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Abstract

This paper represents a first attempt to gather the issues of growth “pro-poorness”

andmultidimensional poverty assessments. More precisely, we suggest the use of se-

quential dominance procedures (Bourguignon, 1989, Atkinson, 1992, Jenkins and

Lambert, 1993) to test the “pro-poorness” of observed growth spells when poverty

is measured on the basis of income and some other discrete well-being attribute.

Sequential procedures are also used to get graphical tools that are consistent with

the spirit of Chen and Ravallion’s (2003) growth incidence curve and Son’s (2004)

poverty growth curve. Contrary to traditional unidimensional tests, our method-

ology allows to take into account the importance of deprivation correlations at the

individual level and thus may reverse results observed with the traditional tools of

growth “pro-poorness” check. An illustration of our approach is finally given using

Turkish data for the period 2003-2005.

JEL classification: I32, C00.

Key words: “Pro-poor” growth, growth incidence curve, sequential sto-

chastic dominance.

1 INTRODUCTION

The definition of the MillenniumDevelopment Goals in 2000 by the international com-

munity was a major breakdown with the previous paradigm of the Washington con-

sensus and its implicit reference to “trickle down” theories. One remarkable feature

was the rehabilitation of Chenery, Ahluwalia, Bell, Duloy, and Jolly’s (1974) advocacy

in favor of introducing redistributive concerns into growth policies in the developing

∗Cemafi, Université de Nice Sophia Antipolis. Contact: valerie.berenger@unice.fr.
†LÉO, CNRS - Université d’Orléans. Contact: florent.bresson@unice.fr.
‡The β means that this version is a preliminary version that is likely to include some mistakes. As a

consequence, it should not be quoted or cited without explicit permission of the author.
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1 INTRODUCTION

world.1 Indeed, since late 1990s, many social researchers have forcefully argued in

favor of assigning to growth only an instrumental role with respect to poverty issues.

In other words, poverty alleviation should not be regarded as a desirable side effect

of growth but the ultimate goal to be reached in the spirit of former World Bank’s

president Robert McNamara desire to shift the focus towards targeted poverty reduc-

tion. However, how best this goal can be met was an open and complex question, and

researchers have spent many efforts in yielding lessons from the empirics of growth

and poverty. In particular has been developed a literature related to the identification

of “pro-poor” growth spells, i.e. growth spells that corresponds to a marked improve-

ment regarding the state of poverty. The nature of this bias in favor of the poor has

entailed many debates, notably concerning the desirabilty of observing a poverty alle-

viation effect of inequality reduction to tag a growth pattern as “pro-poor” (Kakwani

and Pernia, 2000, Ravallion, 2004, Zepeda, 2004, Osmani, 2005), but the theoretical

framework to be used for empirical assessment is now well defined (Duclos, 2009).

The commitment of the international community to the achievement of the height

Millennium Development Goals was also an official recognition of the multidimen-

sional nature of poverty. It is well known (see for instance Sen, 1987, 1992, Streeten,

1994) that the linkages between income (or expenditure) andwell-being are not straight-

forward and hinge on many determinants like idiosyncratic characteristics or market

factors. As a result, the efficiency of poverty reducing policies should also be assessed

on the basis of the satisfaction of non-income needs like health, education or partic-

ipation to social life. If poverty has to be thought and measured taking a multidi-

mensional approach, it is then necessary to have a look at the “pro-poor” nature of

growth beyond the sole monetary aspects of poverty. The recent abundant literature

on these two concepts has evolved in a parallel way. Surprisingly, very few attemps

have been carried out in order to include the additional information aasociated with

other dimensions of well-being alongside the monetary one within the assessment of

the “pro-poor" nature of growth. At our knowledge, the only studies that deal with that

issue are Klasen (2008) and Grosse, Harttgen, and Klasen (2008) that suggest making

use of the tools developed for “pro-poor” growth tests to investigate the distribution of

changes with respect to non-income attributes.

The non-income growth incidence curve proposed in these studies allows for widen-

ing the scope of “pro-poor” growth analyses and may highlight potential discrepencies

between progresses in the monetary and non-monetary dimensions. However, these

graphical tools only focus on the marginal distributions of well-being attributes and

thus, do not take into account the additional information provided by the joint dis-

tribution of that attributes. Many authors (Atkinson and Bourguignon, 1982, Tsui,

2002, Bourguignon and Chakravarty, 2002) have stressed the importance of correla-

tions between the distributions of the different attributes in multidimensional poverty

1Today, such policies are generally called inclusive growth policies.
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1 INTRODUCTION

measurement. Indeed, if poverty indices are based on individualistic welfare functions

that are not separable with respect to the different attributes (Kolm, 1977), poverty

may raise or decrease without any changes occuring in the marginal distribution of

the attributes if some attributes are substitutes or complements with respect to well-

being.

However, the literature on sequential stochastic dominance offers a promising way

to address this issue without requiring strong assumptions about how dimensions

of poverty should exactly be related, an assumption about which there may not be

a wide agreement. Originally, sequential stochastic dominance has been introduced

in order to address comparisons of income distributions with households differing by

their composition and size. Despite that the use of equivalence scales makes it possible

to obtain homogeneous distributions of equivalent incomes, it entails several problems

as it relies on strong normative assumptions. Consequently, the distributional income

comparisons may be highly sensitive to the choice of equivalence scale. Sequential

stochastic dominance techniques (Bourguignon, 1989, Atkinson, 1992, Jenkins and

Lambert, 1993, Chambaz and Maurin, 1998, Duclos and Makdissi, 2005) addresses

that kind of issues, since they highlight the conditions to be met so that the results

of poverty comparisions are robust to the choice of this equivalence scale. As noted in

recent studies like Duclos and Échevin (2009), the method can naturally be extended

to cases where household size can be replaced by non-income poverty dimensions.

In the present paper, we go a step further and, using this sequential stochastic

dominance framework, suggest a new way of testing the “pro-poor" nature of growth

for poverty measures based on both income and other characteristics that can be

summed up using some ordinal index. It is worth noting that the proposed domi-

nance criteria are related to classes of poverty measures complying with axioms upon

which it is reasonable to think that agreement should unambiguously be met. Our

different propositions rely in particular on two crucial assumptions. The first one is

that the income poverty line may vary with the level reached by the ordinal variable

and can be set to zero above some values of that index. Thus, the approach is compati-

ble with different rival approaches of poverty identification. The second assumption is

that the marginal contribution of income to well-being decreases with the level of the

non-income attribute. Using that minimal set of assumptions, we define criteria that

are robust to choices in both the value of the poverty lines and the functional form of

the bidimensional poverty measure.

The paper is organized as follows. In section 2, we describe the “classical” tools

used for “pro-poor” growth check and extend them in section 3 to multidimensional

approaches of poverty using sequential stochastic dominance criteria. In section 4,

the methodology is illustrated to the case of Turkey, taking into account alongside

the income dimension the educational level achievement of each individual. Finally,

section 5 concludes.
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2 “PRO-POORNESS” WITH UNIDIMENSIONAL POVERTY

2 “PRO-POORNESS” WITH UNIDIMENSIONAL POVERTY

Let yi ∈ R be the level of some monetary variable, like income or expenditure, for the

ith person of a given population of size n ∈ N
∗.2 The distribution of income among the

population can then be described by the n-vector y := {y1, . . . , yn}. In order to ease the

comparisons between distributions of different sizes, it is often preferable to use the

univariate cumulative distribution function (cdf ) F (z;y). That cdf returns the proba-

bility p ∈ [0, 1] of picking out of y an income which value is less than the threshold z.

It is worth noting that, in the context of poverty analysis, the cdf corresponds to the

widely used poverty measure known as the headcount index Θ0.

In the present section, monetary poverty is first assessed using the following class

Π1 of additive poverty measures:

Θ(y, z) :=

∫ z

0
θ(y, z) dF (y;y) (1)

with θ(z, z) = 0, ∂θ/∂z > 0, ∂θ/∂y 6 0 if y < z, ∂θ/∂y = 0 if y > z so that the

measure complies with the traditional axioms of focus, weak monotonicity, continu-

ity, anonymity, population, non-decreasingness with respect to the poverty line and

subgroup additivity.3 That class of subgroup additive poverty measures (Foster and

Shorrocks, 1991) is very general and includes the most widely used poverty measures

like the one suggested by Watts (1968) and Foster, Greer, and Thorbecke (1984).4 Here

we would like to stress the particular importance of the anonymity axiom that states

that income is the sole relevant variable to be used to discriminate people for poverty

analysis. In equation (1), the respect of the anonymity axiom then entails that the

individual poverty function θ is the same for each individual. This crucial assumption

will be partially slackened in section 3 when individuals with different needs will be

considered.

As stressed in the literature (Kakwani and Pernia, 2000, Chen and Ravallion,

2003, Kraay, 2006), whether an observed growth pattern is “pro-poor” or not crucially

depends on the social evaluator’s definition of what may be a “pro-poor” growth. In

particular, it relies on the way any additional income should be shared between the

different members of the population so as to get a growth pattern that is neither “pro-

poor” nor “anti-poor,” but ethically “neutral.” As our work is orthogonal with respect to

this specific point, we refer here to the general definition of “pro-poor” growth proposed

by Duclos (2009). For Duclos, the assessment of the “pro-poorness” of growth between

years t and t + 1 always implies the comparison of the poverty level in t + 1 with

the level that would have been observed for some conterfactual distribution defined
2For the sake of simplicity, we will consider that y denotes the income level, but this choice does not

preclude using any other concepts that would be relevant to assess monetary poverty.
3See Zheng (1997) for a comprehensive review of the axiomatic framework used for unidimensional

poverty analysis.
4In the first case, the individual function is defined by θ(x, z) := log x − log z. With the Foster, Greer,

and Thorbecke’s (1984) class of poverty measures, that function becomes θ(x, z) := (1 − x/z)α, α > 0.
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2 “PRO-POORNESS” WITH UNIDIMENSIONAL POVERTY

by yt and some real-valued function γ that relates to the social evaluator’s definition

of “pro-poorness.” In other words, growth is deemed “pro-poor” with respect to some

given poverty measure Θ and some poverty line z if and only if:

Θ(yt+1, z) − Θ
(

γ(yt), z
)

6 0. (2)

Duclos (2009) argues that the definition of γ may be ruled by either ethical, statis-

tical or administrative arguments, and that this diversity explains the heterogeneity

of feelings with respect to what could be a “pro-poor” growth. As noted in Kakwani and

Son (2008), empirical investigations generally focuses on three rival definitions of γ,

thereafter called the “poverty reducing,” the “relative,” and the “absolute” approaches

of “pro-poor” growth. In the first case, growth is deemed “pro-poor” if poverty has de-

creased over the period of interest, so that γp(yt) := yt. On the contrary, with the two

remaining approaches it is supposed that growth should be associated with a decrease

in inequality for the benefit of the poor, in order to observe “pro-poor” growth. With

the “relative” approach (Baulch and McCulloch, 1998, Kakwani and Pernia, 2000), in-

come inequalities are thought in relative terms and the counterfactual distribution is

simply γr(yt) := yt
µt+1

µt
where µt is the mean value of yt. On the other hand, using

the “absolute” view means that income inequalities are thought on the basis of abso-

lute income differences among the population, hence γa(yt) := yt + (µt+1 − µt). While

the first approach does not impose any restriction on Θ, it is important to stress that

the use of the “relative” and “absolute” approaches confines the analysis to poverty

measures that are respectively scale-invariant and translation-invariant.5

A traditional problem with the criterion defined in equation (2) is that using any

other poverty measure Θ or changing the poverty line z may reverse the statement

made about the “pro-poorness” of growth over a given period. It is then necessary to

assess the robustness of the results using stochastic dominance criterions (Atkinson,

1987, Foster and Shorrocks, 1988).6 As shown in Duclos (2009), the use of first-order

dominance properties for the issues lead to the following result:

Proposition 1. For a given counterfactual scenario γ and a given maximum value z+

for the poverty line, the statement that the growth pattern observed between years t and

t + 1 is “pro-poor” is weakly robust with respect to the choice of the poverty measure

among the family Π1 and the value of the poverty line z if and only if:

F (z;yt+1) − F
(

z; γ(yt)
)

6 0 ∀z 6 z+, (3)

5Regarding, the family of poverty measures defined in equation (1), Θ is scale-invariant if and only
if θ(λy, λz) = θ(y, z), ∀λ ∈ R++, and translation-invariant if and only if θ(y + ε, λ + ε) = θ(y, z), ∀ε ∈ R.
On this issue, see notably Bresson and Labar (2007).

6We should be cautious with the use of the term “robustness” since this type of robustness check does
not take into account the issues of sampling errors.
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with a least one value z∗ ∈ [0, z+] such that:

F (z∗;yt+1) − F
(

z∗; γ(yt)
)

< 0. (4)

Chen and Ravallion (2003) have also demonstrated that first-order stochastic dom-

inance can also be easily assessed using a single graph of the observed growth rates

for each percentile of the population over the period of interest. Instead of the cdf,

these authors then prefer working with the quantile function, or Pen’s parade, F−1

that, using Gastwirth’s (1971) definition, is simply:

F−1(p;yt) := min{yit ∈ yt|F (yit;yt) > p}. (5)

Using equation (5), the growth incidence curve (GIC) proposed by Chen and Raval-

lion (2003) is obtained by plotting for each p ∈ [0, 1] the value of the the function:7

g1(p;yt,yt+1) :=
F−1(p;yt+1)

F−1(p;yt)
− 1. (6)

Then, the evaluation of “pro-poor” growth is performed when comparing that func-

tion with the function g1

(

p; γ(yt),yt+1

)

up to the percentile that corresponds to the

highest admissible value z+ for the poverty line.

Corollary 1. For some given criterion γ and a given maximum value z+ for the poverty

line, the statement that the growth pattern observed between years t and t + 1 is “pro-

poor” is weakly robust with respect to the choices of the poverty measure among the

family Π1 and the value of the poverty line z if and only if:

g1(p;yt,yt+1) − g1

(

p; γ(yt),yt+1

)

> 0 ∀p ∈
[

0, F (z+,yt)
]

, (7)

with a least one value p∗ ∈ [0, F (z+,yt)] such that:

g1(p
∗;yt,yt+1) − g1

(

p∗; γ(yt),yt+1

)

> 0. (8)

Proposition 1 and corollary 1 are appealing since they mean that the condition (2)

is fulfilled for all poverty measures from the class defined by equation (1) and all

poverty lines in the range [0, z+] (Duclos, 2009). As a consequence, it is very robust

from an ethical point of view since it requires minimal agreement for the assessment

of “pro-poor” growth for a given benchmark scenario γ.

However, it is well known that first-order dominance tests are likely to be not con-

clusive in a significant number of cases. It is then necessary to add further restrictions

on the type of poverty measures used for “pro-poor” growth assessments and to turn

to higher-order stochastic dominance conditions. For instance, if the class of poverty

7It is worth noting that the idea of performing welfare comparisons on the basis of the quantile
functions is not new and can be traced at least to Mahalanobis (1960).
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2 “PRO-POORNESS” WITH UNIDIMENSIONAL POVERTY

measures defined in equation (1) is restricted to indices that respect ∂2θ/∂y2 > 0, we

get the class of poverty measures Π2 that belongs to Π1 and complies with the weak

transfer axiom (Sen, 1976). According to the weak transfer axiom, an income loss for

a poor individual does not raise poverty if it is at least compensated by an increase of

the same amount for a poorer person. Robustness tests based on this axiom are then

more powerful than first order stochastic conditions as they do not require income

improvement at each quantile of the population during the period of interest. More

precisely, second order dominance tests require the use of the poverty gap function G

such that:

G(z;y) :=

∫ z

0
(z − y) dF (y;y). (9)

That function simply returns the average shortfall with respect to the poverty line

z given the income distribution y. The relationship between growth “pro-poorness”

and the class of poverty measures Π2 is then summarized by the following proposition:

Proposition 2. For a given counterfactual scenario γ and a given maximum value z+

for the poverty line, the statement that the growth pattern observed between years t and

t + 1 is “pro-poor” is weakly robust with respect to the choice of the poverty measure

among the family Π2 and the value of the poverty line z if and only if:

G(z;yt+1) − G
(

z; γ(yt)
)

6 0 ∀z 6 z+, (10)

with a least one value z∗ ∈ [0, z+] such that:

G(z∗;yt+1) − G
(

z∗; γ(yt)
)

< 0. (11)

A “pro-poorness” test proposed by Son (2004) and related to the class of poverty

measures Π2 is based on the poverty growth curve (PGC) that plots the growth rate

of the mean income of the bottom p percent of the population when individuals are

ranked by increasing order of income. More formally, the PGC is defined by:

g2(p;yt,yt+1) :=

∫ p

0

F−1(u;yt+1)

F−1(u;yt)
− 1 du. (12)

It can easily be checked that the comparison of the observed PGC with the one

corresponding to the counterfactual distribution yields a criterion that is equivalent

to the one presented in proposition 2.8

Corollary 2. For some given criterion γ and a given maximum value z+ for the poverty

line, the statement that the growth pattern observed between years t and t + 1 is “pro-

poor” is weakly robust with respect to the choices of the poverty measure among the

8On the power of the PGC for “pro-poorness” tests, see Davis (2007).
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3 “PRO-POORNESS” WITH MULTIDIMENSIONAL POVERTY

family Π2 and the value of the poverty line z if and only if:

g2(p;yt,yt+1) − g2

(

p; γ(yt),yt+1

)

> 0 ∀p ∈
[

0, F (z+;yt)
]

, (13)

with a least one value p∗ ∈ [0, F (z+;yt)] such that:

g2(p;yt,yt+1) − g2

(

p; γ(yt),yt+1

)

> 0. (14)

3 “PRO-POORNESS” WITH MULTIDIMENSIONAL POVERTY

The previous section has reviewed the conditions to be met in order to get a judgment

that is not likely to be contingent to choices for the functional form of the poverty

measure or for the value of the poverty line. However, the results depend on the

crucial assumption made in the previous section that poverty should be thought only

in monetary terms. Yet, most researchers agree that other dimensions of poverty

like education, health, access to public services or real freedoms should be taken into

account for the analysis of poverty. The inclusion of such elements logically changes

the definition of poverty indices and induces a slackening of the anonimity axiom.9

Moreover, in most cases, it may entails that the marginal contribution of income to

poverty is determinated by the the level of the other dimensions chosen to assess

poverty.

In order to take into account this aspect, we propose to make use of the tools of

sequential stochastic dominance. Originally, this methodology has been developed in

order to assess robust comparisons of income distributions when households differ

in needs. Although differences in househods’ needs are most of the time based on

differences in their size or composition in the studies using the framework of sequen-

tial stochastic dominance, other characteristics that are of interest for social welfare

analysis or multidimensional approaches to poverty can also be taken into account as

proxies of needs.

For this purpose, we will consider that the additional information to be included

in the poverty measure can be summed up by the variable x, though our framework

can easily be extended so as to use more additional variables. In many situations,

the satisfaction of non-monetary needs cannot be assessed by continuous variables.

Here, we will assume that the variable x is discrete and takes K ∈ N
∗\1 values that

can be ordered in the following manner x1 6 x2 6 . . . xK . That index may have a

cardinal content, but, for our present purpose, we are only interested by its ordinal

properties.10 We also assume that the well-being of the i-th person increases with the

9However, it is worth stressing, as noted by Kolm (1977), that this slackening may ease the agree-
ment on that property of equal treatment for the equal.

10In empirical applications of the propositions suggested in the present section, we may face some
difficulties in ranking the some categories of individuals. A first solution is to gather together categories
which ranking is not straightforward. A more robust solution proposed by Atkinson (1992) is to use the
sequential criteria for all relevant orderings of the categories used for x. For instance, let the members of

8



3 “PRO-POORNESS” WITH MULTIDIMENSIONAL POVERTY

value of that index. The distribution of that variable in the population is described by

the n-vector x := {x1, . . . , xn} which elements xi are ordered in the same manner as in

y. Let X be the n × 2-matrix obtained by placing side by side the vectors y and x and

the ith line of that matrix summarizes all the relevant characteristics of person i.

Considering many attributes for the analysis of poverty also implies a change in

the definition of the poverty domain. In the multidimensionnal poverty measurement

literature, many rival definitions have been suggested (Bourguignon and Chakravarty,

2002, Duclos, Sahn, and Younger, 2006, Alkire and Foster, 2007). In this section, we

will consider a very general definition of the poverty domain that is close to the one

used in Duclos, Sahn, and Younger (2006). Regarding the income dimension, we as-

sume that that the income poverty line is a non-increasing function of the value of the

index xi.

For instance, let us consider income y and health x as the relevant dimensions for

poverty analysis, and two poor individualsA and B with the same income yA = yB < z̃,

but different health levels. More precisely, suppose that individual B does not suffer

from any deprivation with respect to health while individual A is handicapped, i.e.

xA < xB . Indeed, this health shortage implies that A is poorer than B since he suf-

fers from deprivation in that dimension, but we may go a step further and consider

that person A’s handicap has also consequences in the income dimension. The handi-

cap generates specific expenditures (long-term medical treatments, protheses. . . ) and

increases the cost of other expenditures like transport. As a consequence, we may

conclude that the income poverty line z̃ is inappropriate for person A as its income

level cannot yield the same consumption level as for individual B. Thus, while A and

B share the same income level, we may also consider that A suffers from a larger

degree of deprivation than B in the income dimension. Thus, we should observe

z(xA = xk) > z(xB = xk+s), k ∈ {1, . . . ,K − 1}, s ∈ {1, . . . ,K − k}. In order to save

space space, let zk denote the value of income poverty line for those individuals which

value of xi is equal to xk. Income deprivations are then assessed using the K-vector

z := {z1, . . . , zK} such that z1 > z2 · · · > zK > 0.

It is important to stress that we do not need for our analysis to specify explicitly a

poverty line for the non-income dimension since all the relevant information concern-

ing the shape of the poverty domain is included in the vector z. For instance, the tra-

ditional “intersection” approach of poverty identification is obtained for zk = c ∈ R++,

k ∈ {1, . . . , j}, and zk = 0, k ∈ {j + 1, . . . ,K}, 1 6 j 6 K. On the other hand, a

“union” approach can be used by imposing zk = +∞, k ∈ {1, . . . , j}, and zk = c,

k ∈ {j + 1, . . . ,K}, 1 6 j 6 K. These two cases are illustrated on figure 1 where

the poverty domain is depicted each time by the set of horizontal thick lines.

We then show how growth “pro-poorness” can be robustly assessed using sequen-

the population be of types xa, xb and xc. Assuming that the individuals of types xa are the neediest but
that xb and xc cannot easily be compared, it would then be necessary to perform our tests for xa < xb < xc

and xa < xc < xb.
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3 “PRO-POORNESS” WITH MULTIDIMENSIONAL POVERTY

(a) “Intersection” approach.
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Figure 1: The definition of the poverty domain under different rival

approaches.

tial dominance procedures that mirror the first and second-order stochastic dominance

conditions expressed in the previous section.11

3.1 FIRST-ORDER STOCHASTIC SEQUENTIAL DOMINANCE AND k-GIC

The theoretical developments in this section are very close to the one realized in

Gravel and Moyes (2008), Duclos and Échevin (2009). Define Fk(y;y) as the income

cdf of those individuals for which level of xi is equal to xk. Poverty is then assessed

using the following class of additive poverty measures:

Θ(Xt,z) :=

K
∑

k=1

qk(xt)

∫ zk

0
θ(y, x, zk) dFk(y;yt), (15)

with qk(xt),
∑K

k=1 = 1, being the share of the population belonging to group k. Here,

we consider the class of poverty measures Π̄1 such that θ in equation (15) satisfies

the following properties: θ(zk, x
k, zk) = 0, ∂θ/∂zk > 0, ∂θ/∂y 6 0 if y < zk, ∂θ/∂y = 0

if y > zk. Thus, as in the case of the monetary poverty, the indices are supposed

to comply with the multidimensional counterparts of the focus, weak monotonicity,

continuity, anonymity, population, non-decreasingness with respect to the poverty line

11In the present paper, we do not explore higher-order dominance sequential dominance conditions.
However, our results can easily be extended to third-order stochastic dominance tests using Lambert and
Ramos’s (2002) results.
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3 “PRO-POORNESS” WITH MULTIDIMENSIONAL POVERTY

and subgroup additivity axioms.12 Moreover, it is also assumed that:

∂

∂yi
θ(yi, x

k, zk) 6
∂

∂yi
θ(yi, x

k+1, zk+1), ∀k ∈ {1, . . . ,K − 1}. (16)

It can easily be seen that Π1 ⊂ Π̄1. That class of unidimensional poverty measures

is obtained for zk = z ∀k ∈ {1, . . . ,K} and when the value of ∂θ/∂y does not vary with

the level of xi. Finally, the condition expressed in equation (16) is standard in the

literature on multidimensional inequalities and poverty (Atkinson and Bourguignon,

1982, Tsui, 2002) and is related to the axiom known as the non-decreasingness under

correlation switches. That axiom stipulates that, given two individuals with endow-

ments (yA, xA) and (yB, xB), a permutation of the values of these two vectors so that

A can be said unambiguously poorer than B, should not lower the poverty level, other

things being equal.

We now turn to the issue of “pro-poorness” evaluation. In the previous section, the

assessment of the “pro-poorness” of growth was performed on the basis of a counterfac-

tual income distribution γ(yt). That definition of “pro-poorness” is consistent with the

income-based approach of poverty but may not be appropriate when other attributes

are taken into account. Indeed, in the context of our setting, we are concerned with

the evolution of the whole matrix X, so that growth between the years t and t + 1

will be deemed “pro-poor” for a given counterfactual benchmark Γ, a given poverty

measure Θ and a given set of poverty lines z if and only if:

Θ(Xt+1,z) − Θ
(

Γ(Xt),z
)

6 0. (17)

The main difference with the definition corresponding to equation (2) consists in

the definition of the counterfactual scenario that gives more latitude for the social

evaluator. Indeed, as we may observe simultaneous variations of the vectors y and x,

it is then necessary to ask whether the evaluation should be performed on the basis

of a counterfactual distribution for the distribution of the index x. We then have to

distinguish the situations in which the counterfactual matrix Γ(Xt) is obtained from

Xt by simply changing its income vector yt, and cases in which the non-income vector

xt is not necessarily leaved unchanged. Let the first situation be called the “income

pro-poorness” of growth and the second one “well-being pro-poorness” of growth. To

avoid confusion, let γy and γx respectively denote the functions used to define the

counterfactual distributions of the income and non-income variables.

The case of “well-being pro-poorness” deserves some interest because the counter-

factual distribution γx(xt) of the non-income item may be slightly more complex that

the one corresponding to individual incomes. The most important question is whether

γx(xt) should be exogeneously or endogeneously defined with respect to the observed

12For a comprehensive review of the axioms used for multidimensional poverty measurement, see
Bresson (2009).
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3 “PRO-POORNESS” WITH MULTIDIMENSIONAL POVERTY

growth pattern.

In the former case, we may choose to define γx(xt) using the initial and final distri-

butions xt and xt+1, and dissociate it from observed changes in the income dimension.

It is worth emphasizing that, due to the particular nature of the variable x, the choice

of γx is obviously knottier than with income. Hence the relative and absolute coun-

terfactual functions γr and γa cannot be used with our general setting as the variable

x is ordinal — it would not make sense for instance to apply a given growth rate

on qualitative data. In fact, this criticism prevails for all conceptions of the coun-

terfactual scenario that rely on a distributional neutral approach of growth and uses

mean-based definitions of inequality. With respect to that issue, a promising solu-

tion is the use of median-based approaches with inequality being thought in terms of

“distance” to the median value (Allison and Foster, 2004).13 Finally, with the counter-

factual function γp, the non-income vector is simply the initial distribution xt so that

“income pro-poorness” is a particular case of “well-being pro-poorness.”

On the contrary, we may feel that γx(xt) should be computed on the basis of some

statistical or theoretical relationship between x and y, and the counterfactual distri-

bution of income γy(yt). More complex designs can also be chosen, using CGE models

with micro-simulations exercices so as to fully take the effects of economic growth into

account. Finally, whatever the chosen procedure, the nature of the variable used for

the index x has also to be taken into account as it may be bounded (Klasen, 2008).

In order to save space, we now introduce the following notation:

∆γ
t,t+1Fk(z;y) := qk(xt+1)Fk(z;yt+1) − qk

(

γx(xt)
)

Fk

(

z; γy(yt)
)

, (18)

with qk(x) being the share of observations from x which values are equal to xk. The

properties of the class of poverty measures Π̄1 then lead to the following result:

Proposition 3. For a given counterfactual scenario Γ and a given vector z+ of max-

imum values for the specific poverty lines, the statement that the growth pattern ob-

served between years t and t+1 is “pro-poor” is weakly robust with respect to the choice

of a poverty measure from the class Π̄1 and the value of the poverty lines z if and only

if:
j
∑

k=1

∆γ
t,t+1Fk(z;y) 6 0 ∀z 6 z+

j , j ∈ {1, . . . ,K}, (19)

with a least one integer j∗ ∈ {1, . . . ,K} and one value z∗ ∈ [0, z+
j∗ ] such that:

j∗
∑

k=1

∆γ
t,t+1Fk(z

∗;y) < 0. (20)

The criterion suggested in proposition 3 refers to the one first suggested in Bour-
13Here, the word “distance” does not refer to the traditional euclidean distance but to the number of

categories separating two values of the index x.
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3 “PRO-POORNESS” WITH MULTIDIMENSIONAL POVERTY

guignon (1989) and developed by Atkinson (1992), Jenkins and Lambert (1993), and

Chambaz and Maurin (1998), but applied to the question of the assessment of “pro-

poor” growth. The second difference with respect to these studies is that the het-

erogeneity of the population is not grasped by the household size, but by any set of

individual characteristics that can be considered as relevant dimensions of poverty.

In the previous section, we have seen that the conditions to be met to conclude in a

robust manner whether growth has been “pro-poor” could also be expressed with the

help of the GIC (cf corollary 1). In most cases, that equivalence cannot be observed,

except when the counterfactual distribution γx(xt) is the same as the distribution of x

observed in year t + 1. For that particular case, it is necessary to define the k partial

quantile function as:

F−1
k (p;X) := min

{

yit ∈ yk
t |F

(

yit;y
k
t

)

> p
}

, (21)

with yk
t being the subset of values from yt corresponding to individuals which value

of the index x is not greater than xk. The function F−1
k (p;X) returns the value of in-

come y corresponding to the p-th centile of the subpopulation of type 1 to k ranked by

increasing value of income. For k = K, that function simply becomes the traditional

quantile function presented in equation (5). Using that instrument, we can then pro-

pose the use of the following k-GIC:

g1,k(p;Xt,Xt+1) :=
F−1

k (p;Xt+1)

F−1
k (p;Xt)

− 1, (22)

that corresponds to the income growth rate of the p-th percentile of the subpopulation

of type 1 to k considering the non-income attribute. Dominance can then assessed by

comparing the values of that function with the corresponding k-GIC for the counter-

factual distribution Γ(Xt) for the bottom part of the population. Our results are then

summarized by the following corollary:

Corollary 3. For a given counterfactual scenario γ and a given vector z+ of maximum

values for the specific poverty lines, the statement that the growth pattern observed

between years t and t + 1 is “pro-poor” is weakly robust with respect to the choice of

poverty measure among the family Π̄1 if and only if:

g1,k(p;Xt,Xt+1) − g1,k

(

p; Γ(Xt),Xt+1

)

> 0 ∀p 6 F (z+
k ,yk

t ), k ∈ {1, . . . ,K}, (23)

with a least one integer j∗ ∈ {1, . . . ,K} and one value p∗ ∈
[

0, F (z+
j∗ ,y

j∗

t )
]

such that:

g1,j∗(p
∗;Xt,Xt+1) − g1,j∗

(

p∗; Γ(Xt),Xt+1

)

> 0. (24)

The condition suggested with corollary 3 suits best situations such that the dis-

tribution of the non-monetary variable x is time-invariant. However, that result can

13



3 “PRO-POORNESS” WITH MULTIDIMENSIONAL POVERTY

easily be extended to the case of variable distributions of that index x. Indeed it can

be shown that a sufficient, but not necessary, condition for growth to be deemed “pro-

poor” between t and t + 1 given the courterfactual scenario Γ and the set of poverty

lines z+ is to comply simultaneously with the conditions expressed in corollary 3 and:

F (xj;xt+1) 6 F
(

xj; γx(xt)
)

∀j ∈ {1, . . . ,K} such that zj > 0. (25)

3.2 SECOND-ORDER STOCHASTIC SEQUENTIAL DOMINANCE AND k-PGC

As in the case of homogenous populations, the test suggested in the previous section

may be unconclusive. In order the increase the power of the test, it is then necessary

to turn to a reduced set of poverty measures Π̄2. Starting with the conditions used to

define the class Π̄1, we impose the following additional restriction:

∂2

∂y2
θ(yi, x

k, zk) >
∂

∂y2
θ(yi, x

k+1, zk+1) > 0, ∀k ∈ {1, . . . ,K − 1}. (26)

The condition (26) can be decomposed in two parts. The first one relates to the

non-negativity of the second-order derivative of the function θ with respect to income.

This non-concavity assumption is well-known in the poverty and inequality literature,

and significates that progressive transfers of income — a transfer is said progressive

if it reduces inequalities — within the set of individuals with the same value of the

index x do not raise the poverty level. The second part of condition (26) is the non-

increasingness of ∂2θ/∂y2 with respect to the value of x. That assumption indicates

that there are diminising returns of progressive transfers as we move to less needy

individuals for given levels of income.14,15

Let Gk(z;y) denote the value of G(z;y) when F (z;y) is replaced by Fk(z;y) in

equation (9). That function indicates the value of the average income gap among

individuals of the k-th type for a given income poverty line z. Using the following

notation:

∆γ
t,t+1Gk(z;y) := qk(xt+1)Gk(z;yt+1) − qk

(

γx(xt)
)

Gk

(

z; γy(yt)
)

, (27)

we get the “pro-poorness” condition expressed in proposition 4 when poverty measures

of the class Π̄2 are considered.

Proposition 4. For a given counterfactual scenario Γ and a given vector z+ of max-

imum values for the specific poverty lines, the statement that the growth pattern ob-

served between years t and t+1 is “pro-poor” is weakly robust with respect to the choice

14As emphasized in Lambert and Ramos (2002), it is worth mentionning that a class of poverty mea-
sures that belongs to Π̄1 and includes Π̄2 can also be used if only the non-concavity of θ is assumed. It
is then necessary to turn to the sequential dominance criterion proposed by Bourguignon (1989) to get a
robust evaluation of growth “pro-poorness” using that intermediate class of poverty measures.

15For a discussion on that generalization of the Pigou-Dalton transfer principle, see in particular
Ebert (2000).
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4 ILLUSTRATION : TESTING THE PRO-POORNESS OF GROWTH IN TURKEY . . .

of poverty measure among the family Π̄2 if and only if:

j
∑

k=1

∆γ
t,t+1Gk(z;y) 6 0 ∀z 6 z+

j , j ∈ {1, . . . ,K}, (28)

with a least one integer j∗ ∈ {1, . . . ,K} and one value z∗ ∈ [0, z+
j∗ ] such that:

j∗
∑

k=1

∆γ
t,t+1Gk(z∗;y) < 0. (29)

As in the previous section, it may be interesting to look for an alternative way

of expressing proposition 4 when the marginal distributions xt+1 and γx(xt) do not

differ. Let g2,k be the k-PGC, that is the function that returns the mean growth rate of

the bottom p percents of the subpopulation of type 1 to k considering the non-income

attribute, i.e.:

g2,k(p;Xt,Xt+1) :=

∫ p

0

F−1
k (u;Xt+1)

F−1
k (u;Xt)

− 1 du. (30)

Corollary 4. For a given counterfactual scenario γ and a given vector z+ of maximum

values for the specific poverty lines, the statement that the growth pattern observed

between years t and t + 1 is “pro-poor” is weakly robust with respect to the choice of

poverty measure among the family Π̄2 if and only if:

g2,k(p;Xt,Xt+1) − g2,k

(

p; Γ(Xt),Xt+1

)

> 0 ∀p 6 F (z+
k ,yk

t ), k ∈ {1, . . . ,K}, (31)

with a least one integer j∗ ∈ {1, . . . ,K} and one value p∗ ∈
[

0, F (z+
j∗ ,y

j∗

t )
]

such that:

g2,j∗(p
∗;Xt,Xt+1) − g2,j∗

(

p∗; Γ(Xt),Xt+1

)

> 0. (32)

4 ILLUSTRATION : TESTING THE PRO-POORNESS OF GROWTH IN TURKEY

2003-2005

The proposed methodology is now applied using data from the 2003, 2004 and 2005

Turkish household consumption and expenditure surveys (HICES) provided by the

Turkish Statistics Institute (Turkstat). Turkey is an interesting case over which to

test the pro-poorness of growth. After the 2001 crisis, Turkey entered a period of high

growth and structural transformations. Following a rebound in 2001, annual growth

rates averaged nearly 7% over the years 2003-2007. According to the international

standards, poverty is low in comparison with other MENA countries, but inequalities

remain high and are to a large extent driven by high differentials across regions.

Moreover, despite improvements in social indicators, education records pretty and

weak levels in comparisons with countries with equivalent levels of GDP per capita

(Akkoyunlu-Wigley, 2008). The country also faces wide income and education gaps
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4 ILLUSTRATION : TESTING THE PRO-POORNESS OF GROWTH IN TURKEY . . .

between urban and rural areas (World Bank, 2005 and 2008) and education seems

to hold an important role in understanding discrepancies of development within the

country (Duman, 2008).

In order to illustrate the usefulness of our methodology, poverty is here defined

using education alongside the more traditional income component. The income com-

ponent corresponds to the disposable equivalent individual income adjusted by the

OECD equivalence scale. In order to take inflation into account, all incomes are ex-

pressed in reference to the 2003 consumer price index provided by Turkstat. Edu-

cation deprivations are measured on the basis of education level attainments. Our

datasets allow the distinction between the following six categories: illiterate, literate

but without completing school, primary school, primary education, secondary educa-

tion and occupational education equal to secondary school, high school and higher

studies. Since children have not achieved their final educational level, the analysis

focuses on the adult population (older than 20 years). In the spirit of our framework,

we put the reasonable assumptions that well-being is an increasing function of edu-

cation attainments and that income improves well-being the more at low educational

levels. Consequently, each sample has been split into six groups of educational lev-

els ranked by decreasing needs with respect to income: illiterate persons are thus

associated with highest needs and high school and higher studies with the lowest

ones. Regarding the pro-poorness of growth, the illustrations rely on a very tradi-

tional counterfactual scenario, that is a relative approach of pro-poor growth for the

income dimension (γy(yt) = γr(yt) = yt
µt+1

µt
) while using just the observed changes for

education (γx(xt) = xt).

In section 3, we mentionned that the classes of bidimensionnal poverty measures

used for “pro-poorness" checks implies the definition of different monetary poverty

lines for each value of the non-monetary attributes. For the sake of simplicity, we de-

fine a general income poverty line expressed as some percentage of the median income

as usually done for the analysis of poverty in OECD countries, and consider that this

poverty line is appropriate for the least deprived group regarding education. More

precisely, as stochastic dominance tests are designed to assess the robustness of pov-

erty comparisons to the level of the poverty line, we have opted for a very conservative

maximum value of that income poverty line, that is 90% of the median income for

the whole population. With the choice of a strictly positive value of the poverty line

for persons with high education endowments, we have assumed that improving the

education level of any individual should raise its level of well-being in a significant

manner but never results in a move out of poverty.

For the remaining educational groups, instead of choosing some particular values,

we prefered leaving that issue unanswered a priori since one can hardly conclude how

important should be the income level of a poorly educated individual so as to escape

poverty regarding the standard for a well-educated person. Nethertheless, we still re-

quired these specific income poverty lines to be never inferior to the ones correspond-
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4 ILLUSTRATION : TESTING THE PRO-POORNESS OF GROWTH IN TURKEY . . .

ing to better educated groups (zk > zk+1 ∀k = 1, . . . ,K − 1 refering to the eduction

level). Agregating sequentially the population by the educational level attainment,

we then have estimated each time the income level ẑ+
k such that the sign of the domi-

nance curve changed and considered this value as a maximum for the definition of the

poverty frontier such that the “pro-poor" judgement still holded. As a consequence,

we let the data show what was the bound for the poverty domain (the “critical set" in

Duclos, Sahn, and Younger, 2006). If the poverty line chosen for the better educated

subpopulation was included in that set (z6 6 ẑk ∀k = 1, . . . , 6), we did not reject the

possibility of accepting a “pro-poor" judgement, but added that the result was valid

only for sets of poverty lines below the critical poverty frontier (zk 6 ẑk ∀k = 1, . . . , 6).

From the several comparisons carried out using the data from the three household

surveys mentioned above, we extract three cases that allow highlighting the relevancy

of our methodology.

Our first illustration is related to the contrast between the urban and rural areas

in Turkey considering the 2003-2004 growth spell. For both populations, we used

the first order sequential dominance procedure so that our results refer to the very

inclusive class of multidimensional poverty measures Π̄1. As shown in section 3.1,

the sequentiel first order stochastic dominance procedure consists in comparing the

value of the multidimensional headcount index, i.e. the share of the population which

income and education level attainment are less than the chosen values, for each couple

of income and education levels included in the poverty domain. As the non-income is

described by a discrete variable, the most appropriate approch consists in beginning

with the susbset of illiterate individuals and to estimate the difference in the share

of person with income less than a given value between the final distribution and the

counterfactual distribution up to the value where the sign of that difference changes.

Then, if that value if consistent with the income poverty line chosen for that group,

that is any value above the income poverty line for the highly educated persons in

our setting, we then can add the set of individuals belonging to the second education

group and then perform our comparison of multidimensional headcount indices along

the range of income values and so on.

In practice it may be desirable first to perform the more traditional first-order

stochatic dominance procedure for the whole population and then to contrats the re-

sults with our sequential procedure. In figure 2, the difference in the headcount index

between the final and the counterfactual distributions is depicted by the thick contin-

uous curve for the whole population. We can observe that the traditional first-order

stochastic dominance was satisfied for both the urban (figure 2a) and the rural (fig-

ure 2b) areas between 2003 and 2004 since the corresponding curves are in both cases

below the horizontal axis up to the income poverty line (represented by the dashed

vertical line). Consequently, with a traditional monetary approach of poverty, we can

conclude that growth has been “pro-poor," in the relative sense, in the urban and rual

areas.
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(a) Urban population.
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(b) Rural population.
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Figure 2: Pro-poor growth check : first order sequential dominance checks

for Turkey, 2003-2004, urban and rural populations.

However, the picture becomes slightly different once we turn to multidimensional

poverty with the inclusion of the education dimension. Considering the urban area,

each curve is below zero for the bottom part of the income range and the estimated val-

ues ẑ+
k are always greater than the value chosen for the highly educated individuals,

so that the classical “pro-poor" result is confirmed by the multidimensional analysis.

For the rural area, relying solely on the standard monetary analysis without putting

some emphasis on the poorly educated households would lead to the wrong conclusion

that the growth pattern was biased in favor of the neediest between 2003 and 2004.

Indeed, focusing on the first two groups of education attainment (the continuous and

dashed light gray curves in figure 2b) show that the share of low income and low edu-

cation individuals has not deacreased as much as it would have been the case with a

“neutral" growth pattern during the period.

The second illustration is related to the usefulness of a second-order sequential

stochastic dominance check. Looking at figure 3a, it can be seen that we cannot con-

clude wheter growth was “pro-poor" in a robust manner considering the whole Turkish

population for the 2004-2005 growth spell since dominance curves are sometime above

and sometime below zero for income levels below the income poverty line correspond-

ing to the highly educated households. However, since the curves are above that level

for the very bottom part of the income range, it may be interesting to focus on the

more limited set Π̄2 of distribution-sensitive multidimensional poverty measures and

consequently to turn to the second-order sequential stochastic dominance procedure.

Contrary to the first-order procedure, the second-order one relies on the use of the
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(a) First order dominance.
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(b) Second order dominance.
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Figure 3: Pro-poor growth check : first and second order sequential

dominance for Turkey, 2004-2005, whole population.

income gaps, that is the extent of income shortfalls with respect to the poverty line

times the value of the corresponding multidimensionnal headcount index.

The results, plotted in figure 3b show that the joint distribution of education and

income in 2005 is dominated by the corresponding counterfactual based on the 2004

distribution up to some admissible poverty frontier. In other words, we can conclude

in a robust manner that growth can be deemed “anti-poor", in the relative sense, in

Turkey during the period 2004-2005 considering indices within the set of distribution-

sensitive multidimensional poverty measures. It is worth noting that the main results

are similar to the one obtained with the traditionnal first- and second-order dominance

checks in that case (c.f. the thick black curves in figure 3a and 3b), but our approach

yields more informations on the distribution of the economic growth “cake" as it shows

unambiguous welfare improvement at the firt order for the groups of illiterate and

literate but without completing school individuals.

5 CONCLUDING REMARKS

In this paper, we have proposed to extend the use of sequential stochastic dominance

techniques in order to assess robust judgments of the “pro-poorness” of growth within

the framework of multidimensional approach to poverty measurement. Indeed the

traditional tools used to check for “pro-poor” growth focus on the sole monetary aspect

of poverty. As is well-known, the inclusion of other dimensions of poverty induces a

change in the poverty definition. In particular, the anonymity axiom that monetary

index of poverty should satisfy is not always true and is not ethically any more ac-
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ceptable. Here, we propose to use the sequential dominance procedures suggested by

Bourguignon (1989) and developed by many authors like Atkinson (1992) and Jenkins

and Lambert (1993) in order to define first-order and second-order dominance criteria

that make it possible to assess weak robustness of “pro-poor” growth in income as well

as in other well-being attributes for a class of poverty measures and a wide range of

poverty lines.

Unlike to the traditional studies using sequential stochastic dominance, the het-

erogeneity of the population is not defined on the basis of the households sizes and

compositions. On the contrary, individuals’ needs differ according to non-income at-

tributes as in the study of Duclos and Échevin (2009) for poverty measurement. Un-

like the attempt made by Grosse, Harttgen, and Klasen (2008) who extend Chen and

Ravallion’s (2003) growth incidence curve (GIC) to non-monetary dimensions of pov-

erty, our methodology takes into account the changes in the joint distribution of the

well-being attributes. For this purpose, it only adds two weak conditions to the tra-

ditional mathematical conditions used for unidimensional poverty measurement. The

first one is that the income poverty line does not increase with the level of the non-

monetary indicator. The second one imposes the marginal contribution of income to

well-being to decrease with the level of non-income attributes. As a special case of our

approach, it is possible to define the equivalence of GIC and PGC curves, named k-GIC

and k-PGC curves, that are based on partial quantile functions and may be used to get

robust conclusions when the marginal distribution of the non-monetary attribute is

left unchanged. It is worth noting that the use of these curves can be extended so as

to take changes in the distribution of the non-income attributes into account. Finally,

though the social evaluator has more latitude to define the counterfactual situation in

order to make judgments of the “pro-poorness” of growth, the definition of that coun-

terfactual is challenging from an empirical point of view as it entails considering the

relationships between income and the non-income attributes. Our feeling is that this

issue should be a matter of scrutiny for further empirical studies.

A PROOF OF PROPOSITIONS AND COROLLARIES 3 TO 4

A.1 FIRST-ORDER STOCHASTIC SEQUENTIAL DOMINANCE

The proof proposition 3 is similar to Jenkins and Lambert (1993, proposition 1). We

first introduce the following notation:

∆γ
t,t+1fk(z,y) := qk(xt+1)fk(z,yt+1) − qk

(

γx(xt)
)

fk

(

z, γy(yt)
)

, (33)

with f being the density function, that is the first-order derivative of F . Using equa-
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tion (15) and integrating by parts yields:

Θ(Xt+1,z) − Θ
(

Γ(Xt),z
)

=

K
∑

k=1

∫ zk

0
θ(y, x, zk)∆

γ
t,t+1fk(y;y) dy, (34)

=
K
∑

k=1

[

θ(y, x, zk)∆
γ
t,t+1Fk(y;y)

]zk

0

−
K
∑

k=1

∫ zk

0

∂θ(y, x, zk)

∂y
∆γ

t,t+1Fk(y;y) dy. (35)

By definition ∆γ
t,t+1Fk(0;y) = 0. Since, by assumption, the class of poverty mea-

sures satisfies θ
(

zk, zk

)

= 0, the first term in the last expression can be dropped. Using

the additive properties of integral calculus, the second term can be expressed as:

K
∑

k=1

∫ zk

0

∂θ(y, x, zk)

∂y
∆γ

t,t+1Fk(y;y) dy =

∫ z1

0

K
∑

k=1

∂θ(y, x, zk)

∂y
∆γ

t,t+1Fk(y;y) dy. (36)

Moreover, it can easily be shown that
∑K

k=1 akbk = aK

∑K
k=1 bk+(aK−1−aK)

∑K−1
k=1 bk+

· · · + (a1 − a2)b1 = aK

∑K
k=1 bk +

∑K−1
j=1

(

(aj + aj+1)
∑j

k=1 bk

)

. Noting hj(y, x, zj) =

∂θ(y,x,zj)
∂y

−
∂θ(y,x,zj+1)

∂y
, the right-hand term of equation (36) can then be rewritten as:

∫ z1

0





∂θ(y, xK , zK)

∂y

K
∑

k=1

∆γ
t,t+1Fk(y;y) +

K−1
∑

j=1

(

hj(y, x, zj)

j
∑

k=1

∆γ
t,t+1Fk(y;y)

)



 dy.

(37)

By assumption, both ∂θ(y,x,zK)
∂y

6 0 and hj(y, x, zj) 6 0, ∀j ∈ {1, . . . ,K − 1}. A

sufficient condition for Θ(Xt+1,z) − Θ
(

Γ(Xt),z
)

to be negative is then:

j
∑

k=1

∆γ
t,t+1Fk(y,y) 6 0 ∀y 6 zj , j ∈ {1, . . . ,K}. (38)

For the necessary part of the proof, see Chambaz and Maurin (1998).

Concerning corollary 3, it can easily be seen that the left-hand term in equa-

tion (38) can be rewritten as :

j
∑

k=1

∆γ
t,t+1Fk(y,y) =

j
∑

k=1

qk(xt+1)
(

Fk(z;yt+1) − Fk

(

z; γy(yt)
)

)

, (39)

if we observe qk(xt+1) = qk

(

γ(xt)
)

. Multiplying each term in (39) by
∑j

k=1 qk(xt+1),

the second term simply becomes F (z;yj
t+1) − F

(

z; γy(y
j
t )
)

. Condition (38), can then be

rewritten as:

F (z;yj
t+1) 6 F

(

z; γy(y
j
t )
)

∀y 6 zj , j ∈ {1, . . . ,K}, (40)
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that, using definition (21), can also be expressed in the following manner:

F−1
j (p;yj

t+1) > F−1
j

(

p; γy(y
j
t )
)

∀p 6 F (zj ;y
j
t ), j ∈ {1, . . . ,K}. (41)

Dividing each term of equation (41) by F−1
j (p;yj

t ) and substracting one yields the

comparison of the k-GIC used for corollary 3.

A.2 SECOND-ORDER STOCHASTIC SEQUENTIAL DOMINANCE

Regarding proposition 4, the proof now refers to Chambaz and Maurin (1998, propo-

sition 4). Let Ξ denote the last term in equation (35). Integrating this expression by

parts then yields:

Ξ = −

K
∑

k=1

∫ zk

0

∂θ(y, x, zk)

∂y
∆γ

t,t+1Fk(y;y) dy, (42)

=

K
∑

k=1

(
∫ zk

0

∂2θ(y, x, zk)

∂y2
∆γ

t,t+1Gk(y;y) dy −

[

∂θ(y, x, zk)

∂y
∆γ

t,t+1Gk(y;yt)

]zk

0

)

, (43)

=
K
∑

k=1

(
∫ zk

0

∂2θ(y, x, zk)

∂y2
∆γ

t,t+1Gk(y;y) dy −
∂

∂y
θ(zk, x, zk)∆γ

t,t+1Gk(zk;yt)

)

. (44)

Using the same manipulations as for equations (36) and (37), we then obtain:

Ξ =

∫ z1

0





∂2θ(y, xK , zK)

∂y2

K
∑

k=1

∆γ
t,t+1Gk(y;y) +

K−1
∑

j=1

(

∂

∂y
hj(y, x, zj)

j
∑

k=1

∆γ
t,t+1Gk(y;y)

)



 dy

−





∂

∂y
θ(zK , xK , zK)

K
∑

k=1

∆γ
t,t+1Gk(zk;y) +

K−1
∑

j=1

(

hj(zj , x, zj)

j
∑

k=1

∆γ
t,t+1Gk(zk;y)

)





(45)

By assumption, the class ∂θ
∂y

6 0, ∂2θ
∂y2 > 0, hj(y, x, zj) 6 0, and ∂

∂y
hj(y, x, zj) > 0

forall poverty measure Θ ∈ Π̄2. It can then be easily seen that a sufficient condition

for Θ(Xt+1,z) − Θ
(

Γ(Xt),z
)

to be negative is then:

j
∑

k=1

∆γ
t,t+1Gk(y,y) 6 0 ∀y 6 zj , j ∈ {1, . . . ,K}. (46)

For the necessary part of the proof, see Chambaz and Maurin (1998).

Regarding corollary 4, the left-hand term in equation (46) can be rewritten as :

j
∑

k=1

∆γ
t,t+1Gk(y,y) =

j
∑

k=1

qk(xt+1)
(

Gk(z;yt+1) − Gk

(

z; γy(yt)
)

)

, (47)
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if qk(xt+1) = qk

(

γ(xt)
)

holds ∀k ∈ {1, . . . , j∗}. Multiplying each term in (39) by
∑j

k=1 qk(xt+1), the second term simply becomes G(z;yj
t+1)−G

(

z; γy(y
j
t )
)

. Condition (46),

can then be rewritten as:

G(z;yj
t+1) 6 G

(

z; γy(y
j
t )
)

∀y 6 zj, j ∈ {1, . . . ,K}. (48)

Moreover, integrating G(z;yj) by parts yields:

G(z;yj) =

∫ z

0
(z − y) dF (y;yj), (49)

=

∫ z

0
F (y;yj) dy. (50)

Pluging (50) in relation (48) and inverting F , we get:

∫ p

0
F−1(u;yj

t+1) du >

∫ p

0
F−1

(

u; γy(y
j
t )
)

du ∀p 6 F (zj ;yt), j ∈ {1, . . . ,K}. (51)

Dividing each term of equation (51) by
∫ p

0 F−1
j (u;yj

t ) du and substracting one yields

the comparison of the k-PGC used for corollary 4.
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