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Carlo Milana
* 

     August 2010 

 

Abstract 

The problem of price and quantity indexes is a typical problem of aggregation. 

Even when the aggregation conditions are not rejected on the basis of the 

observed data, there still remains a certain degree of uncertainty regarding the 

point estimate of the index number. Following the truly constructive Afriat’s 

method, we can reinterpret this uncertainty by reverting the problem and 

asking: (i) whether the available data can be rationalized and aggregated with 

well-behaved "true" index functions independently from how they have been 

actually determined, (ii) if yes, what are the upper and lower numerical values of 

all the alternative "true" index functions aggregating the data? (iii) if the answer 

is no, then either the data are not generated by a rational behaviour (and in this 

case a correction for inefficiency can be made), or else the data are generated by 

a rational behaviour within a different or wider set of determinants to be 

considered in a different or extended accounting framework.  Since any "true" 

price index function satisfies all Fisher's tests by construction, including the 

transitivity requirement at least locally, also the reconstructed upper and lower 

numerical values of the set of all admissible "true" price indexes must respect 

those tests. This solution is valid irrespective of the existence of such non-

observable objects as for example utility and production functions governing the 

observed behaviour.  The purpose of this paper is to present a full solution of the 

index-number problem in the perspective of the theoretical developments 

occurred during the last century. The proposed solution is built on Afriat's 

method and consist in defining for the first time the “true” bounds of the set of 

possible aggregating indexes which are fully consistent with all Fisher's tests, 

including transitivity, and invariance to the change of bases. An empirical 

application on Irving Fisher’s data illustrates the method. 

                                                           
*
  This paper has been prepared for the IARIW 2010 Conference to be held on 23rd-27th August 2010 in 

Saint Gallen, Switzerland while visiting Birkbeck Department of Management, University of London. A 
preliminary version of the theoretical part of the method proposed here had been prepared for the 
EUKLEMS project funded by the European Commission, Research Directorate General as part of the 6th 
Framework Programme and has circulated under the same title as EUKLEMS working paper no. 43 
(http://www.euklems.net/project_site.html).    
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Quotations 

 

"The fundamental and well-known theorem for the existence of a price 

index that is invariant under change in level of living is that each dollar of 
income be spent in the same way by rich or poor, with all income 
elasticities exactly unity (the homothetic case). Otherwise, a price change 
in luxuries could affect only the price index of the rich while leaving that 
of the poor relatively unchanged. This basic theorem was well known 
already in the 1930's, but is often forgotten and is repeatedly being 
rediscovered". 

"*…+ Although most attention in the literature is devoted to price indexes, 
when you analize the use to which price indexes are generally put, you 
realize that quantity indexes are actually most important. Once somehow 
estimated, price indexes are in fact used, if at all, primarily to 'deflate' 
nominal or monetary totals in order to arrive at estimates of underlying 
'real magnitudes' (which is to say, quantity indexes!)". 

"*…+ The fundamental point about an economic quantity index, which is 
too little stressed by writers, Leontief and Afriat being exceptions, is that 
it must itself be a cardinal indicator of ordinal utility". 

                           P.A. Samuelson and S. Swamy (1974, pp. 567-568) 

 

“Index numbers have pervaded economics for a long time; early ways of 
thinking survive almost mindlessly, and the subject is petrified with its 
history”. 

                                                                                 Sydney N. Afriat (1975, p. 369) 

 

“Men of science love to study the treasures gathered by others, in order to 

know well the value of their own.” 

Vito Volterra (quoted by E.S. Allen, 1941, p. 516) 

 

“Each maker of index-numbers is free to retain his conviction that his own 

plan is the very best.  I only ask him to think it possible that others may not 

be entirely mistaken.” 

  F.Y. Edgeworth (1925, p. 388) 
                                 (quoted by G. Stuvel , 1989, p. v) 
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1.  Introduction  

“Economists can’t even report the past, let alone predict the future”. This spiteful 

announcement came recently from the title of an article by Simon Carr published on a major 

British newspaper1. This article was referring to the analyses of current unemployment in the 

UK by a would-be independent but allegedly government influenced body. “How many times 

did they adjust the dates of the economic cycles in the 1990s and 2000s?”, the columnist asks. 

The message is not new, however. Apart from many statistical problems, analysing data has 

always systematically challenged and put on trial the economic profession.  One of the most 

heated debates regarded the systematic bias and the unacceptable intransitivity of social cost-

of-living indexes and GDP deflators (see, for example, the famous Boskin commission report2 in 

the US and the ensuing prolonged discussions on the press and academic journals worldwide) 

or even the existence itself of the unobservable “objects” that these indexes are intended to 

(approximately) measure (many seminal papers as early as those by Keynes, 1909 and Leontief, 

1936 have discussed these points). And, alas, the bias in the provided measures inevitably 

turned out to produce real effects throughout the economy by means of institutional 

indexation mechanisms and financial and economic expectations!  

The index-number construction is typically a procedure of aggregation of changes in 

heterogeneous elements. It is often intended to measure a metaphysical object that is never 

observable. Even the general level of prices is a purely theoretical concept from the economic 

point of view, which cannot be directly observed or measured. Mathematically, the index-

number problem consists in reducing the relative changes of the elements of a vector into 

changes in one single numerical value, a scalar. At best, this is possible only under very 

restrictive conditions. In his famous Econometrica survey of general economic theory dedicated 

to the problem of index numbers, Ragnar Frisch (1936, p. 1) described it in these terms: “The 

index-number problem arises whenever we want a quantitative expression for a complex that 

is made up of individual measurements for which non common physical unit exists. The desire 

                                                           
1
  The Independent, 14 July 2010, p. 6. 

 
2   See Boskin et al.(1996) and, for the debate on this report, see for example Triplett (2006). 
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to unite such measurements and the fact that this cannot be done by using physical or 

technical principles of comparison only, constitute the essence of the index-number problem 

and all the difficulties center here”.  In economics, the solution of this problem is typically 

required to subdivide changes of total nominal values into meaningful price and quantity 

components. 

The national accountants are asked to provide a split of the changes of nominal 

economic aggregates into a deflator and a volume figure. Similarly, monitoring monetary 

policies usually entails a decomposition of money supply into inflation and volume indexes 

representing the purchasing power of circulating money. At firm level, changes in nominal 

profits can be accounted for by decomposing them into productivity and price components.  It 

turns out that this is possible only under very restrictive conditions. In the general case, every 

attempt of forcing the application of any specific index number formulas is doomed to yield 

misleading results (see, e.g., McCusker, 2001, Derks, 2004, Officer and Williamson, 2006 on 

intertemporal comparisons of the purchasing power of money and Leontief, 1936 and 

Samuelson, 1947, p. 162, who warned us against “the tendency to attach significance to the 

numerical value of the index computed”).  

Even when the aggregation conditions are not rejected on the basis of the observed 

data, there still remains a certain degree of uncertainty regarding the point estimate of the 

index number. Following the truly constructive method established by Afriat (1981), we can 

bypass this uncertainty by reverting the problem and asking: (i) whether the available data can 

be rationalized by well-behaved “true” index functions, (ii) if yes, what are the upper and lower 

bounds of the region containing all numerical values of possible “true” index functions? (iii) if 

the data cannot be rationalized by well behaved index functions, then either the data are not 

generated by a rational behaviour (and a correction for inefficiency may be made), or else the 

data are generated within a different set of variables to be considered in an alternative or 

extended accounting framework.  

Since all “true” economic index functions respect, by construction, all Fisher’s tests (see 

Samuelson and Swamy, 1974), also the reconstructed upper and lower values belonging to the 

set of possible “true” indexes respect those tests, and so does a geometric mean of those 

bounds, which may be required for practical needs of point estimation. This solution is purely 

constructive and is obtainable irrespective of the actual existence or non-existence of the 
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underlying utility of production functions governing the observed economic behaviour on the 

markets.   

 The purpose of this paper is to present a solution of the index number problem in the 

perspective of the theoretical developments occurred during the last century. This does not 

intend by any means to be a history of thought on index numbers, on which a number of 

sources are available3.   Further references to the current state of the theory and applications 

of index numbers can be found in Vogt and Barta (1997), von der Lippe (2001)(2007), Balk 

(2008), and the manuals on consumer price indices (CPIs), producer price indices (PPIs), and 

import-export price indices (XMPIs) published jointly by ILO, IMF, OECD, UN, Eurostat, and The 

World Bank (2004a)(2004b)(2008). The proposed solution represents a further step forward 

with respect to Afriat’s (1981)(2005)(2008) method which was used also in Afriat and Milana 

(2009). It builds on this method to define and construct chain-consistent (transitive) tight 

bounds of the “true” index number. Although, for brevity reasons, we shall concentrate mainly 

on the price index, many results are applicable to the quantity index, which may also be 

obtained implicitly as the ratio between the index of nominal values and the price index.  

 The rest of the papers proceeds as follows: The second section recalls the classical 

search for the ideal index number formula with particular reference to Irving Fisher’s 

contribution. The third section presents the essential concept of “true” (constant-utility) cost-

of-living index starting from Konüs’ pioneering formulation and the search for its possible 

computable bounds. The fourth section considers one possible solution of the bounding 

problem based on the “exact” correspondence between index numbers formulas and 

functional forms of the “true” aggregating functions. Given the inevitable strong limitations of 

the “exact” index-number approach and the indeterminacy of the “true” index, the fifth section 

aims at showing the conditions derived from the Antonelli’s integrability approach under which 

the observable market data can be used to construct the two-sided Laspeyres-Paasche (L-P) 

bounds.  Since the L-P bounds offer reliable numerical values only locally as they are 

essentially “first-order” linear approximations, they can never be “true” limits (and part of) the 

set of all possible “true” indexes under the hypothesis of strongly convex preferences which are 

necessarily assumed in the integrability approach. The sixth, seventh, and eighth sections offer 
                                                           
3
  For historial accounts of the development of index number theory, see for example, in chronological 

order, Walsh (1901)(1921), Fisher (1922, pp. 458-460), Frisch (1936), Ferger (1946), Chance (1966), 
Kendall (1969), Rothenberg (1979), Aldrich (1992), Diewert (1993), Vogt and Barta (1997, pp. 9-67), 
Persky (1998), and Balk (2008, pp. 1-52).     
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useful alternatives developed in the literature allowing the L-P bounds to be within the set of 

“true” indexes. Sections 9, 10, and 11 present Afriat’s “giant leap” based on his revolutionary 

reformulation of revealed preference theory allowing for multi-valued demand 

correspondences (many quantity solutions may be possible in correspondence with certain 

relative prices) and, by this way, to reconstruct piecewise linear bounds for the “true” price 

index. Using several observation points simultaneously, this approach also enables us to define 

and measure bounds that are tighter than those of the traditional bilateral indexes. However, 

these tight bounds may still turn out to be intransitive and cannot be considered “true” indexes 

themselves. Section 12 contains our proposal to find the full solution with chain-consistent  

(transitive) “true” bounds. Section 13 offers a practical illustration on the same data that were 

used by Irving Fisher’s to perform his well-known tests on index-number formulas. Section 14 

concludes.                

     

2.  Irving Fisher and the “ideal” index number formula 

 

In Fisher's (1911) book The Purchasing Power of Money. Its Determination to Credit, Interest 

and Crisis, the theory of the price level was related to the quantity theory of money. Let M = 

stock of money, V = the velocity of circulation of money; pi = price level of the ith transaction, Ti 

= volume of the ith transaction carried out using money. The starting (infamous) equation of 

exchange is  

 

(2.1)                                               MV = p1T1+ p2T2+…+ pnTn,  

 

  

In order to make the foregoing equation workable, the following version is usually considered 
 
 
(2.2)                                                      MV = PT 

 

 

where P is the  general price level and T is the volume of all transactions, which have been 

replaced with the aggregation Q of real outputs 1 2, ,..., nq q q , often measured by real GDP, that 

is  MV = PQ (see Fisher, 1911, Ch. 2).  Equation (2.1) does not necessarily imply equation (2.2).  

While the former is based, at least in principle, on observable variables, the latter contains non-

observable aggregates and relies on computation techniques in order to “correctly” construct 

http://en.wikipedia.org/wiki/Quantity_theory_of_money
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them. It is in this vein that Irving Fisher dedicated energies and efforts in the search of his 

“ideal” index number formula satisfying as many desired properties as possible. This search 

culminated in his famous book The Making of Index Numbers published in 1922 (3rd edition 

1927), where he recognized that no index number would satisfy all the desired properties, but 

he chose the geometric mean of the Laspeyres and Paasche indices as his “ideal” index number 

formula.  Applied to the price index between the points of observation 0 and 1, this “ideal” 

index number formula is  

 

(2.3)     0,1 0,1 0,1
F L PP P P     where 

1 0 1 0
0,1

0 0 0 0

i ii
L

i ii

p q
P

p q
 



p q

p q
 and 

1 1 1 1
0,1

0 1 0 1

i ii
P

i ii

p q
P

p q
 



p q

p q
 

 

where 1 2[ ... ]t t t t
np p pp  and 1 2[ ... ]t t t t

nq q qq  are the price and quantity vectors and, 0,1
LP  , 0,1

PP  , and 

0,1
FP  are the Laspeyres, Paasche, and Fisher’s “ideal” price indices. This last formula had been 

previously considered by Bowley (1899) and others even before (see also Bowley, 1923, p. 252) 

and recommended by Walsh (1901) and Pigou (1912), although it does not generally satisfy the 

transitivity or circularity property, that is 0,2 0,1 1,2
F F FP P P   and the equivalent invariance with 

changes in bases, that is 0,2 1,2 1,0/ .F F FP P P  (by contrast, any price level, if any, is transitive by 

construction (P2
/P

0
 = (P

2
/P

1
)(P

1
/P

0
)).  Surprisingly, Fisher dropped the requirement of this 

property and deemed it as unimportant compared to other properties which his “ideal” 

formula always satisfies.  

In their article dedicated to economic index numbers, Samuelson and Swamy (1974) 

commented Fisher’s choice in these terms: “Indeed, so enamoured did Fisher become with his 

so-called Ideal index that, when he discovered it failed the circularity test, he had the hubris to 

declare ‘…, therefore, a perfect fulfilment of this so-called circular test should really be taken as 

proof that the formula which fulfils it is erroneous’ (1922, p. 271). Alas, Homer has nodded; or, 

more accurately, a great scholar has been detoured on a trip whose purpose was obscure from 

the beginning” (p. 575).  By contrast, in order to avoid strong discrepancies in the results 

obtained, the subsequent developments in this field have been devoted to satisfy, among the 

other tests, the transitivity property that ensures consistency in multilateral comparisons.  
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3.  Konüs’ constant-utility index numbers  

 
Bennet (1920) introduced a method “by which a change of expenditure can be analysed into 

two parts, one corresponding to changes in cost of living and the other to changes in standard 

of living” (p. 455). This decomposition was proposed in terms of absolute differences. Konüs 

(1924) and Allen (1949) have, respectively, introduced the concepts of constant-utility indexes 

of prices and quantities in terms of ratios.  Konüs price index is defined as 
1 1

0 0

( , )
,

( , )
K

u
P

u


p q p

p q p
 

which takes into account the price-induced adjustments in quantities for a given level of utility 

u .                  

Setting 0u u  yields the Laspeyres-type Konüs price index  
1 1 0

0 0

( , )
,K L

u
P  

p q p

p q
  where 

0 0 0 0 0( , ),up q p q p  while setting 1u u  yields the Paasche-type Konüs price index  
1 1

0 0 1
,

( , )
K PP

u
 

p q

p q p
  where  1 1 1 1 1( , ).up q p q p   

It must be noted that the constant-utility index numbers 0
KP  and 1

KP  cannot be 

computed directly since the respective expenditures 1 1 0( , )up q p  and 0 0 1( , )up q p  are not 

observed. Unless the demand quantities 0( , )uq p  and 1( , )uq p  are somehow estimated and 

simulated with prices 1
p  and 0

p respectively at the given utility levels (by following, for 

example, the econometric approach), a way to proceed with Konüs’ constant-utility index 

numbers is to work with a theoretical relationship between them and the known index number 

formulas.  Some of these may be used to establish upper and lower limits, when possible, for 

the Konüs’ constant-utility index numbers, which remain unknown. In the general (non-

homothetic) case, Konüs had established the following one-sided bounds with the price index 

from the point of view of demand (on the supply side, the algebraic signs are reversed)    

(3.1)                              
1 0

0 0K L LP P  
p q

p q
         and         

1 1

0 1P K PP P  
p q

p q
 

 

Since, with strictly convex preferences, 1 1 0 1 0( , )u p q p p q  and  0 0 1 0 0( , )u p q p p q  because the 

left-hand sides of these last inequalities are those actually consistent with a cost-miminizing 

behaviour at the prices p1 and p0 respectively.  
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Allen (1949) observed that the economic (utility-constant) quantity index could be 

obtained directly, for given reference prices ,p  as  

 

(3.2)                                                             
1

0

( , )

( , )
A

u
Q

u






p q p

p q p
 

Setting 0p p   yields the Laspeyres-type  “true” Allen quantity index 
0 0 1

0 0

( , )
,A L

u
Q  

p q p

p q
  where 

0 0 0 0 0( , ),up q p q p  and setting 1p p  yields the Paasche-type “true” Allen quantity index 

1 1

1 1 0
,

( , )
A PQ

u
 

p q

p q p
   where  1 1 1 1 0( , ).up q p q p   

The Laspeyres- and Paasche-type “true” Allen quantity index numbers can also be 

obtained by deflating the nominal income ratio between the two observation points by the 

Paasche- and Laspeyres-type “true” Konüs price index numbers, that is: 

 

(3.3)                                    
0 0 1 1 1 1 1 1 1

0 0 0 0 0 0 1 0 0

( , )
/ /

( , )
A L K P

u
Q P

u
   

p q p p q p q p q

p q p q p q p p q
 

(3.4)                                    
1 1 1 1 1 1 0 1 1

1 1 0 0 0 0 0 0 0

( , )
/ /

( , )
A P K L

u
Q P

u
   

p q p q p q p p q

p q p p q p q p q
 

 

The theory of bounds with respect to the quantity index numbers is similar to that of the price 

index numbers. Following Konüs’ suggestion, any point of the numerical interval between these 

two index numbers could correspond to the “true” quantity index with a certain level of 

relative prices. 

Konüs (1924) also considered various situations in relation to the ranking between the 

Laspeyres and Paasche indices. In summary, from the point of view of demand, the following 

alternative cases are possible: 

 

Case 1:   Laspeyres < Paasche  

 

(3.5) 

                                                               K L L P K PP P P P     

Case 2: Laspeyres   Paasche 
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(3.6)                                                              K L P L K PP P P P     

         
(3.7)                                                              K L P K P LP P P P     

 
(3.8)                                                               P K L L K PP P P P     

                                                                
(3.9)                                                               P K P K L LP P P P     

                                                                
(3.10)                                                            P K L K P LP P P P     

 

The indeterminacy of the numerical value of “true” index with respect to the Laspeyres-

Paasche interval seemed to be eliminated, at least in practice, by various alternative ways. 

Konüs observed that it is always possible to find a reference utility level, say *u ,  such that the 

cost of living index falls between the Laspeyres and Paasche indexes, that is  

 

(3.11)                                                            *
P K LP P P     in case 1 

or     

(3.12)                                                            *
P K LP P P      in case 2. 

 

Konus claimed that these results would suggest that we can work with the Laspeyres and 

Paasche bounds and take an average of the two to approximate the “true” price index * .KP  This 

solution is valid, however, only locally with reference to a particular (unknown) level of utility. 

Moreover, it has implications also on the Allen quantity index derived implicitly by deflation: 

the resulting quantity index would fail, in general, to satisfy the homogeneity requirements (if 

the elementary quantities are multiplied by  , the resulting index fails to be equal to the same 

factor  , as required).   

  

4. “Exact” and “superlative” index numbers 

 
A second alternative to solve the indeterminacy of “true” index number was offered by 

Byushgens (1924) and Konüs and Byushgens (1926) by introducing the concept of “exact” index 

numbers for the true aggregator function. They showed that the Fisher “ideal” index formula 

(the geometric mean of the Laspeyres and Paasche index numbers) may be numerically equal 
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to the ratios of values taken by a quadratic aggregator function. If the observed data were 

generated by a demand governed by such function, then the transitivity o circularity property 

would be satisfied by Fisher “ideal” index formula. Following the modern generalization of their 

proposition, let us assume a utility function consistent with the following minimum expenditure 

function has the quadratic mean-of-order-r functional form ( , ) ( , )rQ
C u c u u p p , where 

/ 2 / 2 1/( , ) ( ( ) )r

r r r

Q
c u up p A p  with 0,  0 <  r r   , and the matrix ( )uA  is a normalized 

symmetric matrix of positive coefficients ( ) ( )ij jia u a u satisfying  the restriction 

( ) 1iji j
a u   , so that ( , ) 1rQ

c u p  if [11...1].p     

   The functional form  rQ
c  can be seen as a generalization of a CES functional form, to 

which it collapses if all 0ija   for i j (see McCarthy, 1967 and Kadiyala, 1972), and it reduces 

to the Generalized Leontief functional form with 1r   (Denny, 1972, 1974)  and the Konüs-

Byushgens (1926) functional form with 2r   (Diewert, 1976, p. 130).  

We have, in fact, 

 (4.1)                                     
 

 

1/
/ 2 / 2

1 1 11 1

1/
/ 2 / 2

0 0 0 0 0

( )( , )

( , ) ( )

r

r

r
r r

Q

r
r r

Q

uc u

c u u


p A pp

p p A p

    

1/ 1/
/ 2 / 2 / 2 / 2 / 2 / 2

1 1 1 1 0 0 0 1 1

/ 2 / 2 / 2 / 2 / 2 / 2
0 1 1 0 0 0 0 0 1

( ) ( ) ( )

( ) ( ) ( )

r r
r r r r r r

r r r r r r

u u u

u u u

   
     
   

p A p p A p p A p

p A p p A p p A p
   since  / 2 / 2 / 2 / 2

1 0 0 1( ) ( )r r r r
t tu up A p p A p  

with a symmetric ( )tA u   

1/ 1/
/ 2 / 2 / 2 1 / 2 / 2 1 / 2 / 2 / 2

1 1 1 1 0 0 0 0 0 1 1

/ 2 1 / 2 / 2 1 / 2 / 2 / 2 / 2 / 2
0 1 1 1 1 0 0 0 0 0 1

ˆ ˆ( ) ( ) ( )

ˆ ˆ ( ) ( ) ( )

r r
r r r r r r r r

r r r r r r r r

u u u

u u u

 

 

   
     
   

p A p p p p A p p A p

p p p A p p A p p A p
 

where  ^  denotes a diagonal matrix formed with the elements of a vector 

1
/ 2

1
1/0 / 2 / 2/ 2

0 1 10

/ 2 / 2 / 2
0 0 0 1

1/ 2
1

( )

( )

r r
i

ri r rri
i

r r r

iri

p
s

up

p u
s

p

 
   
    
   
 
 





p A p

p A p

 

where 

/ 2 / 2

/ 2 / 2

( )

( )

r r
ti ij t tjjti ti

ti r r
tj tj t t tj

p a u pp q
s

p q u
 


 p A p

, which is the observed value share of the ith quantity  

1
/ 22

1
1

/ 2 / 2

( )( , )
( , ) /

( ( ) )

r

r
ti ij t tjjt t

ti t t ti t t

ti r r r
t t t

p a u pc u
q C u p u u

p
u






      



p
p

p A p
 by Shephard’s lemma, with ija  being the 

(i,j) element of matrix A.  Thus, the index number yields exactly (is “exact” for) the same 
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numerical value that would be obtained as a ratio of the values of the underlying function in the 

two compared situations. Diewert (1976) called “superlative” the index numbers that are exact 

for flexible functional forms and described them as approximating each other up to the second 

order. However, it has been noted that, in practice, these index numbers are far from being 

second-order approximations and even differ from each other more than Laspeyers and Paasche 

indexes themselves (see Milana, 2005 and Hill, 2006a). This terminology diverges in meaning 

from that used by Fisher (1922), who has defined “superlative” those index numbers that simply 

performed numerically very closely to his “ideal” index formula with his dataset.  

Since all the price variables and utility are considered here at their current levels, the 

shares sti are those actually observed. As we shall see below, in the homothetic case, we have  

( , ) ( )C u c u p p   and, consequently, the observed shares tis  are equal to the theoretical weights 

that are functions only of prices (with 
0 1( ) ( ) ).u u A A A  

The first multiplicative bracketed element of the last line of (4.1) can be considered as a 

candidate price index number 

(4.2)                                      

1
/ 2

1
0/ 2

0

/ 2
0

1/ 2
1

( )r

r r
i

iri
i

Q r

iri

p
s

p
P

p
s
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 
 
 
 
 
 




0 1 0 1p ,p ,q ,q     

                                                                               
which corresponds to Diewert’s (1976, p.131)  quadratic mean-of-order-r price index number.  If  

r = 2, then the price index rQ
P is to the “ideal” Fisher index.   

It should be noted that, in the general non-homothetic case, the price index number 

defined by the right-hand side of (4.2) is ill-defined as a “true” price index. In fact, from (4.1), we 

have: 

(4.3)                                    
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   





p p A p

p p A p

p A p p A p

p A p p A p

 

 

where the index obtained is clearly not a pure function of elementary price variables because it is 

also a function of the utility levels at the two compared points. This has a number of 
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consequences and makes transitivity of a bilateral formula impossible in the context of 

multilateral comparisons.  All the existing multilateral approaches based on index numbers are 

not really multilateral being based de facto on “star systems” consisting in indirect comparisons 

made by linking bilateral indexes of each observation point with respect to a common reference 

point.  This is the case of the G-EKS and CCD methods using, respectively, bilateral Fisher ideal 

index formulas (with ( )rQ
P 0 1 0 1p ,p ,q ,q  where r = 2) and Törnqvist index number (with 

( )rQ
P 0 1 0 1p ,p ,q ,q  where r   0).  The Geary-Khamis procedure uses bilateral Laspeyres-type 

index formulas where the weights are those of the common reference point.   

Let us consider the following weighted geometric average of the direct bilateral price 

indexes of an arbitrary functional form ( )i j i jP p ,p ,q ,q  of the observation point i relative to all 

the observation points  j = 0,M  (including itself): 

 

(4.4)                                              

1

0

( ) [ ( )]
k

kj

M
i

i j i j

j

P P






 
  
 
P,Q p ,p ,q ,q  

 

where [ ] 0 1 MP p ,p ,...,p  and [ ] 0 1 MQ q ,q ,...,q , and j denote the appropriate weight for 

country j such that 1.kk
   It can be noted that ( )iP P,Q  has the meaning of absolute price 

relative to an average price calculated over all the observation points.  

In this context, the bilateral comparisons are made indirectly using the ratios  

 

(4.5)                                                    , ( ) ( ) / ( )i j i jP P PP,Q P,Q P,Q  

(4.6)                                                 , ,( ) ( / ) / ( )i j i j
i i j jQ PP,Q p q p q P,Q  

 

The definition of the methodology of multilateral interspatial comparisons is completed by 

specifying the weights j  and the functional form of the direct bilateral indexes used as building 

blocks. We note that: 

i) If 1/j M   (with M being the number of the examined points of observation) and all the 

direct bilateral indexes ( )i j i jP p ,p ,q ,q are Fisher ideaI price indexes rQ
P with r =2, then (4.4) 

corresponds to the so-called G-EKS method (Gini, 1924, 1931; Elteto and Koves, 1964; Szulc, 
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1964); whereas if 1/j M  and ( )i j i jP p ,p ,q ,q  are Tömqvist input price indices rQ
P with r → 

0, then (4.4) corresponds to the so-called CCD method (Caves, Christensen and Diewert, 1982). 

The weights 1/j M  have been called "democratic", since they are the same for all the 

observation points; 

ii) If /j r
  j j r rp q p q , then (4.4) corresponds to the "plutocratic" weighting system; 

iii) If /j j rr
u u    , then (4.4) corresponds to the "own share" system in the case u is an 

observed and measurable variable (as, for example, gross output in production).  

Aggregation consistency over countries requires that the weights be based on the 

relative importance of the examined countries. If the weights are proportional to the 

production size of the countries, then the empirical results must be affected by a hypothetical 

or real splitting or aggregation of the countries. For this reason, the weighted systems ii) and iii) 

are preferable. The "plutocratic" weight system ii), however, is not invariant to scale changes in 

the prices of any one observation point. 

In the general non-homothetic case, the multilateral indexes are transitive by 

construction, that is 2 0 2 1 1 0( ) / ( ) [ ( ) / ( )] [ ( ) / ( )]P P P P P P P,Q P,Q P,Q P,Q P,Q P,Q and do not 

coincide with the respective direct bilateral indexes, that is 

2 0 0,2
2 2( ) / ( ) ( )P P P 0 0P,Q P,Q p ,p ,q ,q . 

 All these methods are, however, seriously flawed in the general non-homothetic case 

because the resulting indexes fail to be pure price and quantity indexes. Let us see this critical 

aspect in some more detail. In the general non-homothetic case, it is easy to verify that the 

volume index obtained by deflating the nominal expenditure by means of the price index does 

not satisfy the linear homogeneity property (if the elementary quantities change proportionally 

by a common factor λ, the aggregating index fail, in general, to change by the same factor λ, as 

expected).  This can be immediately seen if the compared quantity vector 1q happens to be 

proportional to the base quantity vector 0q  by λ.  In general, we might obtained the 

unacceptable result that the volume index does not result to be equal to λ. In the case of rQ
c , if 

0 1( ) ( )u uA A , while 1 0p p and these prices are such that ,1 0q q then the aggregate 

volume index measured implicitly by deflating the index of nominal expenditure by the index 

( )rQ
P 0 1 0 1p ,p ,q ,q  is 
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0 0 0 0 0( / ) / ( ) ( / ) / ( )r rQ Q
P P  1 1 0 1 0 1 1 0 1 0 1p q p q p ,p ,q ,q p q p q p ,p ,q ,q  

This means that ( )rQ
P 0 1 0 1p ,p ,q ,q  is a spurious price index that incorporates a non-price component, 

which in this case is   

 

(4.7)                                               ( ) /( / ) /rQ
P  0 1 0 1 1 1 0 0p ,p ,q ,q p q p q    
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If we attempt to correct ( )rQ
P 0 1 0 1p ,p ,q ,q for this non-price component, we might end up to an 

index that is no longer linear homogeneous in prices, which is nonsense for a price index, which 

should be linearly homogeneous by construction. This shows that price and quantity indexes 

both satisfying the linear homogeneity property do not exist in the general non-homothetic case. 

Any attempt to use these indexes both in bilateral and multilateral context is doomed to yield 

seriously distorted results. 

  The same unacceptable result with the implict measure of volume index may occur by 

using the Törnqvist price index number as a deflator. This corresponds to the limit of rQ
P  as  r 

tends to 0, that is: 

 

(4.8)                                     
0 0 1 1 0

1
lim exp[ ( )(ln ln )]

2
rr T i i i iQ i

P P s s p p      

 

which is exact for the translog unit cost function  

 

(4.9)           
0

1
( , ) exp( ln ln ln ln ln ln )

2
T u i i iu i ij i ji i i j

c u u p p u p p           p  

     

We note that, in the homothetic case, if the observed data were generated by a demand 

consistent with a minimum quadratic cost function  ( , ) ( )r rQ Q
c u c u p p  with specific parameter 

values over the set of examined data on prices and quantities, then we would have 
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(4.10)                                      
0

( )

( )

r

r

NQ

Q

c
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p

p
 

1 2

0 1 1

( ) ( ) ( )
...

( ) ( ) ( )

r r r

r r r

NQ Q Q

NQ Q Q

c c c

c c c 

   
p p p

p p p
 

 and, therefore, 

 

(4.10a)      0 0 0 1 0 1( , , , ) ( , , , )r rN NQ Q
P p p q q P p p q q  1 2 1 2( , , , )rQ

P p p q q  1 1... ( , , , ),r N N N NQ
P p p q q   

 

that is the exact index number rQ
P  would satisfy the transitivity test as well as all the other 

Fisher’s tests between the observation points taken into exam4. If the transitivity property is not 

satisfied, then either the demand is not governed by a rational behaviour or the index number 

formula is not consistent with a cost function or utility function that rationalizes the data.  

At time of the “discovery” of Konüs and Byushgens (1926), the concept of homotheticity 

of indifference curves and its relationship with existence of a pure price (and quantity) index was 

not widely known. The concept of homotheticity was explicitly spelled out by Shephard (1953) 

and Malmquist (1953) in the field of production technology and independently by Afriat (1972) 

using the terminology of “conical functions” in the field of consumer utility. Earlier contributions 

dating back at least from Antonelli (1886) and including Frisch (1936, p. 25) and Samuelson 

(1950, p. 24) have dealt with it implicitly.  

When the “true” price index defined by Konüs is not independent of the utility level, as in 

the general non-homothetic case, the corresponding Allen “true” quantity index fails to be 

linearly homogeneous (if all the elementary quantities are multiplied by a factor λ, then the index 

number fails to be proportional by the same factor λ).  

In Allen’s (1949, p. 199) words, “*t+he index has no meaning unless we make the 

assumption that the preference map is the same in the two situations”. This affects, in a way, 

                                                           
4
 In this (homothetic) case, by defining 0 1 0 1( , ,..., , , ,..., )r N NQ

P p p p q q q  

0 1 0 1 1 2 1 2( , , , ) ( , , , )r rQ Q
P p p q q P p p q q   1 1... ( , , , ),r N N N NQ

P p p q q   a “true” and “exact” bilateral index 

can be rewritten in an equivalent multilateral form so that 
0 0( , , , )r N NQ

P p p q q  

0 1 0 1( , ,..., , , ,..., )r N NQ
P p p p q q q . The right-hand side of this equivalence is a multilateral form similar, 

mutatis mutandis, to that considered for the quantity index by van Veelen (2008) for the homothetic 
case. It is perfectly consistent with the classic definition of a bilateral true and exact index defined 
originally by Konüs and Byushgens (1926) (see also Afriat, 1972, Samuelson and Swamy, 1974, p. 573, fn. 
9, Diewert, 1976, pp. 132-133, Diewert and Hill, 2009, p. 5 for further discussion). In the non-homothetic 
case, both bilateral and multilateral index numbers are ill-defined as “true” indexes.   
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also the price index: although this index is always linearly homogeneous by construction in the 

non-homothetic case it results to be a spurious price index whose weights are functions not only 

of prices but also of the utility level and, then, of the demanded relative quantities. This has been 

often overlooked even in the current literature on economic index numbers.  

In the quadratic function considered above, the weights be functions only of prices if and 

only if 1 0( ) ( )A u A u A  .  In the application of indexes defined by Divisia (1925), this is called 

“path independence” since the index is independent of the path taken with respect to the 

reference quantity variables. Hulten (1973) has shown that the Divisia index is path-independent 

if and only if the underlying function is homothetic (tastes do not change). This can be seen 

immediately related to the limit of infinitesimal changes in the Törnqvist index number  

(4.11)                 ( )
0 ( )

ln ln ln1
ln lim ( )
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t t i ti ti
Div t ti t t i tii i

p p d p
d P s s s
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(4.12)                                            
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
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which is the Divisia price index.  If the weights tis  are not functions of the prices alone, but 

depend also on relative levels of the reference quantities (as in the case with changes in tastes), 

then the Divisia price index is not a “pure” price index and depends on the particular path taken 

by the shares.   

These considerations were already implicit in the analysis of contributors in the early part 

of last century, who were well aware of the importance of homothetic tastes for the existence of 

economic aggregate index numbers. Bowley (1899), for example, in search of a constant-utility 

price index had been among the first proponent of the geometric mean of the Laspeyres and 

Paasche indexes (which had later become famous as Fisher “ideal” index). He also devised 

another index as an approximation to the constant-utility price index given by the following 

formula, previously proposed by Edgeworth: 

 

(4.13)                                                      
1 0 1

0 0 1
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( )
EP


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p q q

p q q
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to be applied under the hypothesis of no changes in tastes. He, in fact, wrote: “Assume that our 

records represent the expenditure of an average man, and that the satisfaction he derives from 

his purchases is a function of the quantities bought only, say u(q), are the numbers of units 

bought of the n commodities. Further, suppose that the form and constants of this function are 

unchanged over the period considered. The last condition limits the measurement to an interval 

of time in which customs and desires have not changed and to a not very wide range of real 

income. The analysis and conclusions do not apply to comparisons between citizens of two 

countries, nor over, say, 60 years in one country” (Bowley, 1928, pp. 223-224). As it will be seen 

more extensively below, identical preferences, implying a homothetic utility function, have been 

noted as early as the work of Antonelli (1886) as a necessary and sufficient condition for the 

recoverability of a utility function from the observed market demand data.  

It is remarkable, however, that also the foregoing Bowley-Edgeworth index number 

does not satisfy the requirement of transitivity. In general, the lack of transitivity would signal 

the poor approximation given by the formulas chosen. This is the situation encountered 

particularly in interspatial comparisons, where the alternative measures could differ more than 

100% even with “superlative” index numbers (see, e.g., Hill, 2006a, 2006b).   Given the 

discouraging results obtained with specific index-number formulas, we now turn to alternative 

lines of thought have roots in the contributions to the fields of index number theory by Keynes, 

Hicks, Samuelson, and Afriat.  

 

5. Antonelli’s integrability conditions  

A third alternative approach to solve the practical indeterminacy of the two-sided bounds of 

the unknown “true” index number can be associated with the conditions of integrability of the 

market demand functions. We may observe that two-sided limits could always be advocated 

for a Konus-type “true” index numbers as follows: 
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As Hicks (1939, 1946, p. 330) pointed out, if price movements do not occur on the same 

indifference level, that is 
0 1,u u  then there is a change in real income. The consequent income 

effect may distort the orthodox relation between the index numbers, that is it may happen   
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u
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p x p

p x p
 We can note that 0 1( , )ux p  and 1 0( , )ux p  are 

compensated demanded quantities that in general are not observable, whereas  

0 0 0 0( , ) ( , )u yx p x p  and 1 1 1 1( , ) ( , )u yx p x p , with 
0y  and 

1y  representing nominal income, are 

the observed demanded quantities at time 0 and 1, respectively.  If the consumption choices 

are optimal, all these quantities can be referred to the first-order conditions of utility 

maximization under budget constraint.    

 The necessary and sufficient “mathematical” conditions for the recoverability of the 

utility function were stated for the first time in the extraordinary Antonelli’s (1886) memoir5 

which had remained difficult to find for a long time. They consist simply in the “symmetry” of 

all pairs of cross price-quantity effects on the uncompensated demand.  These conditions are 

to be complemented with the so-called “economic” integrability condition reflecting the 

convexity properties of the utility function due to the negative correlation between relative 

prices and demanded quantities of which Antonelli (1886, subsection 2.12) was aware6 (the 

Antonelli matrix should therefore be not only symmetric, as required by the “mathematical” 

integrability, but also negative-semidefinite).  Antonelli’s conditions were defined on the 

indirect demand equations (where prices are determined in relation with the “observed” 

                                                           
5
  This memoir was exceptional in many ways, including the fact that it was the only known contribution 

to economic theory (apart from another study on compulsory amortization of capital) by this Italian 
author, who soon undertook a successful career of entrepreneurial engineer. This amazing memoir 
anticipated by more than sixty years the major developments of modern economic theory of demand 
and many basic concepts of duality theory (see, for example, Chipman, 1971 and Martina, 2000 for 
detailed accounts of these anticipations). Privately printed (not really published) at Pisa, Italy, this 
document was still fortuitously known to a small circle of economists when it was eventually 
popularized in a famous review article by Samuelson (1950), who admittedly based his account of 
Antonelli’s integrability conditions only on second- and third-hand citations (for a modern reformulation 
of these conditions, see Hurwitcz, 1971, Hurwicz and Uzawa, 1971, and Debreu, 1972). 
 
6  On this point, the original text contains, however, a lapse indicating a positive sign instead of a 
negative price effect. This has been noted by G. Ricci, Giornale degli Economisti, N.S., Vol. 10, 1951, p. 
291 and in the commentary on the English translation published in Chipman et al. (1971, p. 350, fn. 57).   
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uncompensated demand quantities) leading to the recovery of the direct utility function 

defined in the space of demanded quantities.  

A useful dual version of integrability conditions was fully described by Hurwicz and 

Uzawa (1972) for the recovery of indirect utility as a function of relative prices and real income 

starting from direct demand equations (Antonelli (1886) was evidently aware also of this 

second approach since he had also redefined explicitly the relevant elements of his analysis in 

terms of the indirect utility function and direct demand equations).  This second version can be 

immediately related to the Konüs-type index numbers and their limits by applying the 

mathematical and economic integrability conditions to the more familiar Slutsky matrix of 

second-order derivatives. 

We start by postulating a continuous twice differentiable convex direct utility function 

( ).u U x   The utility maximization problem (UMP) is to maximize ( )U x  under the condition of 

budget constrain .y p x  The Lagrangian is ( , ) ( ) ( ),L U y    x x p x  where   is the 

Lagrange multiplier that, as shown below, represents the “marginal utility of money”. The first-

order conditions are that / / 0i i iL x U x p        which implies 
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hence, the uncompensated inverse demand (ordinary demand-price) functions can be 

obtained: 
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This relation has become known as Hotelling-Wold’s Identity after Hotelling (1935, p.71, eq. 3.4) and 

Wold (1944, pp. 69-71)(1953, p. 145). In terms of budget shares, it becomes: 
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The indirect utility function7 (defined by Antonelli, 1886, subsections 10 and 11 [Engl. 

transl. 1971, pp. 348-350], and later rediscovered by Hotelling, 1932, p. 594 (implicitly), Court, 

1941, Hicks, 1942, p. 129, and Roy, 1943, 1947, pp. 205-225) can be derived from the budget 

constrained utility maximization problem (UMP) using the envelop theorem:  

 

 (5.6)                                       ( , ) max ( ) : 0; 0V y U y    
x

p x p x x  

 

The indirect utility function ( , )V yp  is homogeneous of degree zero in p and y, decreasing in p 

and increasing in y.  

The Lagrangian is ( , ) ( ) ( )L U y    x x p x  where   is the Lagrange multiplier and, 

by the envelope theorem,  
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And, by solving the two foregoing equations for  *,x  we obtain the “observable” 

uncompensated direct demand (demand-quantity) functions (known as Marshallian demand 

functions): 

(5.8)                                                       
( , ) /

( , )
( , ) /

m i
i

V y p
x y

V y y

 
 

 

p
p

p
 

*
*

*

( ) /
( )

( ) /

m i
i

r ir

V
x

V



 

 
 

 
υ

υ
υ

 

 

                                                           
7
  The designations “direct” and “indirect” for utility functions were introduced by Houthakker  (1952-

1953, p. 157). The indirect utility function was called by Hotelling (1932, p. 594) the price potential “on 
the basis of physical analogies”, thus revealing to know the concepts that Antonelli and Volterra had 
derived from the physical sciences.     
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since ( , ) /V y y p  = 
1

rr
r

V
p

y p





  (by Euler’s theorem on homogeneous functions8) and, by 

defining 1,y υ p  we can rewrite ( , )V yp  as *( ) ( ,1)V Vυ υ  and ( , )m

ix yp  as  

* *( ) ( ,1).m m

i ix xυ υ 9 This is Antonelli’s (1886) equation (24) stating that the demand for a 

commodity is equal to the ratio between “minus the marginal indirect utility of its price” and 

“the marginal indirect utility of income”. Today, it is better known as Ville-Roy’s Identity after 

its rediscovery by Ville (1946) and Roy (1947, p. 218-220)(1949, p. 180, eq. A4).  The resulting 

function ( , )m

ix yp  has the property of being continuously once differentable, i.e. it is of class 

1C  (since V is assumed to be continuously differentiable at least twice) and homogeneous of 

degree 0 in prices and income, that is ( , ) ( , )m my y x p x p  for every real number .   The 

foregoing identity has been also expressed by Roy (1947, p. 222) in terms of budget shares as 

functions of price elasticities of indirect utility by multiplying ( , )m

ix yp  through by / ,ip y  that is  

 

(5.9)           

*

*

ln1
( , ) /

( , ) / ln
( , )

1 ln( , ) /
( , ) /

ln

m i i
m i i i i i
i

r ir r
r

V
p V y p

p x p V y p Vs y
Vy y V y y

p V y p
V






  

  
    

 
  


 

p
p

p
p

p

 

 

Provided that the direct utility function is strictly increasing in x, ( , )V yp  is monotonically and 

continuously increasing in y and can be inverted to yield the expenditure function 

 

(5.10)                                                   ( , )y C u p  

 

The function ( , )C up can be also derived from the consumer’s expenditure minimization problem 

(EMP): 

                                                           
8
  Since the indirect utility function V is homogeneous of degree zero in p and y,  by Euler’s theorem on 

homogeneous functions, 0.rr
r

V V
y p

y p

 
 

 
  Hence, 

1
.rr

r

V V
p

y y p

 
 

 
  

 
9  Since the indirect utility function ( , )V yp  is homogeneous of degree 0 in p  and  y ,  the 

corresponding function *( )V υ  is homogeneous of degree -1, hence by Euler’s theorem,  
* *( ) / ( ).r ir

V V     υ υ   
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(5.11)                                     ( , ) min : ( ) ; 0C u u U   
x

p p x x x  

 

It indicates how much income is required to achieve the utility level U  at prices p. We have the 

following identities: 

 

 (5.12)                               ( , ( , ))C V y yp p    and     ( , ( , ))V C u up p  

 

The compensated (Hicksian) direct demand (demand-quantity) functions are obtained for an 

arbitrary utility level using Hicks (1939, 1946, p. 331)-Shephard’s (1953) lemma, that is  

  

 (5.13)                                                     
( , )

( , )h

i

i

C u
x u

p






p
p  

 

They have the property of being homogeneous of degree 0 in prices, that is ( , ) ( , )h hu ux p x p   

for every real number .  

 

In terms of budget shares, the foregoing relation becomes 

(5.14)   
( , ) /

( , ) ( , )
( , ) /

h hi i i
i i

i rr

p p C u p
s u x u

C p C u p

 
  

 
p

p p
p

*

*

1 ln
( / )

( / ) ln( )

1 ln
( / )

( / ) ln( )

i

i i

rr r
r r

C C
p y

p y C

C C
p y

p y C





 
 
 

 
 


 

 
 

 

since, by Walras’ Law,  ( , )y C u p .   

 The compensated inverse demand (demand-price) functions can be derived from the 

direct utility function written implicitly as  

 

(5.15)                                           1( , ) max : ( / ) ,   tT u t U t u t R  x x  

 

Which is decreasing in u for fixed x.  The direct utility function is implicitly defined in ( , )T u x =1.    

The compensated inverse demand (demand-price) functions can be derived as follows: 

(5.16)                                          
( , ) /

( , )
( , ) /

hi i
i

r ir

p T u x
v u

y x T u x

 
 

 
x

x
x
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Differently from the compensated demand-quantity functions ( , )h

ix up  that are homogeneous 

of degree 0 in its price arguments, the compensated demand-price functions ( , )h

iv ux  are not 

necessarily homogeneous of degree 0 in its quantity arguments.  

 

(5.17)            
( , ) /

( , )
( , ) /

hi i i i
i

r ir

p x x T u x
s u

y x T u x

 
 

 
x

x
x

1 ln

ln

1 ln

ln

i

i i

rr r
i r

T T
x

x T x

T T
x

x T x

 
 
 

 
 


 

 
 

 

which has become later known as Hotelling-Hanoch’s lemma after its rediscovery by Hotelling 

(1935) and Hanoch (1970, 1978) (see Deaton, 1979 and Weymark, 1980 for use of this lemma).    

 At initial equilibrium condition the Hicksian and Marshallian demand functions are 

related to each other as follows: 

 

(5.18)                                                  ( , ) ( , ( , ))h mu C ux p x p p  

(5.19)                                                  ( , ( , )) ( , )h mV y yx p p x p  

 

Differentiating the foregoing equation totally with respect to p yields, for all pairs of 

commodities with indexes  i,j = 1, 2, …N,   

 

(5.20)                                                        
h m m

ij ij j iyx x x x    

 

with 
( , )

;
h

h i
ij

j

x u
x

p






p ( , )
;

m
m i
ij

j

x y
x

p






p ( , )
;

m
m i
iy

x y
x

y






p
and, in the initial equilibrium state, 

( , )
.m h

j j j

j

C u
x x x

p


  



p
  

Since 
( , )h

i

i

C u
x

p






p
 by Hicks-Shephard’s Lemma, then 

2 ( , )
.

h
h i
ij

j i j

x C u
x

p p p

 
 
  

p
 The matrix 

formed by all 
2 ( , )

i j

C u

p p



 

p
 (the Hessian of the cost function) is always symmetric by Young’s 
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theorem (the order of taking partial derivatives is irrelevant). Hence the “substitution” matrix 

[ h

ijx ] is therefore always symmetric.  

The matrix [ m

ijx ] is also symmetric provided that the matrix [ m

j iyx x ] is symmetric.  In 

fact, m m

ij jix x     if and only if m m

j iy i jyx x x x     or, equivalently, 

 

(5.21)                                          h m h m

ij j iy ji i jyx x x x x x          for all i,j’s  

 

The relation m h m

ij ij j iyx x x x    has become known as the Slutsky equation and is regarded as the 

Fundamental Equation of Value Theory.  The symmetry of the matrix formed by the Slutsky 

equations across all pairs of demand functions, that is [ m

ijx ]=[ m

ijx +’ (with prime indicating a 

transposed matrix), represents the “mathematical integrability” conditions that have become 

widely known as “Antonelli conditions” (see Antonelli, 1886, equation (21b)). 

 As a corollary, Hicks (1939, 1946, p. 310) noted that the symmetry of matrix [ m

j iyx x ] 

implies that all income elasticities of demand are equal. Moreover, when income elasticities of 

demand are all equal, these must be necessarily equal to 1 under budget constraint and 

nonsatiated utility (see, for example, Carey, 1977, p. 1970).  In fact, multiplying each equality 

m m

j iy i jyx x x x   through by / i jy x x  yields equal income elasticities of demand   

[ / ] [ / ] .i iy j jy yy x x y x x     Because of the budget constraint under nonsatiation, by Walras’ 

law,  ,r rr
p x y  and differentiating this constraint with respect to y gives  

 

(5.22)                                                      1r ryr
p x    

 

Hence, in view of this result,  

                         

(5.23)                                 1r r r r
y y ry r ryr r r

r

p x p xy
x p x

y x y
          

 

This in turn implies that, under the necessary integrability conditions on the observed demand 

functions, the Engels curves are linear. 
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It can be noted that, in this case, the utility function can be written in the more general 

form [ ( ( , )],mU U u y x p  where U  is any arbitrary homothetic (homogeneous of degree r) 

function and ( ( , )mu yx p  is the aggregating quantity index function that is linear homogeneous in 

m
x . Therefore, the  income elasticity of the quantity index u  is equal to 1.  Differentiating U  

with respect to income, when all income elasticities of demand are equal to 1, that is 

/ 1 m m

iy ix y x   and then /  for all 's,m m

iy ix x y i   we have   

  

(5.24)                                         / /m m

y i iy i ii i
U U x U x y U r y        

 

with  / ,  / ,  and /m m

y i i iy iU U y U U x x x y          since, by Euler’s theorem on homogeneous 

functions of degree r, ( ) .m m m

i i u i i ui i
U x U u x U u U r         x  with /uU U u   .  

In the homothetic case, because of budget constraint and nonsatiated utility, hence 

/yU U r y  . Since ( ) / ( ) /y uU y U r u U r   x x , the quantity index function ( )u x  is related 

to the utility level by a multiplicative factor equal to /uU r , where 1uU    if  1.r    

The level of U is an indeterminate homothetic transformation of quantity level of u(x). 

However, if income elasticity of utility is equal to 1, that is /yU U y , and all income 

elasticities of demand are equal to 1, then 1r   and ( ) ( )U ux x  and the indirect utility 

function ( , )V yp  must be written as ( , ) / ( ).V y y ap p  in this case, by inversion, the expenditure 

function ( , )y C u p  can be factored into a price and a quantity component as  

( , ) ( ) ( )C u a u p p x (since ( ) ( , )).U V yx p  This factorization of the expenditure function was 

later independently rediscovered by Shephard (1953) and Afriat (1970, 1972, p. 36) and 

reproposed by Samuelson (1972) and Samuelson and Swamy (1974). 

  The sufficiency of Antonelli’s “mathematical integrability” conditions for the recovery 

of the aggregating utility function starting from the observable direct or inverse 

uncompensated demand functions can be demonstrated by making use of Green’s theorem, on 

which Antonelli (1882) himself had previously devoted special attention. The matrix [ m

ijx ] of the 

“observable” uncompensated (Marshallian) demand functions is postulated to be symmetric 

(implying that, under budget constraint, all income elasticities of the observed demand 

functions are equal to 1), that is  
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(5.25)      
( , )( , )

mm
ji

j i

x yx y

p p




 

pp
   (implying  [ / ] [ / ] 1 with )i iy j jy y r rr

y x x y x x p x y     

 

The mathematical integrability problem is the following: given the observed data on 

( , ),m yx x p  does there exist a “potential” function from which this vector can be derived10? 

Antonelli (1886) found that the answer is positive up to an arbitrary constant under the 

foregoing symmetry conditions. The “economic” part of the integrability problem is the 

following: how can we recognize the recovered potential function, if any, as a non-satiated 

utility function? Antonelli (1886) indicated that the elements of this matrix should have the 

proper algebraic sign (with a lapse, however, he indicated a wrong positive sign instead of a 

negative one and he did not specify that the substitution matrix has to be negative semi-

definite).  

There are no known general methods to find a solution of a system of partial differential 

equations. Frequently, necessary conditions (the so-called “integrability conditions”) can be 

found, but in the very special case of the foregoing symmetry conditions these indeed turn out 

to be not only necessary (as we have seen above) but also sufficient. To show this, let us 

describe the easier case of only two goods taken as a reference model.  Antonelli (1986) has 

shown that in the case of two goods, integrability is always possible, but the symmetry 

conditions lead to the additional homogeneity property.  

For mathematical convenience, we rescale all prices by dividing them by y, that is 

/ ,r rp p y  since the Marshallian demand functions are homogeneous of degree 0 in prices 

and income (Antonelli normalized prices with the price of the first commodity). By integrating 

the difference 0,m m

ij jix x  we obtain 

 

(5.26)                                                2 1
1 2

1 2

( ) 0
m m

R

x x
dp dp

p p

 
 

   

 

which, by Green’s theorem (see, for example, Verblunsky, 1949), is derivable from the 

following integral equation  

                                                           
10

  The theory of integrability of total differential equations is referred to as Frobenius Theorem. 
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(5.27)                                                         1 1 2 2 0m mx dp x dp
 

   

hence    

(5.28)                                   1 1 2 2 1 1 2 2 0m m m mx dp x dp x dp x dp
 

      

 

The functions 1 1 2 2

m mx dp x dp


  and 1 1 2 2

m mx dp x dp


  have the same value 1 2( , )a p p . The 

obtained function is well-defined, in the sense that it is independent of the path chosen (  or 

  in this case)11.  This allows us to show that   1 2 1 2( , ) / ,r ra p p p a p p   . In fact 

(5.29)         1

1 1

1 2
1 2 2 1 2

1 1 2

1 1 1

( , )( , ) ( , ) ( , )
lim lim ( , )

p

p

p p p p

a t p dta p p a p p a p p
a p p

p p p p p
 

 
  

  


 

and similarly   

 

(5.30)                                               1 2
2 1 2

2

( , )
( , )

a p p
a p p

p





.  

Thus, the symmetry conditions imposed on the uncompensated demand functions lead to a 

homogeneous function which is factorised into separable functions of prices and quantities.       

In the case of more than two goods, a model example can be developed using a more 

complex theory using the results derivable from an extended Frobenius Theorem (see, 

Hartman, 1970 and Afriat, 1977a, 1980a). By rescaling prices, r rp p y  , we may rewrite the 

expenditure function as ( , ) ( ) ( )C u a u p p x  and, therefore, ( , ) / ( )u V y y a p p  as seen 

above. But any linear transformation of utility is also a valid solution, for example 

[ ( )] ( , ) ( ) ( )U u C u a u  x p p x  provided the price component is rescaled appropriately so that  

( , ) [ ( ) / ( )] [ ( ) ( )]C U a a a u  p p p p x . This is the case of a homogeneneous utility function where 

the change in income or utility levels by an arbitrary factor brings about the change in all the 

demanded quantities by exactly the same proportion at given relative prices. It can be said that 

a necessary and sufficient condition for the utility function to be homogeneous is that the expenditure 

function can be factorable into a price and quantity level aggregates, that is ( , ) ( ) ( )C u a u p p x (see, 

for example, Afriat, 1970, 1972, p. 36). 

                                                           
11

   This is a result that was later put in evidence by Hulten (1973). 
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In subsection 4 of his work, Antonelli (1886) developed his analysis further by 

introducing a linear variation across individuals by dropping the hypothesis of all income 

elasticities of demand being equal to 1 but maintaining the hypothesis of linear relation of 

utility with income. For the thn individual the expenditure function is of the type 

( , ) ( ) ( )n n n nC u a u b p p p  (where the additive term ( )nb p reflects the thn individual’s 

“subsistence” component of the cost of living). The corresponding indirect utility function is 

therefore ( , ) [ ( )]/ ( )].n n nV y y b a p p p The resulting aggregated demand is still a linear function 

of income and can be transformed to ( ) *a u yp , where * ( )y y b  p . This is the approach to 

aggregation over individuals (or social groups) that have been later reproposed by Afriat 

(1953)(1953-1956), Gorman (1953), and Nataf (1953).  

  With a differentiable homothetic function ( )tf z , that has the following general form 

( ) [ ( )]t tf F z z   with different parameters or functional form of ( )tF   across the observation 

points t’s  where the function ( )   is homogenous of degree 1 in z, then the homothetic share 

equations defined as 

 

(5.31)                               
( ) / ln ( ) / ln

( ) / ln ( ) / ln

t t
t i i i
i t t

i i ij j

z f z f z
s

z f z f z

   
 

    
z z

z z
 

 

can be used to construct the Laspeyres- and Paasche-type bounds of the index 1 0( ) / ( )z z  , 

respectively given by 
1

0

0

i
ii

i

z
s

z
  and 

1
0

1

1
,i

ii
i

z
s

z



 
 
 
  since 

 

(5.32)  
( ) / ( / ) ( ) / ( ) /

ln ( ) / ln
( ) / ( / ) ( ) / ( )

t t
t i i i i i i
i it t

i i i ij j

z f z z F d z z z
s z

z f z dF d z z

  


  

      
     

     
z z z

z
z z z

 

 

Therefore, the index 1 0( ) / ( )z z   can be constructed using the observed data that are 

compatible with infinite number of homothetic transformations. In Antonelli’s (1886, *Engl. Tr. 

1971, p. 337]) words and mathematical symbols, “there are an infinite family of functions and if 

U  is one of these, all the others are of the form ( )s U where s is an arbitrary function” (Engl. 
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Tr. 1971, p. 337)
12

.  However, under the hypothesis of unitary income elasticities of utility and 

all demanded quantities, the compensated and uncompensated demand-quantity functions 

become, respectively, 
( )

( , ) ( )h

i

i

a
x u u

p


 



p
p x  and 

( )
( , ) .

( )

m

i

i

a y
x y

p a


 



p
p

p
 The aggregating 

weights of prices are exactly the same for the compensated and uncompensated demand 

functions: 

(5.33)         ( , ) ( , )
m h

m hi i i i
i i

p x p x
s y s y

y y
  p p

( ) /
ln ( ) / ln .

( ) /

i i
i

r rr

p a p
a p

p a p

 
   

 
p

p
p

 

This implies 

 

(5.34)  1 1

1 1

1 1 0 1 1 11 1 0

0 1 0 0 1 0 0 1 1

( ) ( ) ( ) ( )( , )

( , ) ( ) ( ) ( ) ( )

h

h

a u a uu

u a u a u

   
 

    

p p

p p

p p x p p xp x p

p x p p p x p p x
 =  1 1 1

0 1 1

( , )

( , )

h

h

u

u





p x p

p x p
  =  1 1

0 1

m

P m
P






p x

p x
 

(5.35)     0 0

0 0

1 0 1 1 0 01 0 1

0 0 1 0 0 1 0 0 0

( ) ( ) ( ) ( )( , )

( , ) ( ) ( ) ( ) ( )

a u a uu

u a u a u

   
 

    

p p

p p

p p x p p xp x p

p x p p p x p p x
 =  1 0 0

0 0 0

( , )

( , )

u

u





p x p

p x p
 = 1 0

0 0

m

L m
P






p x

p x
 

(5.36)                  1 1 0 1 0 1 1 1 1 1

0 0 0 0 0 0 1 0 0 1

( , ) ( ) ( ) ( ) ( ) ( , )

( , ) ( ) ( ) ( ) ( ) ( , )
K L K P

u a u a u u
P P

u a u a u u
 

   
    

   

p x p p x p x p x p

p x p p x p x p x p
 

 

where ( )
t ta

p
p denotes the differentiation of ( )ta p with respect to the elements of the vector .tp  

while, the “economic” integrability condition of non-concave utility imposes the LP-inequality   

 

(5.37)                                                                      P LP P  

  

in the case of demand, or P LP P  in the case of supply13. In view of the results reported above, 

this inequality becomes the long-sought observable double-bounded interval of the admissible 

numerical values of the “true” (Konüs-type) index number of consumer cost of living index 

under the integrability conditions, that is   

                                                           
12

   On this point see also Allen (1932, p. 223).  
 
13

  The strict equality P LP P  is ruled out since the demand functions considered in this context are not 

kinked and the quantity-price correspondence is uniquely determined (both demand-quantity and 
demand-price functions are assumed to be single-valued).  It must be stressed, at this point, that ruling 
out the possibility of equality between L and P  constitutes an obstacle to the definition of the “true” 
bounds when price changes are not local.   
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(5.38)                                                          P K P K L LP P P P     

 

These double-sided bounds do not define, however, a closed set of possible numerical values of 

the Konüs “true” price index numbers as the bounds in the above inequalities cannot be 

considered “true” index numbers themselves. Therefore the “true” index numbers that 

correspond to the two extreme limits of all possible values of the “true” index numbers, which 

we may call the “true” bounds, remain unknown. The size of the difference between these 

“true” bounds and the bounds of the above inequalities depends on the “(local) degree of 

accuracy of index numbers”, using the words of Samuelson,’s (1974, p. 600, fn. 1)14. This 

indeterminateness is inherent in the integrability approach, which needs to assume that the 

market quantity and price data are generated along uncompensated demand functions that are 

single-valued and Lipschitz-continuous in prices and total income.  In other words, these 

demand functions are consistent only with smooth strongly convex tastes which exclude linear 

subset of values implied by the Laspeyers and Paasche index numbers15. By contrast, with the 

general demand correspondence  where a set of alternative quantities may be determined for 

a certain level of relative prices (or vice versa), the demand-quantity or demand-price 

functions, if any,  are multi-valued. This is the case of flat/piece-wise linear or L-shaped 

indifference curves, respectively. In this general setting, in our context, we may obtain weak 

inequalities (where in (5.38) the strong inequality sign < is replaced with the weak inequality 

sign  ) defining the double bounds as “true” index numbers under the integrability conditions, 

but only in certain special cases of multivalued demand functions (see, for example, Hurwicz, 

1971, p. 210-212).  

 

 

 

 

                                                           
14   The degree of accuracy of L and P as approximating measures of the “true” bounds varies with the 
distance of the price and quantity observations under comparison. For infinitesimal changes in price and 
quantities, of course, L and P coincide with the “true” bounds. 
    
15   Noting this fact, Swamy (1984, p. 43, fn. 10) wrote: “This is not to dissuade scholars from using the 
Laspeyres and Paasche indexes, but merely to urge them to restrict the use of these indexes to local 
changes in p. These indexes can be used to determine bounds for the true index which may not be 
known”.  
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6. John Maynard Keynes’ method of limits 

 
Under the influence of Marshall (1887), who doubted that a unique and true measure of the 

price index could ever be founded, in his famous paper on index numbers winning the Adam 

Smith Prize, Keynes (1909) reached the following conclusion with reference to Walsh (1901): “If 

there was a perfect measure of general exchange value, Mr. Walsh would certainly have found 

it; but the method of exhaustion is barren, if the object of search has no real existence”(p. 135). 

If individual preferences are not of the same kind, tastes change over time or tastes differ 

across space, then aggregation problems may arise because the object of measure (the 

aggregate price index) does not exist .  

In the Treatise on Money, Keynes (1930, Vol.I, ch. 8) made in fact no explicit reference 

to the idea of a price index. Rather, he compared the purchasing power of money in two 

situations of consumption with different relative prices. The comparison was made by using the 

so-called “method of limits” (p. 98). No change in taste and proportionality of composite 

quantities (and prices) with respect to total real expenditure are assumed. These hypotheses 

imply monotonicity along a beam line where, at given relative prices, all individual quantities 

change proportionally. Two alternative ratios of real expenditures can be calculated at constant 

relative prices of the base and the current situations, respectively. It turns out that these ratios 

are the upper and lower limits (bounds) of the index of the real expenditure. Leontief (1936, 

pp. 46-47) and Afriat (1977b, pp. 108-115, 2005, pp. 91-98) noted that these limits correspond, 

respectively, to the Laspeyres and Paasche  index numbers of real expenditure. 

Keynes (1930, p. 99) observed: “This conclusion is not unfamiliar *…+. It is reached, for 

example, by Professor Pigou (Economics of Welfare, part I, chapter VI). The matter is also very 

well treated by Harberler (Der Sinn der Indexzahlen, pp. 83-94). The dependence of the 

argument, however, on the assumption of uniformity of tastes, etc., is not always sufficiently 

emphasised” (italics added). He added here, the following footnote: “Dr. Bowley in his ‘Notes 

on Index Numbers’ published in the Economic Journal, June 1928, may be mentioned amongst 

those who have expressly introduced this necessary condition”. Similar methods were used by 

other authors. In his famous review article, Frisch (1936, p. 17-27) mentioned Pigou, Haberler, 

Keynes, Gini, Konüs, Bortkiewicz, Bowley, Allen, and Staehle and discussed them briefly. 

Keynes’ method of limits has not been widely used, probably because it has not been 

immediately understood in its fundamental reasoning.  Frisch (1936, p. 26), for example, while 
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conceding the correctness of Keynes’ proof, overlooked the real sense of his proceeding by 

observing: “If we know that q0 and q1 are adapted and equivalent, the indifference-defined 

[price] index can be computed exactly, namely, as the ratio 1 1 0 0/ p q p q  [since it is assumed 

that ( , )t t uq q p  with t = 0,1]. In these circumstances, to derive limits for it is to play hide-and-

seek. It was Staehle who first pointed this out”. In fact, Keynes did not assume that q0 and q1 

were necessarily on the same indifference curve, but on homothetic indifference curves on the 

hypothesis of uniformity of tastes. This implies monotonicity along a beam (a line where all 

individual quantities change proportionately) along which the purchasing power of money can 

be compared at different prices. This reasoning was later recovered and further developed by 

Afriat (1977b, pp. 108-115).   

 

7.  Hicks’ Laspeyres-Paasche inequality condition 

 
In his Value and Capital, Hicks (1940, p. 329) considered the Laspeyres (L) > Paasche (P) strong 

inequality for a consumer who remains on the same indifference level.  However, in a chapter 

entitled “The Index-Number Theorem” of his Revision of Demand Theory (hereafter cited as 

R.D.T.), Hicks (1956, pp. 180-188) established a proposition based on the weak version the 

“Laspeyres-Paasche inequality” on the demand side 

 

(7.1)               Laspeyres (L) ≥ Paasche (P)         (for both price or quantity indexes) 
 

 
(see also Hicks, 1958, p. 140). We note, in passim, that the use of the “weak” rather than 

“strong” form of the L-P inequality was not much discussed. In a footnote, however, Hicks 

(1958) wrote that the rules of L-P inequalities that he was discussing “are much nothing more 

than a restatement of the familiar rules of Revealed Preference theory. They should, therefore, 

be completed by some discussion of the limiting cases when one or both of L and P are equal 

to 1―cases which may have some importance in practice, but which are especially interesting 

because of the role which they play in discriminating between Strong and Weak Ordering in 

that other application (R.D.T., ch. 6)” (p. 140, fn. 2).     

The (non-negative) difference between Laspeyres and Paasche indicates a substitution 

effect (S) in the case the points of observation are on the same indifference curve or the sum of 
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substitution effect and a certain income effect (I) in the case they are not on the same 

indifference curve.  

In the more general case, we have 
 
 

  (7.2)                                                                L – P = I + S 

 

 

where, L and P are the Laspeyres and Paasche indexes (here we use Hicks’ original notation). If 

the income-elasticities of all commodities are the same (that is the preferences are 

homothetic), then I  is equal to zero. In this case, the proportion of demanded quantities do 

not change as real income changes.  

We have the following possible results:  

Case 1: L – P < 0 (Hicks’ index-number theorem breaks down) meaning either that 

demand is not governed by rational behaviour and/or the preferences are non-homothetic 

with a negative and strong enough income effect so that real-income change induces a relative 

expansion in demand for those goods whose prices have relatively risen. A strong negative 

income effect offsets a positive substitution effect (I + S  < 0)  

Case 2: L – P ˃ 0 (Hicks’ index-number theorem holds), meaning either that preferences 

are homothetic (so that I = 0 and S ˃ 0) or preferences are non-homothetic (with I ≠ 0 and I + S 

˃ 0). If preferences are homothetic, implying that the income-elasticities of all commodities are 

the same then the proportion of demanded quantities do not change as real income changes. 

and  I  is equal to zero.  

The Hicks’ index-number theorem pointing to a positive LP difference (case 2) is a 

necessary and sufficient condition for using the observed data on prices and quantities to 

reconstruct “true” index numbers based on hypothetical homothetic preferences. These, 

however, do not necessarily coincide with the actual criteria governing the observed behaviour. 

In other words, the LP inequality might be the result of the concomitant “non-proportional” 

effects of real income changes as well as substitution effects under non-homothetic 

preferences (if any), but the observed data could always be rationalized by a hypothetical 

homothetic preference field if L – P ˃ 0. Under this condition we could always reconstruct 

“true” price and quantity index numbers that are consistent with that homothetic preference 

field and, as such, always respect all Fisher’s requirement, including transitivity. This is, in fact, 
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(as Keynes had recalled) the only condition under which it is possible to make such 

construction.          

 

 

8.  Samuelson’s considerations on the Laspeyres-Paasche inequality 

 
Samuelson (1974)(1984), Samuelson and Swamy (1974), and Swamy (1984), independently 

from Hicks (1956) and consistently with their “index-number theorem”, they have considered 

the following cases admitting L-shaped non-smooth indifference contours (see for example 

Samuelson, 1974, pp. 599-600):   

Case 1: L – P < 0, so that the observed relative prices are not negatively correlated with 

the observed relative quantities (as expected with homothetic changes). In such an anomalous 

case, we might obtain the following ranking: 

 

(8.1)                   
1 1 0 1 0 1 1 1 1

0 0 0 0 0 1 0 0 1

( , )

( , )
K L K P

u
P P

u
     

p q p p q p q p q

p q p q p q p q p
 

                              Laspeyres-type     Laspeyres   Paasche          Paasche-type     
                Konüs                                                           Konüs 
      
 

with 0 1( , )uq p  and 1 0( , )uq p  being the vectors of non-observed (theoretical) quantities that 

would have been demanded at the price-utility combinations 0 1( , )up  and 1 0( , ),up   

respectively.  This is a rather problematic case, where aggregation is not possible. Even Fisher’s 

“ideal” index, which consists in the geometric mean of the Laspeyres and Paasche indexes, 

falling between these two indexes, is farther than the ones from both “true” economic indexes! 

(See the numerical example given by Samuelson and Swamy, 1974, where “the Ideal index 

cannot give high-powered approximation to the true index in the general, nonhomothetic 

case”, p. 585.)   

Case 2: L – P ˃ 0. If preferences are homothetic, then I = 0 and S ˃ 0. If preferences are 

non-homothetic with real-income changes inducing a relative expansion in demand for those 

goods whose prices have relatively fallen (a case considered by Samuelson, 1974, 1984, Swamy, 

1984 and others under the name of “Engel-Gerschenkron effect”), then I  ˃ 0, which reinforces 

the positive substitution effect S ˃ 0. In these two cases, we can rely on the following ranking  
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 (8.2)                              
1 1 1 0

0 1 0 0K P K LP P



  

p q p q

p q p q
 

          Paasche      Paasche-type    Laspeyres-type  Laspeyres       
            Konüs                  Konüs 
 
 
The Laspeyres and Paasche index numbers correspond to alternative utility functions governing 

piece-wise linear demand correspondences.  

 

9. Afriat’s “giant leap” for index number theory:  “Any point in the Laspeyres-Paasche 

interval, if any” 

 
Along the lines open by Hicks (1956), the joint information given by the Laspeyres and Paasche 

indexes could provide us with an alternative information concerning two limiting functions 

allowing substitution effects. These two limiting functions are piece-wise linear boundaries of a 

set of possible homothetic utility functions which can rationalize the observed data.  Even 

though these data have been actually generated under non-homothetic preferences, the Hicks’ 

(1956) Laspeyres-Paasche inequality condition is necessary and sufficient for constructing index 

homothetic functions that are “true” for an homothetic function. It is in this vein that Afriat 

(1977b, pp. 108-115) recovered Keynes’ (1930) reasoning on the purchasing power of money 

under the hypothesis of unchanged tastes and translated it into the construction of the bounds 

of a “true” price index.   

As Samuelson and Swamy (1974, p. 570) have recognized, “*t+he invariance of the price 

index [from the reference quantity base] is seen to imply and to be implied by the invariance of 

the quantity index from the reference price base”.   This conclusion was anticipated in Afriat 

(1977b, pp. 107-112). A pure price index is consistent with a conical (homothetic) utility 

function rationalizing the observed prices and quantities in different situations. The conical 

(homothetic) utility condition which permits this determination, for arbitrary 0 1 and ,p p  is a 

non-observational object, which may remain a purely hypothetical and “metaphysical” 

concept.  

In Afriat (1977b, p. 110) words: “The conclusion *…+ is that the price index is bounded by 

the Paasche and Laspeyres indices. *…+ The Paasche index does not exceed the Laspeyers index. 

*…+ The set of values *of the “true index”+ is in any case identical with the Paasche-Laspeyres 

interval. The “true” points are just the points in that interval and no others; and none is more 
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true than another. There is no sense to a point in the interval being a better approximation to 

“the true index” than others. There is no proper distinction of ‘constant utility’ indices, since all 

these points have that distinction”. 

    The same conclusion is replicated in Afriat (2005, p. xxiii):  “Let us call the LP interval the 

closed interval with L [Laspeyers index] and P (Paasche index] as upper and lower limits, so the 

LP-inequality is the condition for this to be non-empty. While every true index is recognized to 

belong to this interval, it can still be asked what points in this interval are true? The answer is 

all of them, all equally true, no one more true than another. When I submitted this theorem to 

someone notorious in this subject area it was received with complete disbelief. 

“Here is a formula to add to Fisher’s collection, a bit different from the others. 

“Index Formula: Any point in the LP-interval, if any.”  

In my review article (Milana, 2005), it is shown that any price index number that is exact 

for a continuously  differentiable cost function ( , )t tC up  can be translated into the following 

form 

(9.1)              

1
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where, for t = 0,1,  
( , ) ( , )

/
t t t t

ti ti tjj
ti tj

C u C u
s p p

p p

 


 


p p
 

            /ti ti tj tjj
p q p q     using Shephard’s lemma ( tiq =

( , )t t

ti

C u

p





p
) 

and   is an appropriate parameter whose numerical value depends on the remainder terms 

of the two first-order approximations of C(p,u) around the base and current points of 

observations.  

The index 0,1P  is linearly homogeneous in p  (that is, if 1 0 ,p p  then 0,1 ).P   With 

,0  it reduces to a Laspeyres index number, whereas, with ,1  it reduces to a Paasche 

index number.   

The “true” exact index number, if any, is numerically equivalent to 0,1P . If the functional 

form of ( , )C up  is square root quadratic in ,p  then 0,1P  can be transformed into a Fisher 
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“ideal” index number. In this case, the index 0,1P  is numerically equivalent to a quadratic 

mean-of-order-2 index number.   

As we have already seen, the price index  is invariant with respect to the reference utility 

level if and only if ( , )C up  is homothetically separable and can be written ( , ) ( )C u c u p p , so 

that 

 

(9.2)                                /ti ti ti tj tjj
s p q p q   ( ) ( )

/ .
t t

ti tjj
ti tj

c c
p p

p p

 


 


p p   

    

Moreover, 0,1 1 1 0 0 0,1[ ( , ) / ( , )]/Q C u C u P p p   is the quantity index measured implicitly by 

deflating the index of the functional value with the price index 0,1P .  It has the meaning of a 

pure quantity index if and only if 0,1P  is a pure price index.  

The parameter  , however, remains unknown. For this reason, it is concluded that “it 

would be more appropriate to construct a range of alternative index numbers (including those 

that are not superlative), which are all equally valid candidates to represent the true index 

number, rather than follow the traditional search for only one optimal formula” (Milana, 2005, 

p. 44). Previous attempts in this direction using non-parametric approaches based on revealed 

preference techniques include Banker and Maindiratta (1988), Manser and McDonald (1988), 

Chavas and Cox (1990)(1997), Dorwick and Quiggin (1994)(1997), Hill (2000), but these do not 

provide, in general, stringent tests for homotheticity and, more importantly, the derived index 

numbers fail to satisfy the transitivity requirement.  

An alternative approach to the Afriat methodology would be that of the econometric 

estimation of the function ( )c p in order to eliminate the indeterminacy of the  “true” index 

number (see, among the first attempts, Goldberger and Gamaletsos, 1970 and Lloyd (1975), 

and, among the most recent contributions,  Blundell et al. 2003, Neary, 2004, and Oulton, 

2005), but this implies the imposition of a subjective choice of a priori functional forms where 

stochastic components of the derived demand functions are also included. The theory of 

bounds becomes more complex with the addition of the stochastic term to each demand 

function (see Phlips, 1983, pp. 145-148 for a numerical example). Moreover, critical remarks on 

this approach could be made regarding the non-identifiability of the elasticities of substitution 
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and the bias in changes in technology or consumer tastes if no a priori information is available 

(see, for example, Diamond, McFadden and Rodriguez, 1978).       

 

10.  Afriat’s price indices between several observation points 

  
The approach outlined in the previous section can be enhanced by considering more than two 

observation points simultaneously.  This idea had been advanced during the debate on index 

numbers in the early part of last century. Frisch (1936, p. 36), commenting the “iso-expenditure 

method” of Staehle (1935), wrote: “The comparison between two paths will be more exact if 

made via an intermediate path. The closer the individual paths the better. Knowing a very close 

path-system is equivalent to knowing the indifference surfaces themselves. In this case the 

indifference index can be computed exactly”.  Similar statements were written also by 

Samuelson (1947, ch. VI). It is worth quoting Samuelson and Swamy’s (1974, p. 576) own 

words: “*…+ Fisher missed the point made in Samuelson (1947, p. 151) that knowledge of a 

third situation can add information relevant to the comparison of two given situations. Thus 

Fisher contemplates Georgia, Egypt, and Norway, in which the last two each have the same 

price index relative to Georgia : 

“‘We might conclude, since ‘two things equal to the same thing are equal 
to each other,’ that, therefore, the price levels of Egypt and Norway must 
equal, and this would be the case if we thus compare Egypt and Norway via 
Georgia. But, evidently, if we are intent on getting the very best comparison 
between Norway and Egypt, we shall not go to Georgia for our weights … 
*which are+, so to speak, none of Georgia’s business.’ *1922, p. 272+. 

 

“This simply throws away the transitivity of indifference and has been led astray by Fisher’s 

unwarranted belief that only fixed-weights lead to the circular’s test’s being satisfied (an 

assertion contradicted by our /i jP P  and /i jQ Q  forms.” 

 Samuelson (1947, p. 160) had in fact clearly stated: “Knowledge of a third point may be 

utilized by the methods of the previous section; as may also knowledge of any intermediate 

expansion paths. In fact, in the limit as all intermediate expansion paths are known, i.e. as we 

know the functions 1( ,..., , )i

i nx h p p I  (i = 1, ..., n) the indifference map itself may be solved for 

implicitly”. 

One of Afriat’s main contribution in index number theory has been the development an 

original approach of constructing aggregating index numbers using all the data simultaneously 
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(see Afriat, 1967, 1981, 1984, 2005). He also has developed an efficient algorithm to find the 

minimum path of chained upper limit index numbers (the chained Laspeyres indices on the side 

of demand). In the following section this algorithm is briefly described. From these chained 

upper limit index numbers can be derived directly the chained lower limit index numbers  (the 

chained Paasche indices on the side of demand).  

 

11.  Afriat’s computational method  

In this section, for expositional convenience, some notation is changed with respect to the 

previous sections. The matrices of bilateral Laspeyres (L) and Paasche (K) index numbers 

comparing aggregate prices at the point of observation i relative to those at point j,  for i,j =1, 

2, …, N,  are respectively 

 

11 12 1

21 22 2

1 2

...

...

... ... ... ...

...

N

N

N N NN

L L L

L L L

L L L

 
 
 
 
 
 

L      and   

11 12 1

21 22 2

1 2

...

...

... ... ... ...

...

N

N

N N NN

K K K

K K K

K K K

 
 
 
 
 
 

K

 
 

where 
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jiL
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1
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  and 1ii iiL K  . 

  The Laspeyres and Paasche index numbers are usually considered as two alternative 

measures of the unknown “true” index number ijP  which can be seen as an aggregation of the 

elementary price ratios /i j
r rp p  or, alternatively, as

 
a ratio of aggregate price levels, 

i.e. / ,ij i jP P P  where iP  and jP  are “true” aggregate price levels at the ith and jth points of 

observation.  The price level ratio, always respects, by construction, the “base reversal” test, 

that is 1/ ,ij jiP P and the “circularity” test, that is .it tj ijP P P   By contrast, in the general case 

where the elementary price ratios and the relative quantity weights change, the Laspeyres and 

Paasche indices fail to be “base-“ and “chain-consistent”, that is 1/ ,ij ji ijL L K 

 
it tj ijL L L   

and it tj ijK K K  . Even more unacceptable is well-known failure of chained indexes to return 

on the previous levels if all elementary prices go back to their older levels (the so-called “drift 

effect”): 1.it ti iiL L L  
 

and 1.it ti iiK K K  
 

These failures make the two index number 

formulas, like all the other alternative formulas, unsuitable to represent a price index. 
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Nevertheless, as we shall see below, they are useful for testing the existence of the “true” price 

index and constructing its consistent bounds.  

  The so-called LP-inequality condition is that ij ijL K  on the purchaser’s side 

( ij ijL K on the supplier’s side) is necessary and sufficient for the existence of a “true” price 

index number ijP  with a numerical value falling between the Laspeyres and Paasche indices.  If 

this condition is not satisfied for all pairs of observation, then a correction of the data for 

possible inefficiency can be devised and/or an alternative more general model using a wider or 

different set of variables could be considered.   

   If the LP-inequality condition is satisfied for all pairs of points of observation, let us 

define, in the purchaser’s case (following Afriat, 1981, 1984, p. 47, 2005, p. 167, 2008), 

 

(11.1)     ...
min ...ij ik kl mj
kl m

M L L L            (minimum chained Laspeyres price index number) 

(11.2)     ...
max ...ij ik kl mj
kl m

H K K K = 
1

jiM
 (maximum chained Paasche price index number) 

 
so that we have tighter bounds with ij ij ij ij ijL M P H K     for i j  and 

1.ii ii ii ii iiL M P H K      In the case of supplier, the inequality signs and the “min/max” 

problems are reversed. 

  If the LP-inequality condition is not satisfied for some or all pairs of points of observation, 

then we could “correct” the data for inefficiency.  Diagonal elements 1iiM    and  1iiH    tell 

the inconsistency of the system.  

A critical efficiency parameter *e  can be found for correction of the L matrix.  For any 

element 1iiM  , let id  represent the number of nodes in the path ...i i , then  

 

(11.3)                                                                

1

( ) id
i iie M  

 
                                                    

If 1iiM  , let ie  take the value of 1  and then the critical efficiency parameter is determined as  

(11.4)                                                                * mini ie e  

 

The adjusted Laspeyres matrix is obtained as  
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(11.5)                                                   * */ij ijL L e         for  i j  

 
 

and the procedure goes on as before with *L in place of the original L.   

Our correction for inefficiency starts by applying Edmunds’ (1973) minimum path and 

Bainbridge’s (1978) power algorithm to the Laspeyres matrix L for all six compared years as 

promptly adapted by Afriat (1979)(1980b)(1981)(1982) for identifying the optimized chained 

indexes efficiently. It consists in raising the Laspeyres matrix to powers N times, with N being 

the number of the compared observation points (6 years in the case of Fisher’s data), in a 

modified arithmetic where + means min. In this special arithmetic, the resulting matrix M 

(corrected for inefficiency) remains unchanged if multiplied further by L, that is 

N N+1 M  L  = L = M L  .  

However, the optimized chained Laspeyres and Paasche indexes (the elements of the 

matrices L and M, respectively)  are still intransitive – like any other chained index – since they 

exhibit the triangle inequalities it tj ijM M M
 and .it tj ijH H H  The matrix of the geometric mean 

elements 1/ 2( )ij jiM H  proposed by Afriat (2008) and used by Afriat and Milana (2009) in 

practical illustrations may turn out to be only approximately transitive. 

 

12.  Proposed solution 

Chain-consistent (transitive) tight bounds that are “true” index numbers themselves can be 

derived by adopting the following new procedure. Let us assume, without loss of generality, 

that all prices are normalized with an arbitrary aggregate price level, say for example 1,P and 

define the maximum and minimum price levels    

 

(12.1)      ( 1) 1 ( 1) 1(max  / ) = (max  )i t it i t i t it t i ip M M p M H p           for i = 2, 3, ..., N; t = 1, 2, ..., N 

 
 (12.2)     ( 1) ( 1)(min / ) (min )i t it i t i t it t i ip H H p H M p               for  i = 2, 3, ..., N; t = 1, 2, ..., N 

 

 

with  1P  and 1P   being equal to 1. 

 The chain-consistent bounds of the “true” index numbers are therefore obtained as  
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(12.3)                                                /ij i jP p p     and   /ij i jP p p  
 

 
With only to observation points ( 2)N  , the index-number problem of a consumer is solved by 

finding the following bounds: 

 

(12.4)                              

12
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1

1
ij
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 
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1
ij
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K

 
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With 4 observation points, after reordered their sequence of comparison conveniently, we 

might obtain 

 

(12.5)                                

12 12 23 12 23 34

21 23 23 34

32 21 32 34

43 32 21 43 32 43

1

1

1

1

K K K K K K

L K K K
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and  

(12.6)                                   

12 12 23 12 23 34

21 23 23 34

32 21 32 34

43 32 21 43 32 43

1

1

1

1

L L L L L L

K L L L
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Chain-consistent bounds of quantity indices can be obtained by using a similar procedure 

directly or implicitly by deflating the nominal total expenditure by means of the respective 

consistent bounds ijP  and ijP .   

In fact, the single tight bounds in the matrices P  and P  satisfy all Fisher’s tests, that is  

 

1iiP       and     1iiP                for every i             Identity test 

 

ijP   and ijP   if i jp p                              General mean of price relatives or 

                                                                                       proportionality test  
(linear homogeneity in price levels) 
from which the identity test can be  
derived as a special case with 1)    

 

1ij jiP P        and    1ij jiP P        for every   ,i j      Time-reversal test 
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ij jk ikP P P    and    ij jk ikP P P    for every , ,i j k    Chain (Circular-reversal) or transitivity test 

 

 *
ij ijP P      and   *

ij ijP P     where   *
t tp p    and   * /t tq q   for ,t i j  

                                                                                   Dimensional invariance test 

/ij ij i jP Q M M    and   /ij ij i jP Q M M  for every i,j , where Mt is nominal total expenditure 

           at t = i,j     (Weak) factor-reversal test16 
 
 

This is a remarkable result, since we have achieved the solution of the index-number problem 

following Samuelson and Swamy (1974), who have noted: “Although Ragnar Frisch (1930) has 

proved that, when the number of goods exceeds unity, it is impossible to find well-behaved 

formulae that satisfy all of these Fisher criteria, we derive here canonical index numbers of 

price and quantity that do meet the spirit of all of Fisher’s criteria in the only case in which a 

single index number of the price of cost of living makes economic sense―namely, the 

(“homothetic”) case of unitary income elasticities in which at all levels of living the calculated 

price change is the same. This seeming contradiction with Frisch is possible because the price 

and quantity variables are not here allowed to be arbitrary independent variables, but rather 

are constrained to satisfy the observable demand functions which optimize well-being” 

(emphasis in the original text) (p. 566).  A diagrammatical explanation is given in the Appendix.  

   The critical remarks made by Pfouts (1966) on the excess rigidity imposed on the “true” 

index number formula with all Fisher’s requirements do not apply here.  Since the matrix of 

bilateral ratios of price (or quantity) levels is singular by construction, that is its determinant is 

zero since the matrix rows are linearly dependent, this would require too much a restrictive 

condition for an index number formula to exist (see also von der Lippe, 2007, pp. 76-77).  The 

foregoing matrices of bounds are not defined by imposing the same mathematical formula to 

each element, but are derived by finding directly numerical values within certain conditions to 

be satisfied with the data.     

  As clarified also by the recent theoretical literature (see, in particular, van Veelen, 2002, 

Quiggin and van Veelen, 2007, van Veelen and van der Weide, 2008, Crawford and Neary, 

2008), the apparent contradiction between the impossibility theorem and the solution of the 

                                                           
16   Samuelson and Swamy (1974, p. 575) have introduced the concept of the weak factor-reversal test, 
as opposed to the strong factor-reversal test: “we drop the strong requirement that the same formula 
should apply to q as to p. A man and wife should be properly matched; but that does not mean I should 
marry my identical twin!” 
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index-number problem reflects essentially the conflict between changing tastes that are 

consistent with traditional index number formulas and constant tastes that are implied in the 

construction of a “well-behaved” (homothetic) index. 

  The usual undesirable properties of chained index number formulas, in particular, the 

“drift” effect and intransitivity (see for example von der Lippe,  2001 for a critical position 

against the use of such indices) are not met with the algorithm proposed here, which 

constructs chained numbers rather than chained formulas.  Moreover, other methods based on 

linking bilateral index numbers in a multilateral context, such as those based on a tree 

structure of chained bilateral comparisons according to the minimum distance in the weights 

(as, for example, the “minimum spanning tree” used by Hill, 1999, 2004), do not guarantee the 

minimum or maximum chaining paths needed to define the tightest bounds.    

  Most of the OECD countries currently use chained Laspeyres production volume 

indexes on a year-to-year basis in the national accounts statistics (see the survey by Schreyer, 

2004). These do not coincide with the tight bounds defined here. The proposed procedure is 

based on replacing the idea of “ideal” formula that is good for all seasons with a more 

pragmatic algorithm producing the double-side limits of all possible “true” indexes aggregating  

the available data.  It  could be used to find tight “true” bounds of alternative values of real 

GDP and its implicit deflator, standard of living and the cost-of-living index, and other 

aggregate economic variables as it is becoming customary in national and international 

institutions. Point estimations, when needed, could however be constructed by taking the 

geometric average of the tight “true” bounds satisfying all Fisher’s tests, including transitivity.  

 

13. An empirical illustration using Irving Fisher’s data 

In his classical quest for the ideal index number formula, what results would Irving Fisher 

(1922) obtain with his data if he used our method outlined above? Would these data pass the 

LP-inequality test? Would his ranking order of index-number formulas need to be revised with 

reference to our results?  We now try to answer the first two questions leaving the third 

question to be answered in another occasion for lack of space here.  

 The original data on consumer prices and quantities used by Fisher (1922) are reported in 

Tables 1 and 2, respectively. A brief description of the data is given by Fisher (1922, p. 14) 

himself. These data refer to 36 price and quantity movements in six consecutive years, from 

1913 to 1918. All the empirical results presented in Fisher (1922) are originated from these 
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data. They were the basic information for calculating alternative index numbers using 134 

alternative formulas. These were a part of a much wider database collected by Wesley C. 

Mitchel for the US War Industry Board, for wholesale prices and quantities of 1474 

commodities marketed in the United States.  

 The chief reason for Irving Fisher to employ these data is that they were, at the time, the 

only ones that included figures for quantities as well as prices for each traded commodities.  

The author emphasized that this little sample provided a good basis for comparison of the 

alternative formulas because the period covered was one of “extraordinary dispertion in the 

movements both of prices and quantities”17 (p. 14). Using these data, he searched for the ideal 

formula which could minimize an important source of error: “Of the four sources of error, 

formula, assortment, number of commodities, and original data, the two first are usually most 

at fault. The error in the Sauerbeck-Statist index number today reaches over 35 per cent from 

the first source alone” (p. 349).    

 Our computations of the bilateral Laspeyres and Paasche matrices on the data used by 

Fisher (1922) are shown and compared in Table 3. We note that only one third of bilateral 

comparisons pass the LP-inequality test, revealing that these data are inconsistent with 

aggregation conditions. As shown above, under these circumstances, even Fisher “ideal” index 

number and his proposed ranking of alternative formulas would lack economic ground. To our 

knowledge, this important fact about Fisher’s data and his computed index numbers has been 

overlooked until now.  

 The computations of the optimized chained indexes, the elements of the matrices M  and 

H,  have been made by means of our FORTRAN program previously written for the numerical 

illustrations in Afriat and Milana (2009, pp. 83-86).  The inconsistency is reflected by the 

diagonal elements less than 1 resulting in the first round of powers. The computations are 

shown in  Table 4, whereas the matrices M  and H (with Hij = 1/Mji) resulting after correction 

for inefficiency are reported in Table 5. For comparison with Fisher “ideal” index number, also 

the geometric mean of the elements of M and H is reported. We may note that, since the 

inconsistency in transitivity of the elements of M and that of the corresponding elements of H 

partially offset each other. 
                                                           
17

  It turns out, however, that the wide dispersion in the movements of prices and quantities in the 
sample used is not sufficient to establish a conclusive ranking in performance of the alternative 
formulas. The direction of change in relative prices and quantities of the single commodities may also 
affect the ranking itself of the compared formulas.   
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  The chain-consistent “true” bounds of the relative price levels are reported in Table 6. 

The cross ratios of these “true” bounds are shown in Table 7, where also the geometric 

average of these index numbers is reported for immediate comparison with the Fisher “ideal” 

index numbers.  

 It is easy to verify that, differently from the Fisher’s “ideal” index number, our proposed 

indices pass all Fisher’s tests, including transitivity. Moreover, these turn out to be invariant 

with respect to the base year, a requirement considered as early as Edgeworth (1896, p. 137, 

fn. 5), whereas it is known that  Fisher “ideal” index generally fails this test. It is noteworthy  

how this index appears to vary as the base year changes also in the case of Fisher’s data (see 

our computations in Table 7). Also this fact seems to have been overlooked by Fisher.  

 Our proposed bounds are optimized chained indexes. Therefore, they can be more 

consistently compared with traditional chained index numbers rather than fixed-based 

indexes. Table 7 includes comparisons of the geometric mean of these bounds with chained 

“ideal” Fisher, chained Laspeyres, and chained Paasche as well as with fixed-based Laspeyres 

and Paasche index numbers using Irving Fisher’s data.  Interesting points are worth noting: (i) 

chained “ideal” Fisher is outside the fixed-based LP-inequality in the last two compared years; 

(ii) the geometric mean of our proposed bounds are outside the fixed-based LP-inequality in 

the last compared year, thus confirming that this inequality cannot be considered the proper 

double-sided limits of the set of possible “true” index numbers when it does not have the 

proper algebraic sign; (iii)  the geometric mean of our proposed bounds is systematically below 

the chained “ideal” Fisher and chained Laspeyres and Paasche (except a couple of years where 

the chained Laspeyres is lower than the former index by around 0.20 per cent).        

 More importantly, our proposed “true” bounds are fully transitive by construction. After a 

correction for inconsistency with the LP-inequality requirement, these indices have a full 

economic meaning.  The relative difference between Fisher’s “ideal” index and the geometric 

mean of the two bounds are, in some cases, as high as more than half percentage point and 

shows a significant variation over the whole period.                  

 

14. Conclusion 

 

An historical account of the economic index-number problem has brought us to the 

determination that a solution can be found which satisfies all the traditional requirements. This 
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is, however, achieved at the cost of some compromises. It has been shown that, under easily 

testable conditions, the observed data could be rationalized by a family of well-behaved index 

numbers regardless the actual determinants that have generated them. This solution is 

achieved by maintaining a certain indeterminacy regarding the numerical values of “true” 

indexes, but this is restricted within tight bounds which can be considered themselves as 

“true” index numbers. However, in cases were a point estimation is needed for practical or 

institutional purposes, a geometric average of these bounds can always be defined and 

calculated in a way to respect all Fisher’s tests and all the other important requirements for a 

typical economic index number. 

 From the perspective of the history of economic thought, the accumulated knowledge in the 

field of index number theory suggests that the search for the ideal index-number formula has 

come to a dead end. It is well known that the index-number problem is nothing more than an 

aggregation problem and economic theory has given us a simple and powerful devise to find a 

solution: the conical or homothetic aggregating function. Our solution is constructed using an 

algorithm rather than a simple formula to recover the boundaries of the family of all possible 

aggregating functions if the conditions are satisfied with the available data. A new paradigm is 

making his way slowly but inexorably along the path open with Samuelson’s revealed-

preference approach more than fifty years ago and its later reformulation by Afriat. We 

foresee that it will eventually replace the old formula-based paradigm completely and 

dominate the field for at least the whole new century.             
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Appendix:  A diagrammatical representation 

 

The solution of chain-consistent tight bounds appear to satisfy all Fisher’s test. This result seems to 

contrast the conclusions derived from Frisch’s “impossibility theorem” in index number theory,  but 

is perfectly in line with Samuelson and Swamy (1974, p. 566), who have claimed.  We could remark 

that, while Frisch (1930) was referring to the “impossibility to find well-behaved formulae our 

solution regards index numbers. His “impossibility theorem” is still valid because it reveals only that 

applying the same formula for comparisons back and forth between pairs of observation points is 

self-contradictory.  This can be clearly shown also with the aid of a geometrical representation.   

 

 We cannot deal with a single measure of the “true” index number just because this remains 

unknown, but we can construct two bounds (the tight upper and lower bounds) of the closed set of 

possible numerical values of this index number, if the conditions of its existence are satisfied. Given 

that approximation is reliable only if changes are close to infinitesimal, The toll we pay for satisfying 

all Fisher’s tests and overcome the “impossibility theorem” is to deal with two bound estimates 

rather than an “ideal” single measure, which ends unavoidably to fail to satisfy at least one of those 

requirements.      

 

 Afriat’s original method is to find whether a well behaved utility function can be 

reconstructed that is consistent with the finite set of observed choices satisfying the axioms of 

revealed preference   (Afriat, 1967, Varian, 1982) testing the demand data for consistency with a 

multi-valued (piecewise linear ) utility function.  This, however, is not unique. There are generally 

other utility functions and the recoverability problem becomes how to reconstruct the entire set of 

these utility functions that would fit the observed data simultaneously.  

 

  For any given 0q , there is the set of 'sq  that are revealed preferred to 0q  0( ( ))RP q  and 

set of 'sq  that are revealed worse than 0q  0( ( )).RW q  A simple example is given in Figure 1. The 

area corresponding to the set of possible utility functions which satisfy the revealed preference test  

is that which does not belong to 0( )RP q  and 0( ).RW q    

 

 The necessary and sufficient condition for the existence of a price and quantity aggregate 

measure is that the observed data are consistent with homothetic preferences. Following Keynes’ 
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(1930, pp. 105-106) “method of limits”, as re-exposed by Afriat (1977, pp. 108-115), we may ask 

whether it is possible to identify the area corresponding to the set of money metric utility functions 

passing through the reference point. The same observations considered in Figure 1 are shown in 

Figure 2, where this area is restricted between upper and lower bounds given by the expenditure 

function at the based period inflated by the Laspeyres and Paasche price indexes, respectively.   We 

may note that these bounds are generally tighter than the limits represented with revealed-

preference methods.   

 

  It is straightforward to see that, by shifting the piece-wise linear isoquant along the P-ray 

from crossing  
0q  up to crossing  

1q  in Figure 2, an upper bound (Laspeyres-type) isoquant can be 

as seen from  1q  as the base observation point. Similarly, by shifting the upper bound (Laspeyres-

type) isoquant along the L-ray  from that crossing  0q  up to that crossing  1,q  we end up to a lower 

bound (Paasche-type) isoquant as seen from 1q  as the base observation point. 

   

 The inclusion of a third point of observation, as that between the two former points in 

Figure 3, permits us to track the isoquant or curve of indifference using hypothetical budget lines 

passing through the base points in an approximating path followed by the optimal chained 

Laspeyres indexes. These make up the upper bound which is tighter than the bilateral fixed-based  

Laspeyres index. The same applies to the approximation obtained by updating the value of the 

expenditure with the optimal Paasche indexes. Chaining these yields the lower bound that is  

generally tighter than the bilateral fixed-based Paasche indexes. 
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                          “Revealed-preference” method (as outlined by Varian, 2006) 

 

                         Figure 1:  RP(q0) and RW(q0): simple case of “revealed preference test. 

                                                   

Keynes’ method of limits 

 

                                  Figure 2:  Laspeyres- and Paasche-type bounds  
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AC:   Observed increase in nominal expenditure from L to P (at the relative  
 Prices represented by the slope of AL and CP, respectively);  
ABP: Price component of the increase in nominal expenditure measured with 

          the direct Paasche index number (implicit Laspyeres index number); 
ABL: Price component of the increase in nominal expenditure measured with  

          the direct Laspeyres index number (implicit Paasche index number); 
BPC:  Quantity component of the increase in nominal expenditure measured  

           with the implicit Paasche index number (direct Laspeyres index 
           number); 
BLC:  Quantity component of the increase in nominal expenditure measured 

           with the implicit Laspeyres index number (direct Paasche index 
            number); 
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Samuelson-Afriat tight bounds 

 

                              Figure 3:  Tightening the bounds by adding a third observation point  

A
*
PB : Price component of the increase in nominal expenditure measured with 

          the chained Paasche index number (implicit chained Laspeyres index 
          number); 

A
*
LB : Price component of the increase in nominal expenditure measured with  

          the chained Laspeyres index number (implicit chained Paasche index 
           number). 
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Table 1. Prices of the 36 Commodities, 1913-1918 
 

                                                 1                      2                     3                      4                     5                      6 
                   p0 1913  p1 1914  p2 1915  p3 1916  p4 1917  p5 1918 

 

01 Bacon            0.1236   0.1295   0.1129   0.1462   0.2382   0.2612 

02 Barley           0.6263   0.6204   0.7103   0.8750   1.3232   1.4611 

03 Beef             0.1295   0.1364   0.1289   0.1382   0.1672   0.2213 

04 Butter           0.2969   0.2731   0.2743   0.3179   0.4034   0.4857 

05 Cattle          12.0396  11.9208  12.1354  12.4375  15.6354  18.8646 

06 Cement           1.5800   1.5800   1.4525   1.6888   2.0942   2.6465 

07 Coal, anth.      5.0636   5.0592   5.0464   5.2906   5.6218   6.5089 

08 Coal, bit.       1.2700   1.1700   1.0400   2.0700   3.5800   2.4000 

09 Coffe            0.1113   0.0816   0.0745   0.0924   0.0929   0.0935 

10 Coke             3.0300   2.3200   2.4200   4.7800  10.6600   7.0000 

11 Copper           0.1533   0.1318   0.1676   0.2651   0.2764   0.2468 

12 Cotton           0.1279   0.1121   0.1015   0.1447   0.2350   0.3178 

13 Eggs             0.2468   0.2660   0.2597   0.2945   0.4015   0.4827 

14 Hay             11.2500  12.3182  11.6250  10.0625  17.6042  21.8958 

15 Hides            0.1727   0.1842   0.2076   0.2391   0.2828   0.2144 

16 Hogs             8.3654   8.3608   7.1313   9.6459  15.7047  17.5995 

17 Iron bars        1.5100   1.2000   1.3700   2.5700   4.0600   3.5000 

18 Iron, pig       14.9025  13.3900  13.5758  18.6708  38.8082  36.5340 

19 Lead (white)     0.0676   0.0675   0.0698   0.0927   0.1121   0.1271 

20 Lead             0.0437   0.0386   0.0467   0.0686   0.0879   0.0741 

21 Lumber          90.3974  90.9904  90.5000  91.9000 105.0400 121.0455 

22 Mutton           0.1025   0.1010   0.1073   0.1250   0.1664   0.1982 

23 Petroleum        0.1233   0.1200   0.1208   0.1217   0.1242   0.1695 

24 Pork             0.1486   0.1543   0.1429   0.1618   0.2435   0.2495 

25 Rubber           0.8071   0.6158   0.5573   0.6694   0.6477   0.5490 

26 Silk             3.9083   4.0573   3.6365   5.4458   5.9957   6.9770 

27 Silver           0.5980   0.5481   0.4969   0.6566   0.8142   0.9676 

28 Skins            2.5833   2.6250   2.7188   4.1729   5.5208   5.5625 

29 Steel rails     28.0000  28.0000  28.0000  31.3333  38.0000  54.0000 

30 Tin, pig        44.3200  35.7000  38.6600  43.4800  61.6500  87.1042 

31 Tin plate        3.5583   3.3688   3.2417   5.1250   9.1250   7.7300 

32 Wheat            0.9131   1.0412   1.3443   1.4165   2.3211   2.2352 

33 Wool             0.5883   0.5975   0.7375   0.7900   1.2841   1.6600 

34 Lime             1.2500   1.2500   1.2396   1.4050   1.7604   2.3000 

35 Lard             0.1101   0.1037   0.0940   0.1347   0.2170   0.2603 

36 Oats             0.3758   0.4191   0.4958   0.4552   0.6372   0.7747 

 

Source: Irving Fisher, The Making of Index Numbers, Appendix VI, Table 63, 

p.489. 
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Table 2. Quantities Marketed of the 35 Commidities, 1913-1918 (millions of units) 
 

                                                     1                      2                      3                     4                      5                      6 
                     q0 1913  q1 1914  q2 1915  q3 1916  q4 1917  q5 1918 

 

01 Bacon, lb.         1077.00  1069.00  1869.00  1481.00  1187.00  1408.00 

02 Barley, bu.         178.20   195.00   228.90   182.30   209.00   256.40 

03 Beef, lb.          6589.00  6522.00  6820.00  7134.00  8417.00 10244.00 

04 Butter, lb.        1757.00  1780.00  1800.00  1820.00  1842.00  1916.00 

05 Cattle, cwt.         69.80    67.60    71.50    83.10   103.50   118.30 

06 Cement, bbl.         85.80    84.40    84.40    92.00    88.10    69.40 

07 Coal, anth., ton.     6.90     6.86     6.78     6.75     7.83     7.69 

08 Coal, bit., ton     477.00   424.00   443.00   502.00   552.00   583.00 

09 Coffe, lb.          863.00  1002.00  1119.00  1201.00  1320.00  1144.00 

10 Coke, short ton.     46.30    34.60    41.60    54.50    56.70    55.00 

11 Copper, lb.         812.30   620.50  1043.50  1420.80  1316.50  1648.30 

12 Cotton, lb.        2785.00  2820.00  2838.00  3235.00  3423.00  3298.00 

13 Eggs, doz.         1722.00  1759.00  1791.00  1828.00  1882.00  1908.00 

14 Hay, ton.            79.20    83.00   103.00   111.00    94.90    89.80 

15 Hides, lb.          672.00   924.00  1227.00  1212.00  1113.00   663.00 

16 Hogs, cwt.           68.40    65.10    76.80    86.20    67.80    82.40 

17 Iron bars, cwt.      79.20    50.40    82.60   132.40   133.00   132.00 

18 Iron, pig,, ton.     31.00    23.30    29.90    39.40    38.70    38.10 

19 Lead (white), lb.   286.00   318.00   312.00   258.00   230.00   216.00 

20 Lead, lb.           823.70  1025.60  1014.10  1104.50  1099.80  1083.00 

21 Lumber, M bd, ft.    21.80    20.70    20.50    22.30    21.20    19.20 

22 Mutton, lb.         732.00   734.00   629.00   618.00   474.00   513.00 

23 Petroleum, gal.   10400.00 11200.00 11840.00 12640.00 14880.00 15680.00 

24 Pork, lb.          9211.00  8871.00  9912.00 10524.00  8427.00 11426.00 

25 Rubber, lb.         115.80   136.60   231.40   258.00   375.90   351.50 

26 Silk, lb.            19.10    19.10    20.00    24.40    29.40    27.10 

27 Silver, oz.         146.10   144.00   173.40   139.30   133.60   140.70 

28 Skins, skin           6.70     5.90     4.30     5.60     2.70     0.70 

29 Steel rails, ton.     3.50     1.95     2.20     2.86     2.94     2.37 

30 Tin, pig, cwt.        1.04     0.95     1.16     1.43     1.56     1.59 

31 Tin plate, cwt.      15.30    17.30    19.70    22.80    29.50    28.00 

32 Wheat, bu.          555.00   654.00   588.00   642.00   605.00   562.00 

33 Wool, lb.           448.00   550.00   699.00   737.00   707.00   752.00 

34 Lime, bbl., 300 lb.  23.00    22.50    25.00    27.10    24.00    20.20 

35 Lard, lb.          1100.00   955.00  1050.00  1141.00   927.00  1107.00 

36 Oats, bu.          1122.00  1240.00  1360.00  1480.00  1587.00  1538.00 

 

Source: Irving Fisher, The Making of Index Numbers, Appendix VI, Table 64, 

p.490. 
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                             Table 3. Laspeyres and Paasche matrices and LP-inequality 
 
                                                                Laspeyres matrix (*) 

 

1 2 3 4 5 6 

1 1.00000 0.99684 0.99901 0.87457 0.62093 0.56367 

2   0.99931 1.00000 0.99987 0.87263 0.61694 0.56051 

3 0.99672 1.00200 1.00000 0.87378 0.61900 0.56005 

4 1.14081 1.13344 1.13673 1.00000 0.70872 0.64315 

5 1.62067 1.59943 1.61430 1.42725 1.00000 0.90805 

6 1.77865 1.77036 1.78189 1.56539 1.09922 1.00000 

 

 

                              Paasche matrix (**) 

 

1 2 3 4 5 6 

1 1.00000 1.00069 1.00329 0.87657 0.61703 0.56222 

2 1.00317 1.00000 0.99801 0.88227 0.62522 0.56486 

3 1.00099 1.00013 1.00000 0.87972 0.61946 0.56120 

4 1.14342 1.14595 1.14445 1.00000 0.70065 0.63882 

5 1.61050 1.62089 1.61550 1.41100 1.00000 0.90973 

6 1.77410 1.78410 1.78555 1.55484 1.10126 1.00000 

 

     (*) ,i jL  where  row i  refers to the comparison year and column  j refers to the base year 

               (**) , ,i jK where  row i refers to the comparison year and column j refers to the base year 

       

                                                                       LP-inequality: 
                                                       Laspeyres-Paasche difference 

    
 

1 2 3 4 5 6 

1 0.00000 -0.00385 -0.00428 -0.00200 0.00390 0.00145 

2 -0.00386 0.00000 0.00186 -0.00964 -0.00828 -0.00435 

3 -0.00427 0.00187 0.00000 -0.00594 -0.00046 -0.00115 

4 -0.00261 -0.01251 -0.00772 0.00000 0.00807 0.00433 

5 0.01017 -0.02146 -0.00120 0.01625 0.00000 -0.00168 

6 0.00455 -0.01374 -0.00366 0.01055 -0.00204 0.00000 

 

 

 

                            Laspeyres/Paasche ratio 
 

 

1 2 3 4 5 6 

1 1.00000 0.99615 0.99573 0.99772 1.00632 1.00258 

2 0.99615 1.00000 1.00186 0.98907 0.98676 0.99230 

3 0.99573 1.00187 1.00000 0.99325 0.99926 0.99795 

4 0.99772 0.98908 0.99325 1.00000 1.01152 1.00678 

5 1.00631 0.98676 0.99926 1.01152 1.00000 0.99815 

6 1.00256 0.99230 0.99795 1.00679 0.99815 1.00000 
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                   Table 4. Steps of computations of matrix M 
 

 

STARTING LASPEYRES MATRIX L 

  

POWER  1 

  

1.0000000 0.9968400 0.9990100 0.8745700 0.6209300 0.5636700 

0.9993100 1.0000000 0.9998700 0.8726300 0.6169400 0.5605100 

0.9967200 1.0020000 1.0000000 0.8737800 0.6190000 0.5600500 

1.1408100 1.1334400 1.1367300 1.0000000 0.7087200 0.6431500 

1.6206700 1.5994300 1.6143000 1.4272500 1.0000000 0.9080500 

1.7786500 1.7703600 1.7818900 1.5653900 1.0992200 1.0000000 

  

  

POWER  2 

  

0.9957332 0.9912726 0.9941500 0.8698725 0.6149905 0.5587388 

0.9955050 0.9867523 0.9919447 0.8726300 0.6161238 0.5599772 

0.9961329 0.9900472 0.9932519 0.8717014 0.6156182 0.5600500 

1.1326579 1.1334400 1.1332927 0.9890737 0.6992645 0.6353045 

1.5983264 1.5994300 1.5992221 1.3957106 0.9867523 0.8964965 

1.7691385 1.7581254 1.7701299 1.5448692 1.0922059 0.9923045 

  

  

POWER  3 

  

0.9905886 0.9836342 0.9888102 0.8650142 0.6115557 0.5556182 

0.9860715 0.9854469 0.9866241 0.8610697 0.6087670 0.5530846 

0.9893640 0.9846382 0.9899185 0.8639449 0.6107997 0.5549313 

1.1283452 1.1184246 1.1243098 0.9890737 0.6983394 0.6347006 

1.5922406 1.5782413 1.5865461 1.3957106 0.9854469 0.8956443 

1.7569123 1.7469069 1.7560992 1.5341930 1.0846579 0.9854469 

  

  

POWER  4 

  

0.9829555 0.9781406 0.9832876 0.8583487 0.6068433 0.5513368 

0.9823169 0.9736802 0.9788038 0.8599305 0.6079616 0.5523528 

0.9839588 0.9769314 0.9820720 0.8592248 0.6074627 0.5518995 

1.1176529 1.1169449 1.1182792 0.9759708 0.6900009 0.6268882 

1.5771523 1.5761533 1.5780361 1.3772207 0.9736802 0.8846200 

1.7457015 1.7348344 1.7439632 1.5244034 1.0777367 0.9791588 

  

  

POWER  5 

  

0.9774657 0.9706034 0.9757107 0.8535548 0.6034541 0.5482576 

0.9730083 0.9723920 0.9735536 0.8496625 0.6007023 0.5457575 

0.9762573 0.9715940 0.9767066 0.8524996 0.6027080 0.5475798 

1.1133973 1.1036081 1.1094153 0.9746797 0.6890880 0.6260588 

1.5711472 1.5573333 1.5655281 1.3753987 0.9723920 0.8834497 

1.7336374 1.7237645 1.7328350 1.5138685 1.0702887 0.9723920 

  

  

POWER  6 

  

0.9699336 0.9651825 0.9702614 0.8469776 0.5988040 0.5440329 

0.9693035 0.9607812 0.9658369 0.8485385 0.5999075 0.5450355 

0.9709236 0.9639893 0.9690619 0.8478421 0.5994152 0.5445882 

1.1028466 1.1021480 1.1034646 0.9630415 0.6808600 0.6185834 

1.5562587 1.5552730 1.5571309 1.3589758 0.9607812 0.8729009 

1.7225751 1.7118519 1.7208598 1.5042086 1.0634592 0.9661872 
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INCONSISTENCY CASE SINCE SOME DIAGONAL ELEMENTS < 1 

DIAGONAL ELEMENTS < 1 (IN THIS CASE ALL) 

ASSOCIATED COST EFFICIENCY e(i) 

 

i       M(i,i)    d(I)   e(i)= M(i,i)^(1/d(i)) 

 

1     0.9699336     7         0.995648               

2     0.9607812    12         0.996672 

3     0.9690619    12         0.997385 

4     0.9630415     8         0.995304 

5     0.9607812     6         0.993354 

6     0.9661872     6         0.994283 

 

CRITICAL COST EFFICIENCY e* = MINi e(i)    FOR i = 1,2, ... 6 

= e(5) = 0.993354 

 

USED TO DETERMINE THE ADJUSTED LASPEYRES MATRIX  

 

L*(i,j) = L(i,j)/e*      FOR i   j 

 

 

A NEW POWER ITERATION PROCEDURE FOLLOWS:  

 

================================================================ 

STARTING LASPEYRES MATRIX L* 

  

POWER  1 

  

1.0000000 1.0035092 1.0056938 0.8804212 0.6250843 0.5674412 

1.0059958 1.0000000 1.0065595 0.8784682 0.6210676 0.5642600 

1.0033884 1.0087038 1.0000000 0.8796259 0.6231413 0.5637969 

1.1484424 1.1410231 1.1443352 1.0000000 0.7134616 0.6474529 

1.6315129 1.6101308 1.6251003 1.4367988 1.0000000 0.9141252 

1.7905498 1.7822044 1.7938115 1.5758630 1.1065742 1.0000000 

  

  

POWER  2 

  

1.0000000 1.0035092 1.0056938 0.8804212 0.6232470 0.5662401 

1.0059958 1.0000000 1.0052621 0.8784682 0.6210676 0.5642600 

1.0033884 1.0033391 1.0000000 0.8796259 0.6231413 0.5637969 

1.1478644 1.1410231 1.1443352 1.0000000 0.7086525 0.6438337 

1.6197847 1.6101308 1.6206924 1.4144487 1.0000000 0.9085324 

1.7905498 1.7817292 1.7938115 1.5656099 1.1065742 1.0000000 

  

  

POWER  3 

  

1.0000000 1.0035092 1.0056938 0.8804212 0.6232470 0.5662401 

1.0059958 1.0000000 1.0052621 0.8784682 0.6210676 0.5642600 

1.0033884 1.0033391 1.0000000 0.8796259 0.6231413 0.5637969 

1.1478644 1.1410231 1.1443352 1.0000000 0.7086525 0.6438337 

1.6197847 1.6101308 1.6186034 1.4144487 1.0000000 0.9085324 

1.7905498 1.7817292 1.7915824 1.5651925 1.1065742 1.0000000 

  

  

POWER  4 

  

1.0000000 1.0035092 1.0056938 0.8804212 0.6232470 0.5662401 

1.0059958 1.0000000 1.0052621 0.8784682 0.6210676 0.5642600 

1.0033884 1.0033391 1.0000000 0.8796259 0.6231413 0.5637969 

1.1478644 1.1410231 1.1443352 1.0000000 0.7086525 0.6438337 

1.6197847 1.6101308 1.6186034 1.4144487 1.0000000 0.9085324 

1.7905498 1.7817292 1.7911048 1.5651925 1.1065742 1.0000000 

  

  

POWER  5 
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1.0000000 1.0035092 1.0056938 0.8804212 0.6232470 0.5662401 

1.0059958 1.0000000 1.0052621 0.8784682 0.6210676 0.5642600 

1.0033884 1.0033391 1.0000000 0.8796259 0.6231413 0.5637969 

1.1478644 1.1410231 1.1443352 1.0000000 0.7086525 0.6438337 

1.6197847 1.6101308 1.6186034 1.4144487 1.0000000 0.9085324 

1.7905498 1.7817292 1.7911048 1.5651925 1.1065742 1.0000000 

  

  

POWER  6 

  

1.0000000 1.0035092 1.0056938 0.8804212 0.6232470 0.5662401 

1.0059958 1.0000000 1.0052621 0.8784682 0.6210676 0.5642600 

1.0033884 1.0033391 1.0000000 0.8796259 0.6231413 0.5637969 

1.1478644 1.1410231 1.1443352 1.0000000 0.7086525 0.6438337 

1.6197847 1.6101308 1.6186034 1.4144487 1.0000000 0.9085324 

1.7905498 1.7817292 1.7911048 1.5651925 1.1065742 1.0000000 

  

 

 

                                                       Table 5. Matrices M and H 
 

 
                         Matrix M (*)  adjusted for inefficiency 

 
 

1 2 3 4 5 6 

1 1.00000 1.00351 1.00569 0.88042 0.62325 0.56624 

2 1.00600 1.00000 1.00526 0.87847 0.62107 0.56426 

3 1.00339 1.00334 1.00000 0.87963 0.62314 0.56380 

4 1.14786 1.14102 1.14434 1.00000 0.70865 0.64383 

5 1.61978 1.61013 1.61860 1.41445 1.00000 0.90853 

6 1.79055 1.78173 1.79110 1.56519 1.10657 1.00000 

   

       

 
                          Matrix H(**) adjusted for inefficiency 

 
 

1 2 3 4 5 6 

1 1.00000 0.99404 0.99662 0.87118 0.61737 0.55849 

2 0.99650 1.00000 0.99667 0.87641 0.62107 0.56125 

3 0.99434 0.99477 1.00000 0.87387 0.61782 0.55831 

4 1.13582 1.13835 1.13685 1.00000 0.70699 0.63890 

5 1.60450 1.61013 1.60477 1.41113 1.00000 0.90369 

6 1.76604 1.77223 1.77369 1.55320 1.10068 1.00000 

 

 

        (*) , ,i jM  where row  i  refers to the comparison year and column  j refers to the base year 

                      (**) , ,i jH  where row i  refers to the comparison year and column j refers to the base year 
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Geometric mean of matrices M and H  (only approximately transitive) 

                                                                                      
 

 

 

 

 

 

                                 
 
                                 
 
 
 
                               Table 6.  Price level computations: Upper and lower bounds  
 

 

    Upper bounds     Lower bounds 

 

       ip  

 

       ip  

 1 1,00000 

 

1,00000 

 2 1,00600 

 

0,99650 

 3 1,00935 

 

0,99129 

 4 1,15504 

 

1,12694 

 5 1,63375 

 

1,59026 

 6 1,80786 

 

1,75036 

  
 
                    Table 7.  Chain-consistent (transitive) bounds for the price index number 
                                      

            Ratios of upper level price indexes: /ij i jP p p  

 

1 2 3 4 5 6 

1 1,00000 0,99404 0,99073 0,86577 0,61209 0,55314 

2 1,00600 1,00000 0,99667 0,87096 0,61576 0,55646 

3 1,00935 1,00334 1,00000 0,87387 0,61782 0,55831 

4 1,15504 1,14816 1,14434 1,00000 0,70699 0,63890 

5 1,63375 1,62401 1,61860 1,41445 1,00000 0,90369 

6 1,80786 1,79709 1,79110 1,56519 1,10657 1,00000 

 
                                                                                     

                                                  Ratios of lower level price indexes:   /ij i jP p p                                                                                

 
 
 
 
 
 

                                                     1/ 2( )ij ijM H  

   

 

1 2 3 4 5 6 

1 1.00000 0.99876 1.00115 0.87579 0.62030 0.56235 

2 1.00124 1.00000 1.00096 0.87744 0.62107 0.56275 

3 0.99885 0.99904 1.00000 0.87674 0.62047 0.56105 

4 1.14183 1.13968 1.14058 1.00000 0.70782 0.64136 

5 1.61212 1.61013 1.61167 1.41279 1.00000 0.90611 

6 1.77825 1.77697 1.78238 1.55918 1.10362 1.00000 

 

1 2 3 4 5 6 

1 1,00000 1,00351 1,00879 0,88736 0,62883 0,57131 

2 0,99650 1,00000 1,00526 0,88425 0,62663 0,56931 

3 0,99129 0,99477 1,00000 0,87963 0,62335 0,56633 

4 1,12694 1,13090 1,13685 1,00000 0,70865 0,64383 

5 1,59026 1,59584 1,60424 1,41113 1,00000 0,90853 

6 1,75036 1,75650 1,76575 1,55320 1,10068 1,00000       
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                                 Geometric mean of the ratios of upper and lower levels of prices:  1/ 2( )ij ijP P  

   

 

1 2 3 4 5 6 

 
1 1,00000 0,99876 0,99972 0,87650 0,62040 0,56215   

2 1,00124 1,00000 1,00096 0,87758 0,62117 0,56285   

3 1,00028 0,99904 1,00000 0,87674 0,62058 0,56231   

4 1,14090 1,13949 1,14058 1,00000 0,70782 0,64136   

5 1,61186 1,60986 1,61140 1,41279 1,00000 0,90611   

6 1,77888 1,77668 1,77838 1,55918 1,10362 1,00000   

 

 

 

 

    Fisher "ideal" index number no. 353 (Fisher, 1922, p. 493): 
                 

1/ 2

, .( )i j i jL K  (intransitive)                                        

 

1 2 3 4 5 6 

1 1.00000 0.99876 1.00115 0.87557 0.61897 0.56294 

2 1.00124 1.00000 0.99894 0.87744 0.62107 0.56268 

3 0.99885 1.00107 1.00000 0.87675 0.61923 0.56063 

4 1.14212 1.13968 1.14058 1.00000 0.70467 0.64098 

5 1.61558 1.61012 1.61490 1.41910 1.00000 0.90889 

6 1.77637 1.77722 1.78372 1.56011 1.10024 1.00000 

 

 

 

                      Relative price levels that are implicit in Fisher “ideal” index numbers 

 

1 2 3 4 5 6 

1 1,00000 1,00000 1,00000 1,00000 1,00000 1,00000 

2 1,00124 1,00124 0,99779 1,00214 1,00339 0,99954 

3 0,99885 1,00231 0,99885 1,00135 1,00042 0,99590 

4 1,14212 1,14109 1,13927 1,14211 1,13846 1,13863 

5 1,61558 1,61212 1,61304 1,62077 1,61559 1,61454 

6 1,77637 1,77943 1,78167 1,78182 1,77753 1,77639 

 

 

 

              Percentage difference between Fisher “ideal” index numbers and  
                            the geometric mean of the upper and lower “true” bounds 
 

 

  1   2   3   4   5   6 

1 0,00 0,00 0,00 0,00 0,00 0,00 

2 0,00 0,00 -0,34 0,09 0,22 -0,17 

3 -0,14 0,20 -0,14 0,11 0,01 -0,44 

4 0,11 0,02 -0,14 0,11 -0,21 -0,20 

5 0,23 0,02 0,07 0,55 0,23 0,17 

6 -0,14 0,03 0,16 0,17 -0,08 -0,14 
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                      Comparison of chained index numbers 
                                with fixed-base Laspeyers and fixed-base Paasche 
 
 

Fixed L Fixed P 

    
1/ 2( )i ip p  

 Chained  
   Fisher 

Chained 
Laspeyres 

Chained 
Paasche 

 
 
 

 
 
 
 
 

 
 
            Percentage difference with respect to the geometric mean of “true” bounds 
 

    Fixed L     Fixed P 

    
1/ 2( )i ip p  

 Chained  
   Fisher 

Chained 
Laspeyres 

Chained 
Paasche 

 

1 0,00 0,00 0,00 0,00 0,00 0,00 

2 -0,19 0,19 0,00 0,00 -0,19 0,19 

3 -0,36 0,07 0,00 0,20 0,10 0,30 

4 -0,01 0,22 0,00 0,20 -0,24 0,64 

5 0,55 -0,08 0,00 0,65 0,79 0,51 

6 -0,01 -0,27 0,00 0,34 0,38 0,30 

 
 
 

1 1,00000 1,00000 1,00000 1,00000 1,00000 1,00000 

2 0,99931 1,00317 1,00124 1,00124 0,99931 1,00317 

3 0,99672 1,00099 1,00028 1,00231 1,00131 1,00330 

4 1,14081 1,14342 1,14090 1,14322 1,13822 1,14823 

5 1,62067 1,61050 1,61186 1,62234 1,62452 1,62015 

6 1,77865 1,77410 1,77888 1,78496 1,78571 1,78420 


