have 
 
(A11) (y,x/δ**)∈S. 
 
 From (A7), we have 
 
(A12) δ* = max δ>0 {δ : (y,x/δ)∈S} 
               ≥ δ**                       since by (A11), δ** is feasible for the maximization problem 
               > δ*                        using λ > 0 and (A10). 
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But (A12) is a contradiction and thus our supposition is false and property (iii) follows. 
 
Proof of (iv): Let 0N << x0 << x1. Then there exists a scalar λ > 1 such that  
 
(A13) λx0 ≤ x1. 
 
Since λ > 1, we have: 
 
(A14) D(y,x0) < λD(y,x0)                                             since D(y,x0) > 0 and λ > 1 
                        = D(y,λx0)                                            using the linear homogeneity of D 
                        ≤ D(y,x1)                                              using (A13) and weak monotonicity. 
 
Proof of (v):  Let x0 >> 0N and choose α > 0 small enough so that x0 − αx0 = (1 − α)x0 >> 
0N. Define the hyperblock in N dimensional space of size α that is centered around x0 as 
follows: 
 
(A15) H(x0,α) ≡ {x: (1 − α)x0 ≤ x ≤ (1 + α)x0}. 
 
Note that H(x0,α) is a subset of the positive orthant and x0 is in the interior of H(x0,α). 
Using the definition of D(y,x0), there exists a δ0 > 0 such that D(y,x0) = δ0 and (y,x0/δ0). 
Using the linear homogeneity property of D(y,x) in x, we have: 
 
(A16) D(y,(1 − α)x0) = (1 − α)D(y,x0) = (1 − α)δ0 ; 
(A17) D(y,(1 + α)x0) = (1 + α)D(y,x0) = (1 + α)δ0 . 
 
Using the weak monotonicity property of D(y,x) in x and (A16) and (A17), it can be seen 
that for all x∈H(x0,α), we have: 
 
(A18) (1 − α)δ0 = D(y,(1 − α)x0) ≤ D(y,x) ≤ D(y,(1 + α)x0) = (1 + α)δ0. 
 
The inequalities in (A18) are sufficient to imply the continuity of D(y,x) at the point x0. 
Q.E.D. 
 
We turn to the analysis of the properties of the output distance function, d(y,x), in y for 
fixed x >> 0N. 
  
Proposition 9: Suppose the production possibilities set S satisfies Properties P1 and P5-
P7 listed above. Suppose the reference input vector x satisfies x >> 0N and define the 
nonnegative orthant in M dimensional Euclidean space, excluding the origin, by ΩM

* ≡ 
{y : y > 0M}. Then the output distance function d(y,x) defined by (A2) above is (i) well 
defined and positive for y∈ΩM

*, (ii) nondecreasing, (iii) positively linearly homogeneous, 
(iv) increasing if all outputs increase and (v) continuous in y over the interior of ΩM

*; i.e., 
D(y,x) is continuous in y over the set of strictly positive y. 
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Proof of (i): Let y > 0M and x >> 0N. Since x >> 0N, by P6, there exists a y* >> 0M such 
that (y*,x)∈S. Since y* is strictly positive and y is nonnegative but nonzero, there exists 
δ* > 0 large enough so that y/δ* ≤ y*. Using P7, we see that (y/δ*,x)∈S and thus we have a 
feasible solution for the minimization problem in (A2). From definition (A2), we want to 
make δ ≥ 0 as small as possible such that (y/δ,x)∈S. However, we cannot make δ > 0 but 
arbitrarily close to 0 and have (y/δ,x) belong to S because this would contradict property 
P5. Using property P1, we see that a finite positive minimum for the minimization 
problem in (A2) exists. 
    
Proof of (ii): Let x >> 0N and 0M < y0 ≤ y1. Using definition (A2) and property (i), we 
have the existence of a positive scalar δ1 such that: 
 
(A13) d(y1,x) ≡ min δ>0 {δ: (y1/δ,x)∈S} = δ1 > 0 
 
where (y1/δ1,x)∈S. Since  y0 ≤ y1 and δ1 > 0,  
 
(A14) y0/δ1 ≤ y1/δ1. 
 
Since (y1/δ1,x)∈S and (A14) holds, Property P7 implies that 
  
(A15) (y0/δ1,x)∈S. 
 
Thus 
 
(A16) D(y0,x) ≡ min δ>0 {δ: (y0/δ,x)∈S} 
                      ≤ δ1                      since by (A15) δ1 is feasible for the minimization problem 
                      = D(y1,x)             using (A13).  
 
Proofs of (iii), (iv) and (v): Analogous to the proofs of (iii), (iv) and (v) in the previous 
Proposition.                                                                                                                  Q.E.D.  
 
Note that we can only establish the continuity of d(y,x) in y over the positive orthant in 
M space; our regularity conditions are not strong enough to rule out discontinuities at the 
boundary of the positive orthant.                                                                                 Q.E.D. 
 
The regularity conditions on S listed above do not include any convexity assumptions. If 
we are willing to make some convexity assumptions on the reference technology, then we 
can deduce some additional properties for the output and input distance functions. Thus 
we consider the following two additional regularity conditions on S:22

 
 

P8: For each y > 0M, the input possibilities set S(y) ≡ {x: (y,x)∈S} is a convex set. 
P9: For each x >> 0N, the output possibilities set S*(x) ≡ (y: (y,x)∈S) is a convex set. 

                                                   
22 Note that the convexity assumptions P8 and P9 do not rule out increasing returns to scale for the 
reference technology S. These types of convexity assumptions are relevant if the reference technology S is 
generated by a DEA exercise. 
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Proposition 10: Suppose the technology set S satisfies properties P1-P4 and P8. Then for 
each y > 0M, the input distance function D(y,x) is a concave function of x over the 
positive orthant ΩN. 
 
Proof: Let y > 0M. x1 >> 0N. x2 >> 0N and 0 < λ < 1. From Proposition 8, D(y,x) is 
positive, monotonic and linearly homogeneous in x for x∈ΩN. We first show that D(y,x) 
is a quasiconcave function of x over ΩN. Let D(y,x1) = δ1 > 0, D(y,x2) = δ2 > 0 and 
without loss of generality, assume: 
 
(A17)  0 < D(y,x1) = δ1 ≤ δ2 = D(y,x2). 
 
Using (A17) and the linear homogeneity property of D(y,x) in x, we have: 
 
(A18) D(y,x1/δ1) = 1; D(y,x2/δ2) = 1 
 
and hence (y,x1/δ1)∈S and (y,x2/δ2)∈S. Hence using property P8, we have 
 
(A19) (y,λ[x1/δ1] + (1−λ)[x2/δ2])∈S.    
 
Thus using definition (A1): 
 
(A20) D(y,λ[x1/δ1] + (1−λ)[x2/δ2]) ≡ max δ>0 {δ: (y,(λ[x1/δ1] + (1−λ)[x2/δ2])/δ)∈S} ≥ 1 
 
since by (A19), δ = 1 is feasible for the maximization problem in (A20). Thus we have 
 
(A21) 1 ≤ D(y,λ[x1/δ1] + (1−λ)[x2/δ2])  
              ≤ D(y,λ[x1/δ1] + (1−λ)[x2/δ1])       using (A17) and property (ii) in Proposition 8 
              =  [δ1]−1D(y,λx1 + (1−λ)x2)            using property (iii) in Proposition 8. 
 
But (A21) and (A17) shows that 
 
(A22) D(y,λx1 + (1−λ)x2) ≥ min {D(y,x1), D(y,x2)} 
 
which establishes the quasiconcavity of D(y,x) in x over ΩN. We now establish the 
concavity of D(y,x) with respect to x over ΩN. Recall the definitions and inequalities in 
(A17). Define α as follows: 
 
(A23) α ≡ D(y,x1)/D(y,x2) = δ1/δ2 ≤ 1. 
 
Therefore D(y,x1) = αD(y,x2) = D(y,αx2) using the linear homogeneity of D(y,x) in x. 
Thus for all µ such that 0 ≤ µ ≤ 1, we have 
 
(A24) min{D(y,x1), D(y,αx2)} = D(y,x1) ≤ D(y,µx1 + (1−µ)αx2) 
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where the inequality follows using the quasiconcavity of D(y,x) in x. Now look for a β > 
0 and a µ between 0 and 1 such that 
 
(A25) µx1 + (1−µ)αx2 = β[λx1 + (1−λ)x2]. 
 
The β and µ solution to (A25) is 
 
(A26) β = α/[1 − λ + λα] > 0 and µ = αλ/[1 − λ + αλ] 
 
where µ lies between 0 and 1. Using (A24), we have 
 
(A27) D(y,x1) ≤ D(y,µx1 + (1−µ)αx2) 
                        = D(y, β[λx1 + (1−λ)x2])          using (A25) 
                        = βD(y, λx1 + (1−λ)x2)             using the linear homogeneity of D(y,x) in x. 
 
(A27) can be rewritten as 
 
(A28) D(y, λx1 + (1−λ)x2) ≥ β−1 D(y,x1) 
                                           = [1 − λ + λα]α−1 D(y,x1)                                  using (A26) 
                                           = λD(y,x1) + [1 − λ]α−1 D(y,x1) 
                                           = λD(y,x1) + [1 − λ]D(y,x2)                               using (A23) 
 
which establishes the concavity of D(y,x) over ΩN.                                             Q.E.D. 
 
The fact that a positive, quasiconcave and linearly homogeneous function is also concave 
was first established by Berge (1963). The above method of proof for this result was used 
by Diewert (1993c; 141).   
   
Proposition 11: Suppose the technology set S satisfies properties P1,P5-P7 and P9. Then 
for each x >> 0N, the output distance function d(y,x) is a convex function of y over the 
nonnegative orthant less the origin ΩM

*. 
 
Proof: The proof is a straightforward modification of the proof of Proposition 10.   Q.E.D. 
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