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Abstract

Economists regularly regress educational achievement scores on

covariates, for example to evaluate educational policy. I discuss

the measurement and interpretation of achievement scores, and

argue that, as the scores are typically measured on an ordinal scale,

the use of mean-based methods such as OLS is inappropriate, and

that we should use quantile-based analysis instead. Results based

on regression are not robust to changes in test score estimation

assumptions and methods. I investigate how large possible bias from

mean-based methods is by comparing results using normal test score

distributions to the lognormal wage distribution conditional on the

same scores. In most cases, the bias will be quantitatively small, and

conclusions qualitatively robust.
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1 Introduction

It is common for economists to regress educational achievement scores on

a wide range of covariates, much in the same way as we regress wages and

employment. Common types of regression analysis, such as OLS, are effec-

tively comparing means between distributions. Taking means of achievement

scores poses two methodological problems.

First of all, we must believe that means of achievement scores are informative

of the empirical world. This is not necessarily the case. Consider the following

two statements.

(1) The mean religion in France is 2.34.

(2) The mean salary in France is C25000.

If we use the values 1 for “Protestant”, 2 for “Catholic” and 3 for “other”, we

we can certainly compute the mean of these numbers. It is however clear that

the first statement bears little relationship to the empirical world, while the

second one does. What is not clear is in which category achievement should

fall.

Whether one thinks that there exists such a thing as mean achievement or

not, we are still left with a problem of robustness. We cannot measure

achievement at a higher level than the ordinal. The mapping of ranks to

point scores involves implicit or explicit assumptions on the true distribu-

tional form of educational achievement. If we change those assumptions, the

distributional form changes, and with it possibly our qualitative statements.

If we compare mean test scores of two groups, the group that has the higher

mean test score may have the lower mean under different assumptions.

While true achievement could have any distributional shape in theory, some

shapes are perhaps more reasonable than others. Often, the underlying dis-

tribution of achievement is assumed to be normal, perhaps because many

physical and biological phenomena follow a normal distribution. Normal
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distributions are usually the result of an additive process, in which each ob-

served value in the distribution is the result of a repeated addition of small,

independent random draws.

There are however other kinds of ‘naturally’ occurring distributions. If we

believe achievement to be the result of a multiplicative process in which indi-

viduals learn at a randomly drawn rate every day, the resulting distribution

will be lognormal. A multiplicative process implies that the amount of new

learning is correlated with the amount previously learned: the children who

have managed to achieve the most up until today, should be expected to learn

the most tomorrow in absolute terms. If the process is additive, previous and

future learning is uncorrelated.

We do not necessarily have to derive the true shape from theory. Instead,

we can link achievement to another, known distribution. Seen from a human

capital perspective, educational achievement is a production input, and has a

market value which can be estimated empirically. When we look at the shape

of the wage distribution conditional on test scores, we find that it takes a

lognormal shape.

As a kind of robustness check, we can compare regression results under the

assumptions that achievement is either normal or follows the lognormal condi-

tional wage distribution. I derive an expression for the difference in estimated

treatment effect under the two conditions, and calibrate it with an estimate

of the conditional wage distribution. Even if quantile-based methods are

a more elegant way to handle educational achievement scores, mean-based

methods turn out to be relatively robust in most cases.

2 Admissible statistics and meaningfulness

Psychometricians have a long tradition of linking appropriate statistical meth-

ods to different kinds of data. A key insight is that all data are in essence

mappings of empirical phenomena onto some scale or another, and that the

choice of scale is to a certain degree arbitrary.
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We calculate statistics from our data in order to learn something about the

real, empirical world. Statements on the data which bear no relationship

to the empirical world, are therefore not meaningful (cf. Hand 2004, section

2.4.1). Statement (1) above does not have empirical meaning because there is

no empirical counterpart to mean religion. While we can technically calculate

the mean of an appropriately coded variable religion, doing so seems futile.

Apart from being meaningful, we e also want our statements to be robust to

changes in the mapping from the empirical world onto the data scale. For

example, we do not want our qualitative conclusions to change when we map

height into meters instead of feet. A comparison of mean heights of adult

men in England and France should yield the same qualitative result in either

case. Comparing mean height is indeed robust as the empirically taller nation

will always have the larger mean height. By contrast, conclusions based on

the mean of a nominal (or ‘categorical’) variable are not robust to the choice

of scale. Consider ‘religion’. Using 1 for “Protestant”, 2 for “Catholic” and

3 for “other” may or may not give a different ordering of the English and

French means compared to using 9 for “other” instead of 3.

Stevens (1946) suggests a relatively easy way to determine when we will run

into robustness problems of the above kind. We group scales into four levels:

nominal, ordinal, interval and ratio, as can be seen from Table 1. We call

a certain statistic admissible for a level of scale when empirical conclusions

derived from it are robust to the use different scales within the level. Statistics

are always admissible on higher level scales than their own, and inadmissible

on lower levels.

Meaningfulness and admissibility usually coincide, but there may be situ-

ations in which they do not (cf. Lord 1953, Zand Scholten and Borsboom

2009). We could for example compare mean religion in England and France,

and conclude that they are significantly different: that the English and French

samples are likely not to have been drawn from the same population. The

existence of a difference of the calculated means is dependent on the coding

of the variable, and thus not robust, nor is the mean the best way to quantify
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Scale Mapping Examples of variables Examples of admissible
statistics

Ratio x′ = ax income, coefficient of variation
(highest) age

Interval x′ = ax+ b school grade (i.e. year), mean,
calendar date variance

Ordinal x′ = f(x), level of education, median,
f() monotonically socioeconomic background other quantiles
increasing

Nominal x′ = f(x), gender, mode
(lowest) f() gives a one-to-one race,

relationship religion

Table 1: Admissible statistics for four different measurement levels, adapted
from Stevens (1946). Each measurement level inherits the admissible statis-
tics from the levels below.

this difference, but the conclusion that the religious composition of the two

countries differ is meaningful nevertheless.

3 Dealing with achievement scores

Economists usually seem to assume that achievement can be measured di-

rectly, like physical measures of height or weight. Achievement must however

be estimated, usually from the results of an achievement test. There are two

methods of estimating achievement, but we cannot measure achievement at

a higher level than the ordinal with either.

In Classical test theory or CTT, the score is based on the proportion of items

answered correctly. This is the kind of scoring we perhaps remember from

our own youth.

CTT is based on a true score model

x = t+ ε

where t is the true, underlying achievement of the student and x is the ob-

served proportion of questions answered correctly. The error ε arises because
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the test procedure is noisy. Since we cannot ask the student infinitely many

questions to find the true t, we use x as its estimate.

Test scores calculated using CTT are straightforward to interpret. The scores

are estimates of the proportion of questions a student would be expected to

answer correctly when given a similar test. Group averages of CTT scores

also have a clear interpretation: the average score gives the proportion of

questions the group as a whole would be expected to answer correctly. We

could thus conclude that CTT scores are of ratio level, and we would be right

to do so, if there were just one possible relevant test.

The advantage of CTT is however at the same time its disadvantage. CTT

provides a score given a particular level of questions. The score distance

between two students is determined by the level of questions considered. If

the questions are very hard, almost no question will be answered correctly,

student scores will be massed against the lower 0% bound, and consequently,

the score distribution will have right skew (see Figure 1). Similarly, the score

distribution will have left skew when the questions are very easy. In the first

case, the score distances between low-scoring students become small, and

between high-scoring students they become large. The opposite happens in

the second case. (cf. Lord 1980, p. 50)

While we can interpret CTT scores on a ratio level when speaking about a

specific test, doing so precludes us from generalizing the result to the scores

obtained by a different test. If we want to make statements about generalized,

underlying achievement as opposed to the ability to do a specific test, we must

thus treat CTT scores on the ordinal level.

An alternative to CTT is Item response theory, or IRT. IRT simultaneously

estimates student and question properties by fitting a logistic item response

function. For dichotomous questions (which are either answered correctly or

not), the item response function is given by

P(yij = 1) = cj +
1− cj

1 + e−aj(θi−bj)
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hard test
0 1 2 3 4 5 6 7 8 9 10

easy test
0 1 2 3 4 5 6 7 8 9 10

Figure 1: Hard CTT tests produce a score distribution with right skew while
easy tests produce left skew.

This function is illustrated in Figure 2. P(yij = 1) gives the probability of

student i answering question j correctly (polytomous models are possible as

well), θi is student achievement, bj question difficulty, aj question discrimina-

tion, and cj is the limiting probability of answering the question correctly for

extremely low levels of achievement. The upper probability limit is assumed

to be one.

The inflexion point of the logistic curve lies at bj = θi, and we say that

student achievement and question difficulty are equal at this point. The

parameter aj can be interpreted as the degree to which answering correctly

on the question is related to the achievement dimension of the test, and cj

as the probability of guessing the correct answer.

There are model variations where one or more item parameters are fixed or

otherwise restricted. When c is set to zero, and a to one, we obtain the

common Rasch model. As is generally the case when c = 0, the inflexion

point bj = θi then lies at the level where the student is expected to answer

the question correctly with probability 0.5.

Unlike CTT-scores, IRT student scores are not anchored to some absolute

measure. We can for example add a constant to the vectors θ and b and

arrive at the same model fit. In the same way, we could multiply θ and b
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Figure 2: An item response function gives the probability of a student answer-
ing a certain question correctly as a function of his achievement. Question
parameters a (discrimination), b (difficulty) and c (guessing) are illustrated
in the figure.

with a constant and divide a by it. The model is therefore unidentified if we

do not impose additional restrictions on the scores, for example by specifying

that the sample mean score equals zero, and its standard deviation one.

In the IRT model, score distances arise from the difficulty with which students

answer questions above and below their own level. If a student is answering

questions above his own level of achievement with relative ease, θi − bj must

be relatively close to zero, just as when he does not do unusually well on

questions below his level.

While IRT-estimated achievement distances are robust to the choice of ques-

tions given to a particular student – the same estimated achievement should

arise from easy as from hard questions – they are not robust to the way

in which we estimate the model. We specifically estimate a logistic item

response function function, and the model fits item parameters and achieve-

ment to match this functional form. We could however just as well estimate

a different item response function, and end op with another distributional

form of achievement. The horizontal achievement and difficulty axis can for

example be transformed by θ∗ = k1e
k2θ, where k1 and k2 are constants, so
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that both the item response functions and the achievement distribution are

stretched out in one tail and compressed in the other (Lord 1980, p. 85).

Where CCT distances are a product of the particular test taken, IRT dis-

tances depend on the estimation assumptions given raw test scores. In both

cases, we can reasonably change our methods, and obtain a different test

score distribution. In both cases, it is imprudent to interpret the scores on a

higher level than the ordinal.

Given what we know about admissible statistics, meaningfulness, and the

process by which test scores are estimated, how should we deal with edu-

cational achievement scores? Regression analysis is the comparison of means

conditional on the relevant treatment status, and on other variables. The

meaningfulness of regression is thus equal to the meaningfulness of a com-

parison of means.

The question of meaningfulness boils down to whether we believe that there

exists an empirical phenomenon of underlying interval level achievement. If

there exists such a thing, score distances must be comparable across the

distribution. We must for example accept statements like

When it comes to math, Adam is as much better than Bert as

Charlie is better than Dave.

Suppose that Adam can solve questions involving logarithms, Bert square

roots, Charlie multiplication, and Dave addition. Is it meaningful to say

that the difference between logarithms and square roots is just as large as

the difference between multiplication and addition?

I will leave it to the individual empiricist to decide on the meaningfulness of

a comparison of test score means. We should however be aware that com-

paring means and running regressions implies that we think that the above

statement makes sense – that score distances are comparable throughout the

distribution.

Even if we accept the meaningfulness of mean achievement, we are still left

with the problem of measurement. As we have seen, estimated score distances
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are to a certain degree arbitrary. A comparison of means will have robustness

problems in line with the theory of admissible statistics.

Both the problem of meaningfulness and the problem of admissibility can be

solved by using statistics of the correct level. Instead of comparing means, we

can compare medians, and instead of ordinary regression we can use median

regression or the more general quantile regression. Doing so is robust as well

as elegant in the sense that it fits to the level of information we can observe

empirically.

4 The real achievement distribution

While I advocate the use of quantile-based methods, at the very least as

a robustness check, it seems useful to to get some grips on just how large

robustness problems are when using mean-based methods. Even if we cannot

measure the distributional shape of educational achievement, we can try to

make multiple reasonable assumptions on that shape, and look at how much

results vary between them.

Two distributions stand out as natural candidates for educational achieve-

ment, the normal distribution and the lognormal. The normal is a common

test score distribution, and test makers sometimes actively tweak tests to

yield a normal distribution. It has theoretical appeal, as it emerges naturally

from an addition of many independent draws from an arbitrary, finite dis-

tribution per the central limit theorem. The lognormal distribution however

also has a relationship to the central limit theorem. If we multiply rather

than add the (positive) draws, we will end up with a lognormal distribution.

If we want to justify the use of normal or lognormal distributions for educatio-

nal achievement distributions through the central limit theorem, we must

think of learning as a process in which students start from the same baseline,

and learn small, random amounts each day, finally arriving at their test-day

achievement level. A normal distribution implies that we think of learning

as an additive process, where each new addition of knowledge is independent
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of previous draws. A lognormal distribution implies a multiplicative process,

with independent draws of learning rates, but correlated learning amounts,

such that higher achieving students are expected to acquire additional knowl-

edge in the future than their peers.

There are other reasons which make the lognormal distribution appealing.

Even if learning would be additive in principle, and innate ability would be

normally distributed, the achievement distribution will have right skew if

high ability individuals put more effort, time or other resources into learning

(cf. Becker 1964, 1993, p. 100). In this light, if the eventual achievement

distribution is to be normal, the distribution of innate ability must have left

skew.

There is a third argument for a lognormal distribution of achievement. We

can interpret educational achievement at its monetary value on the labor mar-

ket. The link between education and wages is of course not new. Economists

regularly associate educational achievement with human capital (e.g. Becker

1964, 1993). Human capital is thought to improve the individual’s productiv-

ity, akin to physical capital like tools and machines. In this view, education

is simply an institutionalized way to create human capital, and we can use

the monetary value of education as a measure of its output.

What does the relationship between normally distributed test scores and

wages look like? I take data from the longitudinal UK National Child Devel-

opment Study (NCDS 2010) and regress age 48 wages for full-time employed

males on the first principal component of their normalized age 11 and 16

achievement scores. Figure 3 shows average logged gross wages for differ-

ent achievement intervals at age 11 and 16 (circles), and the regression line

through the unaveraged data. There seems to be a linear relationship between

test scores and the log of wages, which implies an exponential relationship

between scores and wages. If we therefore map a normal score distribution

into a conditional wage distribution, the latter should be lognormal.
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Figure 3: Average logged gross wages of 48-year old full-time employed males
for different achievement levels (circles, circle area and color is proportionate
to the number of observations) and the regression line through the unaveraged
data. Data: NCDS 2010.

Adding controls for socioeconomic background, I arrive at a conditional log-

normal wage distribution with a logsd∗ equal to 0.39 for the age 11 achieve-

ment distribution and 0.41 for the age 16 distribution. The estimated condi-

tional wage distribution for age 16 scores can be seen from Figure 4.

We can try to control for the most important omitted variable, ability, by

including the first principal component of age 7 achievement. The estimates

are then reduced to 0.32 and 0.33 respectively. It is not entirely clear whether

we should want to do that as we remove any effect of education before age 7

by including scores at that age. Also, we can keep in mind that by leaving out

controls positively related to both achievement and wages, we will arrive at

an overestimate of the causal effect of achievement scores on wages, meaning

that the robustness check will be more conservative than it would otherwise

be.

Having selected the default normal distribution and a fitted lognormal dis-

tribution as reasonable candidates for the true distribution of educational

∗The logsd is the standard deviation of the logged values of the lognormal distribution.
A lognormal distribution can be fully described by its logmean: the location parameter,
and its logsd: its shape parameter.
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normalized achievement distribution, age 16
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conditional wage distribution age 48
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Figure 4: The estimated wage distribution conditional on differences in
achievement levels, controlling for parental background. An one percentile
in the achievement distribution (left) is associated with an one percentile
increase in the wage distribution (right). Data: NCDS 2010.

achievement, how much will regression results vary between frameworks where

we assume either distribution?

To keep things simple, let us compare means between a treatment (subscript

t) and a control group (subscript 0). I will call the difference between the two

the treatment effect on the mean, or βµ. Suppose that the true distribution

is lognormal, and given by

y ∼ LN(µ, σ2),

but that we measure normal data given by

y′ = ln(y) ∼ N(µ, σ2).

In order to catch only the effect of a change in the shape of the distribution,

and not the effect of a change in the scale, I will compare the difference of

means in the normal distribution with the difference of logged means in the

lognormal distribution. This implies that the difference will be expressed in

terms of the normalized test scores.
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The estimate of the difference between the means βµ is biased by:

bias = (E[y′t]− E[y′0])− (ln(E[yt])− ln(E[y0])) .

In terms of the moments of the treatment and control distributions, this

equals

bias = (µt − µ0)−
(
µt +

1

2
σ2
t − µ0 −

1

2
σ2

0

)
=

1

2

(
σ2

0 − σ2
t

)
.

In other words, the amount of bias generated by assuming a normal distribu-

tion where the lognormal distribution is appropriate depends on the difference

in variance between treatment and control groups. A relatively smaller vari-

ance in the control group will lead to a negative bias of the treatment effect,

and vice versa. I have illustrated this in Figure 5.

The dependence of qualitative robustness on the variance of the distributions

only can be generalized. Davison and Sharma (1988) show that mean dif-

ferences between two normal distributions of equal variance are indicative of

mean differences in any monotonic transformation of those distributions.

The next step is to calibrate this equation by plugging in an empirical σ0 and

σt. Let us assume that the width of our control distribution equals that of the

reference distribution σref , and that the width of the treatment distribution

is given by (1 + βσ)σref :

σ0 = σref

σt = (1 + βσ)σref

Note that βµ, βσ and the size of the bias are now no longer expressed in ab-

solute units, but in standard deviations of the original data. By substituting

in the above equations, we arrive at a new expression for the bias in terms

of the shape of the reference distribution.

bias = −σ2
ref

(
βσ +

1

2
β2
σ

)
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Figure 5: If the true distribution is lognormal (top left panel), normalizing
data (bottom left panel) may lead to qualitatively wrong conclusions when
comparing distribution means if the group variance differs. In this case, the
treatment distribution (dashed lines) has a higher mean in the original data,
but appears to have a lower mean after normalization. It should be noted
that quantile-based methods (right panels) are qualitatively robust, with a
negative effect on all quantiles below about 0.6, and a positive effect on all
quantiles above.

How large is the bias in practice? In many cases, variances are more or less

constant over treatment, and the bias will be close to zero in accordance

with Davison and Sharma (1988). One example where this is clearly not the

case is curriculum tracking, the separation of students into different schools or

classes based on (estimated) ability. Such stratification almost certainly leads

to larger differences between students (Koerselman (forthcoming), Pfeffer

(forthcoming)). I have selected three empirical papers from the literature on

the subject for further analysis.
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Paper βµ βσ σref bias corrected
βµ

Hanushek and Woessmann (2006) -0.179 0.101 0.41 -0.018 -0.161
Pekkarinen et al. (2009) -0.007 0.009 0.41 -0.001 -0.006
Duflo et al. (2008) 0.175 0.042 0.41 -0.007 0.182

Table 2: Estimated treatment effects of curriculum from a number of selected
papers, corrected for distributional form in the last column.

Hanushek and Woessmann (2006) compare tracking policies between coun-

tries cross-sectionally on the basis of PISA/PIRLS and TIMSS data. Pekkari-

nen et al. (2009) investigate the effect of the 1970s Finnish comprehensive

school reform using panel data, while Duflo et al. (2008) use a randomized

trial in Kenya to look at the effects of tracking. These are three quite different

settings, and their respective results are not necessarily generalizable across

regions and times. It is therefore perhaps not surprising that the three papers

find significant effects on the mean of different signs. Tracking is associated

with larger differences between students in all three papers.

The first (numerical) column in Table 2 shows standardized estimated treat-

ment effects on the mean from these papers. The second column contains the

effects on the distributions’ standard deviations. In the case of Pekkarinen et

al. (2009) and Duflo et al. (2008), the effects on the standard deviations are

not explicitly listed in the papers, but I have instead calculated them from

other available statistics.

As a rough back of the envelope estimate of the robustness of these tracking

estimates, I apply the logsd of the conditional UK wage distribution from

Figure 4 to the test score distributions. The size of the resulting bias as well

as corrected estimates can be found in the last two columns of the table.

The size of the bias is quantitatively small; under 0.02 of a standard deviation

in test scores for all three papers. This is not enough to change the papers’

respective qualitative conclusions, which is encouraging. I have also made an

effort to match wage distributions of the respective papers’ geographical areas

using data from the WIDER World Income Inequality Database (2010), the
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Penn World Table (Heston et al. 2009), and the Luxembourg Income Study

(2010). The results are quite similar, and are not reported here.

5 Conclusions

The use of mean-based statistical techniques on educational achievement

scores is problematic in two ways. On a philosophical level, it is unclear

whether statements involving a comparison of score means are statements

about the real world, and as such are empirically meaningful. To judge that

that this is the case implies that we think score distances to be comparable

in different parts of the distribution.

Even if there exists such a true, underlying distribution, we cannot measure

it directly at anything above the ordinal level. Instead, we must implicitly or

explicitly impose a distribution onto our ordinal data in order to end up with

an interval-level score distribution. This causes robustness problems: choos-

ing a different distribution may change our qualitative statements. Groups

which have higher score means under one distributional assumption, may

have lower average scores under another.

If we insist on using mean-based methods, we can try to get some grips on

the size of the robustness problem by imposing different distributional forms

on educational test scores, and looking how much estimates differ between

the distributions.

I identify the commonly used normal distribution as well as the lognormally

distributed conditional wage distribution as two theoretically appealing dis-

tributions, and derive an expression for the difference in estimates between

the two. It turns out that the difference is quantitatively small, and un-

likely to lead to qualitatively different conclusions, even for known inequality-

increasing policies like curriculum tracking. In cases where the treatment

effect is homogeneous over the distribution, there is no problem at all.

Both the problem of meaningfulness and of robustness can easily be solved by

avoiding mean-based methods, and using quantile-based ones such as median
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regression or quantile regression instead. Even if the bias from using mean-

based methods is likely to be small, I advocate using quantile regression as a

robustness check, not in the least because the results from such an exercise

can be interesting in and of themselves.
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Scholten and Christer Gerdes for their kind help and advice. I gratefully ac-

knowledge financial support from Stiftelsens för Åbo Akademi forskningsin-
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