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Abstract: 

This study examines the welfare effects of natural disasters in a country setting using spatially 

disaggregated disaster maps derived from first hand meteorological data.  Doing so helps mitigate 

issues of endogeneity that arise in the absence of sufficiently long national household panel data 

when estimating the welfare effect of natural disasters with the more commonly used (subjective) 

disaster measures. In addition, spatial correlation is also accounted for.  Application to repeated 

cross-sectional national living standard measurement surveys (2002, 2004, and 2006) from Vietnam 

indicates that short run losses can be substantial, with riverine floods causing welfare losses of up to 

23 percent and hurricanes reducing welfare by up to 55 percent inside cities with a population over 

500,000.  Households are better able to cope with the short run effects of droughts. There are also 

important long run negative effects, in Vietnam mostly so for droughts and hurricanes.  Finally, 

geographical differentiation in the welfare effects across space and disaster appears linked to the 

functioning of the disaster relief system, which has so far largely eluded households in areas 

regularly affected by hurricane force winds, resulting in ever greater havoc by each subsequent 

hurricane.  
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1 Natural Disasters and Welfare 

As the world prepares for a changing climate and natural disasters hit with increasing 

frequency (UNISDR, 2009), there is growing interest in understanding how natural disasters affect 

economies and their people.   A burgeoning literature has emerged in response, focused on the 

effects of natural disasters on economic development and growth, mostly using the Emergency 

Events Database (EM-DAT) as information base (Cavallo and Noy, 2009).  So far, the empirical results 

have remained largely inconclusive, with some studies pointing to a positive or no impact on 

economic growth and others highlighting the existence of substantial negative effects.3  

Another, more longstanding approach to explore the costs associated with natural disasters 

has been to estimate their effects on household welfare. While household based estimates of the 

welfare effects of natural disasters are less apt at capturing the full economy wide effects, they are 

more adept at capturing the more immediate household welfare losses, including those associated 

with localized events (Christiaensen and Subbarao, 2005; Dercon, Hoddinott, and Woldehanna, 

2005), provide insights in how households cope (Dercon, 2002; Hasegawa, 2010), and yield 

important information for improved targeting of interventions (Jayne et al., 2002).  This knowledge 

is important as the impact on individual households can be devastating, even though small in terms 

of GDP. Given adequate data (and appropriate econometric instruments), they also allow estimation 

of the effectiveness of different interventions in mitigating the effects of natural disasters (Yamano, 

Alderman, and Christiaensen, 2005).  Micro-studies of natural disasters can further shed light on the 

channels through which natural disasters affect household welfare both in the short and long run.  

Such channels include the loss of assets (McPeak, 2004), the loss of human capital (Wagstaff, 2007; 

Pörtner, 2010), and changes in product (food) and labor markets (Mueller and Osgood, 2009).    

Also, little attention has been paid to the implications of the way natural disasters are 

measured for the measurement of their effects, both in the macro and the micro-literature. The EM-

DAT database, which is the only internationally comparable data available on disasters, contains for 

example not only limited information about the events, but also many milder events affecting 

relatively small areas.  This exacerbates the challenges in identifying the effects of natural disasters 

empirically at the macro-level (Cavallo and Noy, 2009).4  More importantly, the criteria for 

inclusion—a natural disaster is a natural situation or event which overwhelms local capacity and/or 

necessitates a request for external assistance5—render these measures of natural disaster 

endogenous in growth regressions.  As the occurrence of an event, thus defined, is correlated with 

the likelihood of the event happening, it is also related with the ability of the country to cope with 

extreme events, and thus its level of development and the quality of its institutions (Noy, 2009), 

                                                           
3
 Loyaza et al. (2009) go some way in reconciling these conflicting results by disaggregating the effects by type 

of natural disaster, economic sector and level of development. 
4
 The authors caution in particular that the increase in natural disasters reflected in the EM-DAT database may 

simply follow from the improved recording of milder events. 
5
 For a disaster to be entered into the EM-DAT database, at least one of the following criteria must be met: 1) 

10 or more people are reported killed; 2) 100 people are reported affected; 3) a state of emergency is 
declared; or 4) a call for international assistance is issued. Disasters can be hydro-meteorological, including 
floods, wave surges, storms, droughts, land-slides, and avalanches; geophysical, including earthquakes, 
tsunamis, and volcanic eruptions; and biological, covering epidemics and insect infestations. 
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which often affect the growth rate itself.  Subjective measures of shocks and disasters6, which are 

standard in micro-studies, suffer from similar deficiencies.  Unobserved individual characteristics 

may induce households to report shocks more or less frequently, while also affecting their welfare 

directly. 

This study complements the cross-country, macro literature with a country-based, micro 

approach using mainly “objective” meteorological data on natural events.  In particular, the study 

combines geo-referenced meteorological data from rainfall stations and storm tracks with 

household consumption and other household and location characteristics from repeated nationally 

representative household surveys and secondary data sources to estimate the effect of extreme 

weather events on household welfare.  The use of meteorological data does not only reduce 

potential estimation bias associated with the more subjective measures, it also permits the 

construction of probability distributions of natural events based on their historical occurrence and 

the construction of natural hazard maps through spatial extrapolation, useful for policy planning. 

Furthermore, in estimating the household welfare effects using meteorological data, an estimator is 

developed which simultaneously accounts for heteroskedasticity, the survey design (cluster effects), 

and spatial correlation, a second contribution of the paper.  

The empirical application is on Vietnam, which UNISDR (2009) ranked fourth in the world in 

terms of the absolute number of people exposed to floods; tenth in terms of the absolute number of 

people exposed to high winds from tropical cyclones, and sixteenth in terms of the absolute number 

of people exposed to drought.  The regular occurrence to natural disasters together with the 

availability of three highly comparable nationally representative household living standard surveys 

(2002-2004-2006) render Vietnam particularly suitable to explore the approach advanced in this 

paper. The study examines in particular the immediate and enduring welfare effects of droughts, 

heavy rainfall, floods and storms, including the welfare loss from adaptation to frequent exposure to 

these hazards and reflects on the different strategies used to cope with each of these hazards. 

The results suggest that the immediate losses from floods and hurricanes can be substantial, 

with hurricanes causing most havoc (up to 72 percent consumption loss among households close to 

large urban centers).  Frequent exposure to disasters further erodes the standard of living. 

Nonetheless, households living areas frequently exposed to localized and riverine floods tend to 

cope better with any particular event, including through the development of disaster relief systems. 

There is however no adaptation to hurricanes, rather the contrary, with high frequency of hurricanes 

exacerbating the losses from particular events. Finally, those further away from the large urban 

centers often enjoy more disaster relief which appears to mitigate the current and long run effects 

of natural hazards. 

The next section outlines the approach used to obtain geographically disaggregated estimates 

of droughts, heavy rainfall, river floods and storms with hurricane force.  Section three reviews the 

empirical methodology. Section four presents the empirical findings and section five concludes.  

                                                           
6
 These are typically derived from answers to a shock module incorporated in household questionnaires asking 

respondents whether they experienced different types of shocks over a certain period (e.g. a drought, a flood, 
a storm, …). 
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2 Mapping Natural Hazards  

Vietnam’s 2007 “National Strategy for Natural Disaster Prevention, Response and Mitigation 

to 2020” identifies droughts, floods, and cyclones as its most important natural hazards.  Landslides 

are mentioned as well.  One strategy to determine whether a household in a particular location has 

been affected by an extreme weather event is to ask households directly.  In contrast to external 

measures of extreme weather events derived from spatially scattered weather stations or satellite 

data, self-reported shock measures have the advantage of being locally more accurate—for the 

recent past, households know whether they experienced an extreme weather event or not.  They 

also circumvent the challenge of identifying the cut-off beyond which a particular meteorological 

variable or combination of meteorological variables constitutes an extreme weather event, i.e. when 

is rainfall too much or too little rainfall, when are winds damaging, when are temperatures too high. 

Yet not only are subjectively reported shock modules often not included in standard 

household surveys, they also raises issues of endogeneity, especially when incorporated in 

consumption regressions. These can typically only be overcome through the use of panel data, which 

are rarely available at the national level.  The location, time, and household specificity of the 

subjective shock data also limits generalizations over time and across space. In contrast, knowledge 

of the historical distribution of weather patterns allows the construction of probability distributions 

of weather events, useful to explore patterns of adaptation over time, and important in controlling 

for potential endogeneity of the extreme weather event measures in the absence of panel data.  

Interpolation of the extreme weather event data across space further permits the construction of 

natural hazard maps, a useful tool in the spatial allocation of interventions and the simulation of the 

welfare effects of changing climate patterns. 

Several global meteorological databases are available, though with the exception of the 

cyclone databases (UNEP/GRID-Europe, 2007a,b), they typically do not have a high resolution.  This 

paper exploits access to Vietnam’s detailed historical daily weather station data from 166 stations 

across the country to generate geographically disaggregated rainfall maps at the 0.1-degree 

resolution (corresponding nominally to 11 km at the equator).7  These data form the basis to derive 

geo-referenced local measures of drought and localized floods/heavy rainfall.  To also capture 

riverine floods, which for example can happen further downstream following heavy rainfall in the 

mountains or as a result of storm surges in coastal areas, additional flood indicators will be used 

derived from the satellite based flood data from the Dartmouth Flood Observatory (DFO) (2008).  

The 1980-2006 geo-referenced UNEP/GRID-Europe storm track dataset is used to separately explore 

the effects from high winds and gusts from cyclones. As the damage from heavy rainfall associated 

with cyclones will already be captured by the localized and riverine flood indicators, these measures 

will capture the wind damage associated with cyclones.8  

Rainfall maps 

                                                           
7
 The frequently used CRU TS2.1 monthly rainfall database (Mitchell and Jones, 2005) only has a half degree 

resolution, which is around 55 kilometers at the equator. 
8
 See Thomas (2009) for a detailed description of the different data sources and a more elaborate description 

of the construction of the different natural hazard maps.  
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To construct spatially disaggregated indicators of drought and excess rainfall, the weather 

station data must first be spatially interpolated and cut-offs must be determined beyond which 

precipitation is considered too little  or too much.  Spatial interpolation of weather data is a 

discipline in itself which has developed an array of techniques that go from the most crude and 

obvious (such as the nearest neighbor techniques9) to the more precise and resource intensive (such 

as the radial basis functions).10  Nonetheless, as the complexity of the techniques increase, they also 

display rapidly decreasing returns in terms of precision given resources spent.11  As the focus of the 

paper is not on constructing highly accurate rainfall maps as such, necessary for example for the 

design of weather index insurance programs, but rather on the household welfare effects of weather 

related events, a pragmatic approach has been pursued here, aimed at minimizing measurement 

error of the disaggregated rainfall measures at a reasonable cost, while maintaining maximum 

replicability of the approach in other settings. 

In particular, using the historical daily rainfall records over 1980-2006 in 166 geo-referenced 

weather stations from across Vietnam (see Figure 1)12, monthly rainfall grids of 0.1 degree resolution 

are constructed13 using both inverse distance weighting (IDW) and inverse elevation difference 

weighting (IEW).  In IDW, one of the most widely used spatial interpolation techniques in practice 

(Tomczak, 2003), the rainfall value in a particular grid cell is obtained as the weighted average of the 

rainfall data from a predetermined set of neighboring weather stations (e.g. the 5 closest or all 

neighboring stations within a certain distance) using the inverse distance between the station and 

the center of the grid cell (raised to a power) as weight and normalized by the sum of the weights.14  

The squared inverse distance to the five nearest stations for which data were available was chosen 

in the empirical application below. IDW exploits the intuition that the further away the station is, the 

less its rainfall pattern will resemble this at the point of interest. However, even over short distances 

rainfall patterns can still diverge widely, especially among locations at different altitudes 

(Hutchinson, 2003).  Given its mountainous range, high slope gradients are frequently observed in 

                                                           
9
 The nearest neighbour method assigns the value of the weather station nearest to the gridcell center.  

10
 Radial basis functions are functions of distance used for exact interpolation of point data. They attempt to 

overlay a smooth surface on the point data, allowing for various degrees of bending in that surface through a 
smoothing parameter that is specified by the researcher.  Common radial basis functions are thin-plate spline 
and multiquadratic functions. See De Smith et al. (2007) for a comprehensive textbook that is reasonably 
accessible.  
11

 In a comparison of the performance of different interpolation techniques on rainfall data from May 8 1986 
in Switzerland, the latter was found to be the most precise (Dubois, 2003).  Yet, as highlighted by Dubois and 
Shilbi (2003), at 5.93 mm, the root mean square error (RMSE) for the multiquadratic function was only slightly 
better than this for IDW (6.3 mm), which is negligible compared to the average rainfall of 18.51 mm among the 
367 omitted data points for which rainfall was interpolated from the remaining 100 rainfall stations. 
12

 The average distance between rainfall stations is 32 km. 

13
 While the satellite based rainfall maps produced by CPC/NOAA could also be used in principle, they only 

dated back to 2001, preventing us from constructing disaggregated historical rainfall patterns, necessary to 

explore patterns of adaptation. There is an additional concern as the satellite based CPC / NOAA data for 

Vietnam appear calibrated on a rather small number of rainfall stations (10 or so) from within Vietnam. 

14
 To be precise,           

     

      
  

 
      with r(x) the inverse distance weighted rainfall at interpolated 

point x, based on observed rainfall values rk at k=0,1, …, N known interpolating (known) points xk, with 

      
 

        
 as weight, xk an interpolating (known) point, d a given (Euclidean) distance from the known 

point xk to the unknown point x and p a positive real number, the power parameter. 
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Vietnam, with some grids displaying within grid elevation differences of more than 1,000 meters. To 

exploit this largely neglected insight (Dubois and Shilbi, 2003), an elevation difference weighted 

rainfall index based on the ten nearest stations is also constructed.15 

The relative importance of both the IDW and IEW indices in determining rainfall in a grid is 

subsequently estimated through an ordinary least square regression of the log of the observed 

monthly rainfall patterns in the 166 stations during 1980-2006 on the log of their IDW and the log of 

their IEW index, monthly dummies and their interactions to allow for monthly variations in the 

relative importance of both indices.16 The regression explained 76.8 percent of the observed 

variation in the monthly rainfall records from these stations (R-squared = 0.768), which provides 

some confidence in the predictive power of the method.17  The IEW index carries substantially more 

weight in predicting rainfall during the wetter months (April-November), while the IDW index is also 

important in predicting rainfall during the dry months (December-March). An estimate of monthly 

rainfall for each grid cell was obtained by applying the estimated coefficients in Table A1 to their 

respective IEW and IDW indices.  By way of illustration, Figure 1 presents the interpolated rainfall 

map for June 2006, both based on the regression prediction method and the IDW and IEW indices 

separately.  

Drought maps 

While Vietnam does receive large amounts of rainfall on average, moderate and severe 

droughts occur across the country, albeit with diverging frequency. They are more common and 

more severe in the Northeastern part of the country and the Red River Delta, but have also been 

reported in the Mekong Delta in the South, despite widespread irrigation.18  In keeping with the 

study’s focus on exogenous measures of a natural hazard, the focus here is on meteorological 

drought, defined as rainfall deficits over extended periods of time.19  Unlike agricultural drought 

indices, meteorological ones also allow exploration of the (indirect) effects of droughts on urban 

households for example through water shortages and electricity outages.  

                                                           
15

 Further corrections for anisotropy can be taken. This is important if nearness in one direction is more 
important than nearness in the perpendicular direction in determining the distance weights. This may be the 
case when mountain ranges are oriented at particular angles, or when prevailing winds are from a specific 
direction. This has not been pursued here, given the inclusion of the elevation difference in our final 
predictions and the reasonable prediction precision obtained when using both inverse distance squared and 
inverse elevation weighted indicators (see below).  
16

 By taking log transformations, negative predictions are avoided and estimation issues related to the 
skewness of the rainfall data are mitigated. 
17

 A similar degree of precision was registered in a series of modified specifications. Using a polynomial 
regression of the IEW and IDW indices reduces the root mean square error by 0.01 (from 0.764 in the current 
specification).  Similarly, application of the interpolation on the log or squared root transformed values 
reduces the RMSE only by 0.03.  Inclusion of time varying month dummies yields virtually no improvement, 
while inclusion of regional dummies reduces the RMSE by 0.05.  
18

 The administrative regions of Vietnam are presented in Figure 0. 
19

 Other disciplinary conceptualizations of drought include hydrological, agricultural and socio-economic 
drought, each accounting for the effect of rainfall deficits on their respective domain of interest.  Hydrological 
droughts relate to shortages of water in river systems which can be due to meteorological droughts in subsets 
of the river basins but also to land use changes. Agricultural droughts consider the amount of water available 
in relation to crop growth. Socio-economic droughts occur when meteorological, hydrological, or agricultural 
droughts cause economic distress.  
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A multitude of meteorological drought indices has been proposed in the literature (see 

Keyantash and Dracup (2002) for a review).  Following Dilley et al (2005), the authors of the World 

Bank study “Natural Disaster Hotspots: A Global Risk Analysis”, the cumulative precipitation anomaly 

index is taken, i.e. the deviation in precipitation from a long-term mean or median for a specific 

period of time, usually expressed as the proportion of the long term mean or median. It is 

straightforward to calculate and does not require other meteorological input (such as temperature 

data) and thus also no additional spatial interpolation.  It is also flexible. It does not impose a 

distributional structure on the rainfall data, like the widely used Standardized Precipitation Index 

(SPI) (McKee et al., 1993), and unlike the rainfall decile index, which ranks the historically observed 

rainfall in each location and considers rainfall episodes in the lowest decile(s) as droughts, the 

cumulative precipitation anomaly index  allows the likelihood of a drought in a particular area to 

vary across space.  The latter is important to explore potential adaptation to frequent drought 

exposure, as will be seen later on. 

In particular, the monthly rainfall estimates for each grid cell were accumulated into annual 

measures20.  The annual shortfall from the long term median (for the 1975 to 2006 period) was 

calculated for each year and each grid cell, and expressed as a proportion of the long term median.  

Figure 2 shows the proportional deviations from the long run median for the 2001-2006, i.e. the 

current (2002, 2004, 2006) and preceding VLSS survey years.   

Vietnam enjoyed above average rainfall in most of the country in 2001, with only small 

patches of 20-30 percent below median rainfall in the Mekong River Delta and the Central Highlands.  

In 2002, however, serious rainfall shortages were observed in large patches of the Mekong River 

Delta.  The Northcentral Coast had a serious drought in 2003, along with less substantial shortages in 

the Northeastern and Northwestern Uplands.  In 2004, the entire nation appeared to suffer from 

rainfall shortages, with severe deficiencies along the Southcentral Coast and the Central Highlands.  

This is followed by a year of abundant rainfall in 2005 with only very small patches of shortfalls.  

Finally, 2006 shows moderate and severe drought along the Northcentral and Southcentral Coastal 

regions, as well as the Northwestern Uplands and the Red River Delta.  The wide variation in rainfall 

within and across localities over the different survey years provides the necessary variation to 

identify the effects of rainfall deficiency. 

Different cut-offs below which a certain shortfall is considered a drought can be identified.   

Shortfalls of 10, 20 and 30 percent or more were considered.  Figure 3 presents the proportion of 

episodes during 1975-2006 that rainfall was 20 percent or more below the median. Based on this 

definition, areas along the coast and in the Red River Delta appear more drought prone, and to a 

lesser extent also those in the Mekong Delta.  

Localized excess rain maps 

Systematic and accurate information about floods at geographically disaggregated levels is 

notoriously hard to come by or to construct.  One of the reasons is that satellite imagery relies on 

visibility, and during floods there is usually much cloud cover.  Radars can see through clouds, but 

have not been set aside for this purpose. Yet, floods are part and parcel of livelihoods in many parts 

                                                           
20

 Using 4-months rainfall deficits instead, excluding the 4 driest months of the year, yielded very similar maps. 
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of Vietnam and it is thus key to explore their welfare effects.21  This study distinguishes between 

localized and regional events. Localized events are based on large amounts of rainfall in short 

periods of time. Regional events arise when rivers exceed their banks, potentially due to heavy 

rainfall upstream or snowmelt, or in coastal areas following storm surge. 

Inspired by Zubair et al. (2006), who use rainfall intensity in a short period to proxy localized 

flooding, daily rainfall maps were generated, obtained through spatial extrapolation of the daily 

rainfall records in the rainfall stations (as opposed to the monthly rainfall data used before) using 

the inverse distance squared weighting technique.22    In particular, rainfall was considered excessive 

in a particular year if it exceeded either 300 millimeters, 450 millimeters, and 600 millimeters in any 

rolling five-day period throughout that year.  By using 5-day periods as opposed to monthly data, a 

more refined picture of localized flooding could be constructed. 

The annual occurrence of excess rain across the grid during 2001-2006 is presented in Figure 

4. Figure 5 presents the proportion of years the 0.1 degree grid cells experienced at least one 

episode with more than 300 mm rain in a consecutive five-day period.  The  Northcentral and 

Southcentral Coastal regions appear especially prone to excess rain. Localized flooding occurred also 

in the Red River Delta Region in 2003. More generally, localized flooding appears especially 

concentrated along the coast.  Excess rainfall is however rather rare in the northern uplands and the 

south (Southeast and Mekong River Delta regions), suggesting that excess rain is closely related to 

tropical cyclones , and less to riverine floods. Nonetheless, there are also small inland patches with 

excess rain, spread across the country.   

Riverine floods 

Given the historical importance of riverine floods in Vietnam, and the limited correlation 

between the geographical distribution of localized floods and the location of the rivers, the localized 

flood maps were complemented with riverine (and coastal) flood maps derived from flood data from 

the Dartmouth Flood Dataset (Dartmouth Flood Observatory, 2008).  This is an historical worldwide 

flood database, showing locations of floods and their major causes (monsoonal rain, heavy rain, 

tropical cyclones) from 1985 to 2007.  They are derived from a wide variety of news, governmental, 

locally gauged, and remote sensing sources23.  Unfortunately, these maps are not very disaggregated 

(ten by ten degrees in latitude and longitude).  In principle, the flooding caused by any of the types 

of rainfall might have been picked up already by the localized flooding dataset.  What would not be 

picked up is when rainfall in one place is transported by rivers or terrain to another place or when 

high tides push ocean water inland. 

                                                           
21

 Vietnam has 2,360 rivers and streams that are more than 10 km long.  Severe floods were recorded in 1945, 
1961, 1964, 1966, 1969, 1971, 1996, 1998, 1999, 2000, and 2001. As a result, the government of Vietnam has 
actively applied a number of flood control methods, including reforestation, watershed protection; dykes; 
reservoirs for flood regulation; flood diversion, detention and drainage systems. 
22

 Because the construction of interpolated daily rainfall maps was very data and time intensive, interpolation 
was limited to the IDW technique only.  
23

 Many floods have now also been imaged by satellite or airborne sensors, and many of them have been 
translated by DFO into maps of inundation events.  Yet, as these satellite based maps did not cover all floods, 
partly because at times the images were obscured by cloud cover and partly because not all floods have been 
imaged, it was decided not to use this data source to ensure consistency. 
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Given the focus here on riverine and coastal floods and to better pinpoint the locations that 

actually experienced riverine or coastal floods, the DFO flood maps were overlaid with the location 

of the rivers taken from the Hydroshed project (Lehner et al., 2008).  Only the major rivers were 

mapped as these will have sufficiently large catchment areas exposing the downstream areas they 

traverse to (non-localized) flooding.  Riverine and coastal flood bands were then derived by 

considering DFO flooded areas within 2, 5 and 8 meters elevation difference from the closest point 

on the major river or the coast using a Digital Elevation Model from GLOBE (GloBe Task team, 1999).   

The recorded riverine and coastal floods using bands of 2 m elevation difference for each 

year from 2001 to 2006 are in Figure 6.  First, there is little overlap over the years between the 

localized and riverine flood maps, confirming the complementary nature of both flood indicators and 

the need to use both in the subsequent welfare analysis. Second, there appears extensive flooding in 

the Mekong River Delta region almost every year.  Third, 2005 was likely the worst year for riverine 

and coastal flooding.  Fourth, riverine flooding was further observed on and off in the other regions, 

in 2002 and 2005 in the northern uplands, in 2003 and 2005 in the Red River Delta region, and in all 

years, but scattered around the region in the Southcentral Coastal.  Consistent with the events 

during the 2001-2006 period, the historical record shows that riverine floods happen most 

frequently in the Mekong and Red River Delta (Figure 7).  

Cyclone maps 

 Tropical cyclones approach Vietnam from the east. They typically arrive during the Southeast 

and Northeast monsoon (Christiaensen et al., 2009), with 90 percent of them occurring between 

June and November, and almost half of them coming ashore in the northern part of the country.  To 

generate annual cyclone maps, a GIS dataset of areas affected by hurricane force winds was 

developed from the UNEP/GRID-Europe (2007a, 2007b) tropical cyclones databases.  In particular, 

the storm track and wind speed data were used to create symmetric polygons about each path, 

based on the algorithm by Klotzbach and Gray (no date).24     

The areas exposed to hurricane force wind (of 120 km/hour) in Vietnam between 2001 and 

2006 are in Figure 8, and the frequency with which they have been exposed between 1980 and 2006 

is depicted in Figure 9. During the first three years, the tropical cyclones did not affect the land 

much, though the impact was larger in 2004 to 2006, with two separate cyclones with hurricane 

force winds hitting the country in 2006. The coastal areas in the Northcentral coast and the 

Northeastern Uplands appear most exposed to cyclones, with hurricane force winds occurring once 

every five years. Visual comparison of Figures 4 and 8 suggests that heavy rainfall was caused by the 

cyclones in some cases, though not in all.  There appears less correlation between coastal and 

riverine flooding and cyclones.  Not only do the localized and riverine flood variables not capture the 

wind damage associated with cyclones, they also overlap only partially with the cyclone paths, 

underscoring the need to use an additional measure to reflect damages associated with cyclones.  

                                                           
24

 The storm track dataset (UNEP/GRID-Europe 2007) had some missing wind speeds.  These were filled in 
using values obtained by regressing known winds speeds on pressure, pressure squared, and dummy variables 
for hurricane monitoring centers.  The R-squared was above 0.91, giving confidence in the predictive power of 
the data and the regression. 
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3 Identifying Welfare Effects from Natural Disasters 

 

The (direct) effects of natural disasters and other shocks on household welfare are commonly 

assessed by augmenting a standard reduced form consumption regression with explicit measures of 

the disasters themselves: 

                                            (1)  

where      is a measure of consumption for a household i in cluster c at time t, X represent a series 

of household, cluster and regional characteristics that determine the level of consumption, ND are 

(stochastic) measures of (covariate) natural disaster k in cluster c at time t, ε is a residual term.   

Estimation of    yields an estimate of the average effect of natural disaster k on household 

consumption.  Yet different socio-economic groups are likely to be affected differently either 

because they are less/more exposed to the disaster ex ante or because they are better/worse able 

to cope with it ex post. For example, farm households with irrigated fields are less likely affected by 

droughts than those without, and the more educated may be better able to cope with natural 

disasters ex post.  Similarly, the reception of disaster relief or food aid may lead one to (erroneously) 

conclude that there were no welfare losses associated with the disaster, even though they induced 

substantial budgetary outlays elsewhere (by the local or national government) (Yamano, Alderman 

and Christiaensen, 2005). To explore such heterogeneity in damage or the existence of 

indirect/hidden welfare losses, natural disasters are interacted with different household and 

community characteristics and assets            ).   

Much of the empirical literature has so far assumed natural disaster measures to be 

exogenous.  Not only does this depend on how they have been measured (objective versus 

subjective, as discussed above), even when objective, meteorological measures are used, they may 

still yield biased estimates, as the occurrence of a natural disaster in a locality is likely correlated 

with the likelihood of it occurring in the first place, which may in turn affect the level of 

consumption, e.g. through accumulated asset loss at the household and/or community level.  

Moreover, households in localities that are frequently plagued by natural disasters have likely 

adapted to these circumstances (for example by adopting more disaster resistant, but less 

remunerative portfolios (Dercon, 1998), or at times even by building successful livelihood systems 

around it).  The use of panel data provides the cleanest way to protect welfare estimates of natural 

disasters from (time invariant) unobserved heterogeneity across communities.  However, sufficiently 

long panels of communities are usually not available for large geographical areas, let alone 

countries. Within community estimators are usually also less efficient given the lower signal-to-noise 

ratio, especially when panels are short, which may lead to disproportionate acceptance of the null-

hypothesis of no welfare effect.   

Here, repeated cross sections are used instead.  To mitigate potential bias from unobserved 

community heterogeneity, a comprehensive set of socio-economic and agro-ecological 

characteristics of the locality is included.  Most importantly the likelihood of the occurrence of 

different disaster types is controlled for, omission of which is identified as the major cause for biased 

estimation of the coefficients on natural disasters. Explicit inclusion of disaster exposure further 

permits exploration of the occurrence of adaptation, with the frequency of disaster exposure 



11 
 

hypothesized to affect the immediate effect of a particular disaster due to adaptation—reduce in 

case of reversion to low-risk, low return activities; increase in case of successful reversal of bad 

fortunes, such as the ability to live with regular inundations, or accelerated replacement of the 

capital base with more productive equipment. 

Empirical analysis of the effects of shocks on household welfare is furthermore often 

predicated on the assumption that the observations are independent from each other, thereby also 

abstracting from spatial correlation.  But in many cases, it seems more likely that observations that 

are "near" in a geographic sense either influence each other more so than an observation that is far, 

or that they are more influenced by the same unmeasured force than an observation that is far.  This 

seems especially relevant in a study of natural disasters, where their effects on welfare may 

permeate across locations especially when product (e.g. food) and/or factor (e.g. labor) markets are 

integrated.25  Ignoring such interactions may lead to inefficient and sometimes even inconsistent 

estimates. 

The contemporaneous spatial relationship between observations is typically specified using 

(row standardized) weights matrices.  The weights matrix tells how observation i, represented by 

values in row i, relate to another observation j, given in column j.  By convention, the weights matrix 

assumes that the weight of observation i on observation i is 0 for all i.  Most analyses assume many 

zeroes in the weights matrix.26  In part, this is because the direct interaction between distant 

observations is expected to negligible.  Two types of spatial models are considered: 1) a spatial lag 

and 2) a spatial error. In the spatial lag model, the dependent variable (consumption in this case) is 

correlated among neighbors. In the spatial error model, it is the unknown residual that is correlated.  

Ignorance of spatial lags yields biased estimates, while ignorance of spatial errors reduces efficiency. 

The full spatial model (also denoted SAC), which combines both forms of spatial correlation, is 

given by  

                              with                       (2) 

where uict is iid normal, with mean of 0 and variance of 2V, when allowing for heteroskedasticity, or 

2I otherwise).  This can be rewritten as lncict = (I – 1W1)
-1Zict + (I – 1W1)

-1(I – 2W2)
-1uict.  

Sometimes W1 = W2; that is, the spatial relations for the lag and error are assumed to be the same.  

For shorthand notation, define A = (I – 1W1) and B = (I – 2W2).  Equation (2) can then be written as 

BAcict = B Zict  +uict.  The parameters can be estimated by maximizing the log likelihood function:  

                                                     (3) 

                                  

                                                           
25

 Trung et al. (2007) find little spatial integration of paddy markets between North and South Vietnam, but a 
substantial degree of spatial price transmission within the North (Red River Delta) and South (Mekong Delta).  
See (Mueller and Osgood, 2009) for the transmission of the effects of natural disasters through the labor 
market. 
26

 The literature often talks about a row standardized weights matrix, which simply means each row is 
normalized so that it sums to 1.  This alleviates the problem with "holes" in the log determinant (Bell and 
Bockstael 2000), and it allows one to interpret the spatial parameter as a correlation measure, which in  
analogy to time series, could range from -1 to 1 (and in most spatial analyses, would be expected to range 
from 0 to 1). 
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The key difference with the standard log likelihood function27 is that it also requires calculation of 

the log determinants of A and B, since these are part of the Jacobian. 

One kind of spatial error that has attracted a lot of attention in household survey analysis is 

the spatial error related to the clustering in the survey design (Deaton, 1997).  To accommodate this 

within the maximum likelihood framework considered here28, a different weight matrices Wc  is 

introduced, with two different multipliers ρc1 and ρc2, which together define the spatial error and 

spatial lag of the within cluster observations.29  As a result, A and B in (3) are replaced by A* = (I – 

1W1  – c1Wc) and B* = (I – 2W2  – c2Wc), with Wc the weights matrix for clustering, with zero on its 

diagonal, just like the other weight matrices.  In doing so, the method also improves upon most 

statistical packages like Stata.  They typically use a modified Huber-White estimator for the variance 

estimator in the case of clustering rather than trying a maximum likelihood solution.  In doing so, 

they do not allow for a direct impact of intra-cluster neighbors' dependent variables. It is assumed 

that there is no spatial lag from the cluster variables.   This assumption can be tested, but it is not 

necessarily a good assumption to make a priori, as the existence of spatial lag can introduce omitted 

variable bias.  

Finally, to increase precision in estimating the welfare effects of natural disasters, a 

heteroskedastic specification is adopted, in particular, the multiplicative heteroskedastic 

specification advanced by Just and Pope (1978, 1979),             
           

                  

Explicit specification of the heteroskedastic nature can be accommodated in the likelihood 

framework and also helps shed some light on the correlates of the conditional (idiosyncratic) 

variance of consumption.  These can be of interest in themselves (see Christiaensen and Subbarao 

                                                           
27

 The log-likelihood function associated with (2) can be written as                              

                                       
28

 Fortunately, Stata allows for weighting and clustering in most of its regressions, and we will take advantage 

of that capability whenever it is available. 
29

 To see this, note that the variance matrix for a single cluster consisting of 3 surveyed households might be 

given by 

  
    

   
   

 

  
   

    
   

 

  
   

   
    

 

where   
  is the variance of each individual element and   

  is the 

covariance within each element of the cluster.  The practical difficulty in solving this in a maximum likelihood 

framework is that this block diagonal matrix needs to be inverted at each phase of the optimization routine.  

With small household surveys of a few hundred households this might be possible, but for large surveys, this is 

extremely slow and in many cases it becomes too numerically intensive to run successfully.  This is why 

statistical packages like Stata use a modified Huber-White estimator for the variance estimator in the case of 

clustering rather than trying a maximum likelihood solution.  Yet, using an insight from the spatial approach, 

the off-diagonal, non-zero elements (i.e., the   
 ) can be considered as a type of W matrix specifying that the 

neighbors are those elements within the same cluster.  This avoids having to invert the matrix at each iteration 

of the maximum likelihood routine.  Just to be clear, to follow the convention that W matrices have diagonal 

elements of 0 (this is okay, because in the spatial approach we also difference a multiple of the W matrix from 

the identity matrix, thus restoring the diagonal elements), the previous block of the cluster matrix would be 

given as a W matrix as  
         
         
         

 with standardized row weights summing to 1.  
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(2005) for an application in the context of estimating household vulnerability).30 The log likelihood 

estimation function applied to the data thus becomes:  

                                                        

                                     (4) 

with V a diagonal matrix with            on the diagonal.31  Thomas (2010) provides a detailed 

discussion of the optimization routines developed in Matlab to estimate (4).32 

4 Towards an Empirical Application 

 

The socio-economic data to estimate equation (4) were obtained from the Vietnam 

Household Living Standard Surveys (VHLSS) of 2002, 2004, and 2006.  In each round, households 

were selected using a 3-stage sampling process.33  These three survey waves provide high quality 

and nationally representative household information on household consumption and income, their 

demographic characteristics, health status, educational achievements, asset holdings and the 

availability of public services in the community.  The latter is obtained from the community survey 

which was fielded in parallel to the household surveys.  The questions in the VHLSS were similar 

throughout the different surveys rendering them highly comparable.  

Total per capita expenditure less per capita expenses on health care is taken as dependent 

variable. Health expenditures are subtracted as the study also controls for the effect of idiosyncratic 

health shocks, proxied by the number of days spent ill in bed over the past year by senior adults, 

adults and children respectively.  Inclusion of health expenditures in the overall expenditure 

measure, which are highly correlated with illness, might perversely suggest an increase in welfare 

following sickness.   A series of standard household demographics (household size, the dependency 

ratio, the age, gender, educational status of the household head34) are included to control for 

household characteristics in determining a household’s consumption level. In this context, 

controlling for ethnicity is especially important as poverty is increasingly concentrated among ethnic 

                                                           
30

 The multiplicative specification proposed here has some particular advantages in this regard as it does not 

constrain the parameters to affect the conditional mean and variance of consumption in the same direction 

(Just and Pope, 1979). 

31
 Note that the usual Jacobian term of 

 

 
     

           
 

 
                     

32
  The optimization routines were written in Matlab and are available from the authors upon request.  

33
 Communes (the primary sampling units) were selected in the first stage with a probability proportionate to 

population size based on the 1999 Population census.  On average, a commune contains 1,600 households. 
Subsequently, three enumeration areas (EAs), containing about 100 households each, were randomly selected 
within each commune. One of these EAs would be used to draw a sample of households in each VHLSS during 
the final (third) stage. In, 2002, this resulted in a sample of 29,530 households across 2,910 communes (EAs) 
(25 households per EA in 75% of the EAs and 5 in the remaining 25%).  In 2004 and 2006, three households 
were selected per EA, resulting in 9,189 households in 3,061 communes. Phung and Nguyen (2008) provide a 
detailed description of the questionnaire and survey design. 
34

 0 refers to no degree, 1 to primary school, 2 to lower secondary school, 3 to higher secondary school, 4 to 
short-term technical worker, 5 to long-term technical worker, 6 to professional secondary school, and 7 to 
college diploma and above. 



14 
 

minorities, often located in Vietnam’s mountainous areas.  While productive assets affect the 

capacity of a household to generate income and thus its consumption level, current asset levels may 

be simultaneously determined with consumption, as the disposal of assets (e.g. livestock) may be 

relied upon to cope with disasters, or they may reflect destruction by the disasters, leading to an 

underestimate of the welfare effects of the latter. In the absence of information of asset ownership 

prior to the survey, only those assets that display limited variation over time were included such as 

the amount of land owned and an indicator variable indicating whether the household owns a house 

or not.  

To reflect access to public services, indicator variables are included that take the value of 

one if clean water35, sanitary latrines,36 or electricity are present in the community, and zero 

otherwise.  To proxy a household’s integration in the overall economy, the community data were 

further augmented with the distance of the centroid of the community (in meters) to the nearest 

part of the nearest primary or secondary road, as designated in the VMAP0 dataset (NIMA 1997).  

These measures were computed that using Arc View 3.2.  In addition, the estimated travel time to 

the nearest town or city of at least 25,000 people, the nearest city of at least 100,000 people, and 

the nearest city of at least 500,000 people were included.   The travel times were computed in Arc 

View from a friction grid that assigned differing travel times to various classes of roads, urban areas, 

water bodies, off-road, and crossing international boundaries.37 

  To further control for geological and agro-ecological characteristics at the community level, 

elevation figures were included, taken from the GLOBE 1 kilometer elevation database (GLOBE Task 

Team et al. 1999).  Elevation differences were also incorporated as a measure of terrain roughness. 

These were computed using the SRTM3 data (Jarvis et al. 2006) by subtracting the minimum 

elevation in a 1 kilometer grid from the maximum elevation in the 1 kilometer grid. Finally, 

urban/rural and regional indicator variables help capture unobserved (time invariant) location 

specific characteristics related to the urban and rural livelihood systems as well as those related to 

regional variation in the agro-ecological, economic and political environment.  Year dummies were 

included to control for the survey year.  

 The disaster data were mapped into the household survey data at the commune level, 

which are on average only 30,3 kilometer squared.38 More precisely, the centroid for each commune 

was identified and given the highly covariate character of the different disasters, the state of nature 

observed at that point in the disaster maps was assumed to be the state of nature experienced by all 

                                                           
35

 Two sources of water are typically distinguished in Vietnam: water for direct human consumption (drinking, 
cooking), and water for sanitation and maintenance purposes (washing clothes and bathing).  Water is 
considered clean if it comes from (1) private tap water inside the house, (2) private tap water outside the 
house, (3) public tab water, (4) water pumped from deep drill wells, (5) water from hand-dug and reinforced 
wells, (6) rain water, (7) purchased water, or (8) water from a water tank. 
36

 Sanitary latrines include flush toilets with septic tank/sewage pipes, suilabh toilets, and double vault 
compost.    
37

 The VMAP0 (NIMA 1997) was used to obtain data on three classes of roads: 1) divided highways; 2) 
primary/secondary roads; 3) paths or trails. For rivers and lakes, the CIA World Data Bank II (CIA 1972) was 
used. The population centers  are from the GRUMP settlement points dataset (CIESIN et al. 2004a) and the 
World Gazetteer database (Helders 2005).  Urban boundaries are from the GRUMP urban extents database 
(CIESIN et al. 2004b).  The international boundaries are from the World Bank mapping office. 
38

 To maintain confidentiality, the geographic coordinates of each household in the VHLSS are not made 
publicly available, only the shapefiles for the different communes surveyed. 
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the VHLLS households in that commune.  The different events were entered simultaneously in the 

regression and to explore the lags in the effects of disasters both current and one year lagged events 

were included.  To separate out the potential effects of adaptation to regular exposure to disasters 

from the immediate welfare effects from current events, the regressions also controlled for the 

frequency with which the different events had occurred.  

5 Welfare Effects of Natural Disasters in Vietnam  

 

To benchmark the results, Table 1 (column 1) presents the estimated OLS coefficients39 of a 

standard consumption model augmented with information on the present and lagged occurrence of 

the different extreme weather events (droughts, localized and riverine floods, hurricane force 

winds).  These are subsequently augmented with data on the frequency of their occurrence (column 

2) and interaction terms between the extreme events and the distance to cities with more than 

500,000 inhabitants to capture geographical diversity in the effects (column 3).  The Maximum 

Likelihood estimates which also correct for spatial correlation (in addition to heteroskedasticity and 

cluster design) are in column 4.  The following cut-offs were settled on to identify an event as 

extreme: rainfall 20 percent below the long run median for drought; at least one episode of more 

than 300 mm rainfall in 5 consecutive days for excess rain/localized flooding; DFO recorded floods 

within 2 m elevation difference from the major rivers or coast line; and areas affected by 65 knot (or 

118 km/hour) hurricane wind force.  

The regressions display high explanatory power (R-squared between 55 and 60 percent) and 

the estimated coefficients on the different household and community characteristics are consistent 

with those reported in the literature.  Larger households with more dependents and belonging to 

ethnic minorities are poorer, while the more experienced and more educated households with more 

land and in possession of a house enjoy higher living standards.  Illness of adult household members 

(not for children or elderly) tends to be negatively associated with consumption levels, though it is 

only statistically significant for the spatially corrected ML estimates.  Households in communities 

with better sanitary conditions (sanitary living water and sanitary latrines) and better road access 

are also richer, while households located on steeply sloped areas tend to be poorer.  Households in 

urban areas are on average about 30 percent richer, with levels of consumption declining the further 

away from the urban center and the gradients steepening the larger the urban center.   Consistent 

with the steep GDP growth observed in Vietnam during the survey period, household consumption 

levels (in real terms)  increase substantially between the survey years, as reflected in the large and 

statistically significant coefficients on the year dummy variables. 

Degree of exposure and proximity to metropoles matter 

Turning to the welfare effects of weather events (column 1), household welfare is 

substantially affected by natural disasters, though often not in the direction expected. Contrary to 

common perception, current droughts, localized and riverine floods appear positively correlated 

with household welfare, with the occurrence of a localized flood last year also increasing welfare, 

                                                           
39

 These were obtained from the pooled 2002, 2004, and 2006 VHLSS data with standard corrections for 
heteroskedasticity and clustered survey design using the Hubert-White estimator provided in STATA. 
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while the lagged effects of riverine floods exercising a dampening effect on household welfare. 

However, when the frequency of extreme events in each locality is included together with their 

interaction with the current and lagged occurrence of the event (column 2), a different picture 

emerges. 

Welfare is lower in areas frequently exposed to droughts and hurricanes, while (surprisingly) 

it appears to increase welfare in areas frequently exposed to excess rain, with no discernable effect 

in frequently inundated riverine areas. Second, the direction of the immediate welfare effects of 

current and lagged events also changes when interacted with the frequency of their occurrence.  

Current droughts, localized and riverine floods are no longer found to increase welfare and excess 

rainfall in the current year is now negatively related with consumption, at least when excess rain is 

not a regular phenomenon. The signs and statistical significance of past weather events, reflecting 

the lagged welfare effects, also change when they are interacted with their frequency. Clearly, it is 

important to control for the frequency with which events occur in gauging the welfare effects of 

natural events.  It may lead to adaptive behavior such as the adoption of low risk, low return 

portfolios (Eswaran and Kotwal, 1990; Rosenzweig and Binswanger, 1993), but could also reflect 

accumulated asset loss (Carter and Barrett, 2006) or path dependency in disaster relief (Jayne et al., 

2002), issues reflected upon further below. 

In addition, the welfare effects are likely to differ further depending on the proximity to 

large urban centers (Table 1, column 3). Economies and livelihoods become more rural and 

agriculturally oriented further away from the metropolitan areas, asset holdings decline, and with it 

the possibility for asset damage, and the responsiveness of the disaster relief systems likely 

changes—more responsive if special programs have been set up in lagging areas as in the 

mountainous areas in Vietnam, or less responsive given declining accessibility as is likely with the 

official disaster flood relief programs.  Interaction of the different events with the distance (in tenths 

of hours) to cities with more than 500.000 inhabitants confirms indeed the existence of gradually 

changing welfare effects away from these large urban centers, with location further away typically 

less affected. 

  For example, while areas frequently hit by drought are less wealthy, this cumulative 

welfare loss is less pronounced in drought prone areas further away from the large cities.  Similarly, 

areas located in storm prone areas further away from the urban centers are slightly better off than 

those in storm prone areas close to the city.  There appear also differential (and opposite) effects of 

frequent exposure to localized and riverine flooding among households in areas closer and further 

away from the large urban centers. The key point here is that the immediate, lagged and persistent 

effects of extreme weather events differ also substantially depending on their proximity to the major 

metropoles in Vietnam, an important factor to take into account when targeting interventions. 

Possible reasons for these differential effects are explored below. 

Immediate, lagged and persistent welfare effects by event 

For a more detailed shock by shock comparison of the welfare effects, the study turns to the 

Maximum Likelihood welfare estimates, which also correct for spatial correlation.  While they 

qualitatively correspond to the OLS estimates in column 3, the size of the effects changes at times 

substantially and the coefficients are also more precisely estimated, yielding additional insights 

(Table 1, column 4).  This is expected given that both the tests for spatial lags and errors (not 
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reported here) point to the existence of spatial correlation (within and beyond the cluster).  To 

provide an intuitive interpretation of the findings, it is simultaneously explored how households 

cope with each of the shocks. In particular, the immediate, lagged and persistent effects of the 

different natural disasters on a household’s asset holdings, its reception of official disaster relief and 

domestic and foreign remittances, and its degree of income diversification as captured in the 

Herfindahl index,40 is given in Table 2.  The effects of natural disasters on asset holdings and income 

diversification are estimated using OLS with suitable corrections for heteroskedasticity and cluster 

design, while left censored tobits are used for the household assistance regressions, as many 

households did not receive any assistance/remittances. To control for household, community and 

environmental characteristics, the same controls are used as in the household welfare regressions 

above.  The ML results are repeated in the first column (Table 2, column 1) to facilitate the 

discussion.  

There are no statistically significant signs of immediate or lagged effects of droughts, though 

the frequent occurrence of droughts reduces welfare—households in areas with a 10 percentage 

point higher frequency of drought are on average 12 percent poorer.  Self insurance through asset 

disposal (which shows up with a lag (Table 2, column 2)) and income diversification (lower 

Herfindahl index), especially in drought prone areas, enables households to soften the blow of 

immediate drought shocks, but erodes their asset base over time (large negative effect of drought 

frequency on asset holdings).  Together this results in substantial welfare loss over time (large 

negative coefficient on drought frequency Table 2, column 2). 

 Interestingly, the welfare loss associated with frequent drought occurrences declines as one 

moves away from the metropolitan areas.  This is likely related to the larger responsiveness of 

official relief efforts to current drought events in those more remote areas,41 which appears to 

mitigate the need for self insurance through asset disposal, as suggested by the lower asset loss 

experienced in less urbanized areas (positive coefficient on the interaction term of lagged drought 

and distance to large city—column 2).  Over time this yields lower accumulated asset loss in the 

more remote areas (column 2) and less severe welfare loss (column 1) than in the areas closer to the 

metropolitan areas. The disaster relief systems appears to enable these households to remain more 

specialized (higher Herfindahl index), i.e. more agriculture focused, than those in other drought 

prone areas closer to the metropoles, suggesting that relief efforts help in mitigating the effects of 

droughts. 

Heavy rainfall has an immediate welfare reducing effect, by 7.7 percent on average (Table 2, 

column 1), likely through the destruction of assets (Table 2, column 2), though less in areas, which 

are frequently exposed, and thus better adapted, or those further away from the metropoles.  

Surprisingly, there is also a lagged welfare increasing effect of heavy rainfall, possibly because 

households take advantage of their asset loss to accelerate replacement of their assets by better, 

more productive ones, accelerating their return to their normal growth path, as postulated in the 

                                                           
40

 The Herfindahl index is a measure of income diversification, defined as the sum of the squares of the 
different income shares.  It ranges between one and zero, with 1 indicating full specialization and lower values 
pointing to increasingly diversified income portfolios.  
41

  Indicated by the jointly positive and statistically significant coefficients on current drought events and their 
interaction term with distance away from the metropolitan areas when 2 hours or more away from the 
metropolitan area. 
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vintage capital growth models (Hallegate and Dumas, 2009).   Households in areas more frequently 

affected by localized floods tend to experience lower levels of consumption, though again, less 

severe so among those in flood prone areas further away.  

Overall the welfare losses from frequent exposure to excess rain are only one fourth to one 

fifth (-0.28/-1.26) those brought about by regular exposure to rainfall shortages.  Lower net asset 

loss (the immediate negative effects largely compensated by technically better replacements in the 

next period helps understand the difference in the welfare effects of rainfall shortages and rainfall 

excesses (Table 2).  While the destruction of assets associated with excess rain does not lead to 

higher welfare levels altogether, their replacement with better more productive alternatives, 

especially in areas that are not frequently confronted with excess rain (see the negative coefficient 

on interaction term of lagged localized flood and excess rain frequency in column 2) can mitigate 

their negative effects.  Droughts on the other hand, do not induce immediate asset loss as such. 

Assets are disposed off to cope with the shocks, smoothing consumption in the current period, but 

eroding the household’s coping capacity over time, consistent with the large negative effect of the 

frequent occurrence of droughts on asset holdings (coefficient equals -3.4, the largest among all 

disasters considered), and by extension on consumption.  Larger official relief efforts in frequently 

flooded areas closer to the larger cities may further attenuate the welfare loss compared with those 

related to water shortages. Households do not appear to change their income portfolios in response 

to heavy rainfall—none of the coefficients on the localized flood variables and their interaction 

terms are statistically significant, with the exception of one, whose coefficient is very small. 

The occurrence of a riverine flood reduces household welfare on average with a combined 

23 percent, by 5.8 percent immediately and by 17.2 percent in the subsequent year, indicating that it 

takes some time for the full effect to be felt.  Nonetheless, households in areas prone to riverine 

floods appear to be slightly better off.  They experience less immediate welfare loss (positive 

coefficient on interaction term between flood frequency and current flood event—column 1, Table 

2) and dispose less of their assets to cope with the effects (positive coefficient on interaction term 

with lagged riverine flood – column 2, Table 2), likely linked to the much better provision of disaster 

relief in regularly flooded areas.  While the disaster relief in the flood prone areas prevents the 

erosion of the asset base (no loss of assets in frequently affected areas—column 2), it is not 

sufficient to prevent a substantial 17 percent temporary reduction in their consumption welfare loss, 

which manifests itself with a lag.  On the contrary, households in flood prone areas away from the 

urban centers, receive much less disaster assistance, find themselves over time with a lower asset  

base (negative coefficient on interaction distance to city and flood frequency), resulting in a long 

term welfare loss (negative coefficient interaction term distance to city and flood frequency—

column 1). Households also cope with the lagged effects of shocks through income diversification, 

especially closer to the cities. 

Finally, hurricane force winds inflict immediate and lasting damage to household welfare. 

The occurrence of a hurricane is associated with a 52 percent immediate welfare loss inside cities 

with more than 500,000 inhabitants, a potential 16 percent loss in the subsequent year, and a 20 

percent reduction in welfare in areas with a 10 percentage point higher chance of being hit by 

hurricane wind forces.  Furthermore, unlike with (localized and riverine) floods the immediate 

effects are not mitigated in areas that are more frequently hit, i.e. there is no adaptation. Rather the 

opposite, the immediate and lagged effects are, if anything, even more detrimental, indicating that 
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households have not been able to adapt to and that the official disaster relief system has not been 

effective in dealing with hurricane forces winds in Vietnam.  Second, the damage is less severe the 

further away from the urban centers.  This can be expected given the larger concentration and 

reliance of the economy and livelihoods on infrastructure in the more urban economies.  Official and 

private transfers have largely been unresponsive to storm related disasters (columns 3-5, Table 2).  

Similarly portfolio choice remains largely unaffected in the face of storms, with the exception of 

some lagged portfolio diversification in areas frequently affected.  

Summarizing key insights regarding the allocation of disaster relief, one of the key ex post 

policy responses to disasters, households further away from the larger urban centers (more than 

500,000 inhabitants) receive on average more disaster aid (see positive coefficient on log hours to 

500k city), which contributes to the lower welfare impact of disasters on households further away.  

Furthermore, relief efforts appear not to be sustained much beyond the first year, though disaster 

relief systems appear well developed in frequently flooded areas (both localized and riverine or 

coastal) close to the major urban centers. Official disaster assistance is not given following hurricane 

force winds. There are no clear systematic patterns with respect to the reception of domestic or 

foreign remittances.   Sectoral income diversification does not emerge as a major coping strategy, 

with the exception of the larger income diversification observed in drought prone areas closer to the 

urban centers. Asset losses, which can result from direct damage or through asset disposal to self 

insure, often show up with a delay and tend to be less severe further away from the urban centers.   

In conclusion, while households largely manage to cope with drought events, often through 

asset disposal, the frequent occurrence of droughts erodes their capacity to cope with them, 

resulting in a substantial welfare loss among households in drought prone areas closer to the urban 

centers. Households in drought prone areas further away from the urban capitals also suffer, but 

less as they manage to hang on to their assets better because of drought responsive relief efforts. 

Localized flooding exerts an immediate 7 percent toll on welfare though much of that loss appears to 

be recuperated the next year potentially through replacement of the lost asset base by better more 

productive ones, at least among those that are not frequently hit.  The latter tend to suffer less 

immediately, partly through the reception of disaster aid, but they also benefit less from the faster 

adoption of more productive assets, likely resulting in some asset erosion over time and lower 

consumption levels (though to a lesser extent than in the case of regular rainfall failure).  The 

damage from frequent exposure to localized floods is again less severe among those further away 

from the urban centers, as they experience less asset loss, while receiving more immediate disaster 

relief.  Riverine floods cause substantial welfare damage (23 percent), especially among those not 

frequently exposed, who tend to be better served by disaster relief, at least when living close to the 

urban centers. Finally, the largest damage is inflicted by hurricane force winds, with both regular 

exposure and proximity to the urban centers exacerbating the welfare losses substantially. 

6 Concluding remarks 

 

Understanding how natural disasters affect human welfare is an increasingly pressing 

concern, not least in Vietnam, which ranks among the most disaster prone countries worldwide. This 

study illustrates a methodology to study the welfare effects of such events in a country specific 
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setting using spatially disaggregated disaster maps derived from first hand meteorological data 

combined with nationally representative geo-referenced household survey data.  By deriving the 

spatially disaggregated event and hazard maps directly from the meteorological data, issues of 

endogeneity in estimating the effect of such events on consumption in the absence of sufficiently 

long national household panel data, are mitigated.  The event and hazard maps provide also useful 

tools for policy and project planning. In addition, in estimating the welfare effects, spatial correlation 

was also accounted for.   While the latter is routinely ignored, this is less suitable in empirical 

examinations of the household welfare effects of spatially disaggregated disasters whose effects 

regularly permeate the economy through product (food prices) and factor (labor) markets.  

The econometric results suggest that households in Vietnam largely manage to cope with 

the immediate effects of drought events, though that the frequent occurrence of droughts erodes 

their capacity to cope with them, resulting in substantial welfare loss especially among households 

in drought prone areas closer to the urban centers, where disaster relief is less pronounced. 

Localized floods exert important welfare losses, on average an estimated 7 percent, though much of 

that loss appears to be recuperated through capital replacement in the subsequent year, at least 

among those who are only occasionally affected by such floods. Those who are frequently affected 

suffer more, though the long run effects from frequent exposure to localized floods are substantially 

less than those from frequent exposure to droughts, partly due to a responsive relief system in the 

more urban areas that are frequently affected. Riverine floods cause substantial welfare damage (23 

percent) in the short run, though less so among households who are frequently exposed as they 

tend to be much better served by disaster relief, especially they live close to the urban centers. 

Finally, the largest damage is inflicted by hurricane force winds, with regular exposure and proximity 

to the urban centers, which both exacerbate the welfare losses substantially. 

Overall, the study shows that there is promise in using meteorological data to construct 

spatially disaggregated weather event and weather hazard maps. Such data are becoming 

increasingly available and natural event and hazard maps have also important direct applications for 

policymakers beyond their use in estimating the welfare effects of disasters. The fine-tuning and 

validation of such maps is an important area for further research.  Second, there are important long 

run negative effects of being regularly confronted with natural disasters.  Third, short run losses can 

be substantial, with hurricanes causing most havoc. Fourth, there are signs of adaptation, with 

frequent exposure to localized and riverine floods reducing the welfare losses associated with these 

events, partly through the development of effective disaster relief systems.  There is however no 

adaptation to hurricanes, rather the contrary, with high frequency of hurricanes exacerbating the 

losses from particular events. Fifth, those further away from the large urban centers often enjoy 

more immediate disaster relief which appears to mitigate the current and long run effects of natural 

hazards, underscoring the importance of effective disaster relief systems.  These systems have 

however largely eluded areas affected by hurricane force winds so far, an important area of 

attention Vietnamese policymakers.  Sixth, with updated hazard maps in light of climate change, the 

approach followed here could also shed light on the welfare effects of climate change on household 

welfare.  
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Figure 0: Regions of Vietnam 
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Figure 1: Rainfall maps using inverse distance weighing and inverse elevation difference weighting display close resemblance

Figure 1a: Rainfall prediction using inverse 

distance squared from 5 nearest station data 

only, June 2006 

 

Figure 1b: Rainfall prediction using elevation 

difference weighting for 10 nearest stations 

only, June 2006 

 

Figure 1c: Rainfall prediction from regression 

analysis, June 2006 
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Figure 2:  Deviations from median annual rainfall for each year 2001 to 2006. 

                              

                    2001                                                        2002                                                        2003 

                             

                    2004                                                        2005                                                         2006 

Source:  Author's calculations. 
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Figure 3.  Proportion of years with 20 percent shortfall in median annual rainfall  

 

Source:  Author's calculations. 
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Figure 4:  Localized flooding for each year 2001 to 2006. 
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                    2004                                                        2005                                                         2006 

Source:  Author's calculations. 
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Figure 5: Proportion of years in which 300 millimeters of rain fell in a consecutive 5-day period 

 

Source:  Author's calculations. 
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Figure 6:  Riverine and coastal flooding for each year 2001 to 2006. 

                             

                    2001                                                        2002                                                          2003 

                             

                    2004                                                        2005                                                         2006 

Source:  Dartmouth Flood Observatory (2008) and author's calculations using Hydrosheds and 
GLOBE. 
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Figure 7:  Proportion of riverine and coastal flooding 1985-2007. 
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Figure 8:  Hurricane force winds associated with tropical cyclones  for 2001 to 2006. 
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                    2004                                                        2005                                                         2006 

Source:  UNEP / GRID (2007) and author's calculations. 
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Figure 9:  Proportion of years with hurricane force winds 

 

Source:  Author's calculations, based on GNV199 (UNEP/GRID-Europe, 2007a). 
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Table 1: Extreme weather events can have substantial negative effects on household welfare, 

immediately and through adaptation over time, with adaptation and disaster relief often mitigating 

the immediate losses 

Dependent variable: 
log expenditure/capita 
(excl. health expenditure) 

OLS with Hubert-White heteroskedasticity and 
cluster design correction 

ML corrected for spatial 
correlation, cluster design 

and heteroskedasticity 

 (1) (2) (3) (4) 

 parameter/ 
t-value 

parameter/ 
t-value 

parameter/ 
t-value 

parameter/ 
t-value 

Extreme weather event in community     

Droughts     

Drought this year 0.0309*** 0.0016 -0.0671 0.0245 

 2.92 0.06 -1.04 0.58 

Drought this year*drought frequency  0.3023 0.2918 0.0704 

  1.48 1.39 0.46 

Drought this year*ln(hours) from 500k city   0.0177 -0.0006 

   1.23 -0.06 

Drought last year 0.0118 0.004 0.1159 -0.0008 

 0.44 0.06 0.45 -0.01 

Drought last year*drought frequency  0.1253 0.0179 -0.1257 

  0.35 0.05 -0.45 

Drought last year*ln(hours) from 500k city   -0.0212 0.0111 

   -0.39 0.31 

Drought frequency (proportion)  -0.5241*** -2.5466*** -1.2609*** 

  -4.74 -5.54 -4.25 

Drought frequency*ln(hours) from 500k city   0.5486*** 0.2845*** 

   4.54 3.72 

Excess rain     

Excess rain this year 0.0529*** -0.0658*** -0.1552*** -0.0768** 

 4.14 -2.76 -2.92 -2.21 

Excess rain this year*Excess rain frequency  0.1998*** 0.0798 0.0685* 

  4.24 1.28 1.90 

Excess rain this year*ln(hours) from 500k city   0.0377** 0.0159 

   2.2 1.49 

Excess rain last year 0.0521*** 0.0836*** 0.1657** 0.1337*** 

 3.58 2.88 2.56 4.14 

Excess rain last year*Excess rain frequency  -0.1104** -0.1451** -0.0852** 

  -2.09 -2.26 -2.17 

Excess rain last year*ln(hours) from 500k city   -0.0166 -0.0182* 

   -0.9 -1.95 

Excess rain frequency (proportion)  0.0980** -0.3440* -0.2828** 

  1.97 -1.87 -2.26 

Excess rain frequency*ln(hours) from 500k city   0.0894** 0.0798** 

   2.11 2.77 

     Riverine flood     

Riverine flood this year 0.0649*** 0.0133 -0.0536 -0.0575* 

 4.4 0.37 -1.05 -1.87 
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Riverine flood this year*Riverine flood frequency  0.1418 0.1299 0.1440** 

  1.29 1.22 2.20 

Riverine flood this year*ln(hours) from 500k city   0.0129 0.0091 

   1.02 1.17 

Riverine flood last year -0.0615*** -0.0132 -0.1961*** -0.1723*** 

 -5.44 -0.38 -4.22 -5.417 

Riverine flood last year*Riverine flood frequency  -0.1263 -0.0521 -0.0051 

  -1.22 -0.48 -0.07 

Riverine flood last year*ln(hours) from 500k city   0.0488*** 0.3397*** 

   3.71 3.66 

Riverine flood frequency (proportion)  -0.032 0.5082*** 0.0407*** 

  -0.65 3.39 4.87 

Riverine flood frequency*ln(hours) from 500k city   -0.1513*** -0.1041*** 

   -3.88 -4.24 

Hurricane force wind     

Hurricane force wind this year 0.0185 -0.0726 -0.4159 -0.7309*** 

 0.79 -1.16 -1.14 -2.93 

Hurricane force wind this year*Hurricane force 
wind frequency 

 1.3281** 0.0739 -0.9634 

  2.08 0.09 -1.41 

Hurricane force wind this year*ln(hours) from 
500k city 

  0.0886 0.1737*** 

   1.07 2.99 

Hurricane force wind last year 0.0384 0.1967* 0.0658 -0.1642 

 1.29 1.95 0.29 -0.96 

Hurricane force wind last year*Hurricane force 
wind frequency 

 -1.1792 -1.197 -1.4028** 

  -1.23 -1.28 -2.06 

Hurricane force wind last year*ln(hours) from 
500k city 

  0.0281 0.0762** 

   0.54 1.97 

Hurricane force wind frequency (proportion)  -0.5151*** -2.0504*** -2.1608*** 

  -3.42 -4.83 -7.45 

Hurricane force wind frequency*ln(hours) from 
500k city 

  0.4566*** 0.4584*** 

   3.68 5.79 

Household characteristics     

log of household size -0.2419*** -0.2447*** -0.2474*** -0.2832*** 

 -36.06 -36.83 -37.38 -56.634 

dependency ratio -0.0046*** -0.0046*** -0.0046*** -0.0047*** 

 -28.82 -28.96 -28.92 -36.03 

1 if ethnic minority; 0 otherwise -0.2388*** -0.2411*** -0.2396*** -0.2422*** 

 -16.32 -16.49 -16.66 -29.05 

1 if household head is female 0.0123* 0.0104* 0.0081 0.0005 

 1.93 1.65 1.3 0.10 

log of age of household head 0.1233*** 0.1236*** 0.1217*** 0.1317*** 

 13.44 13.54 13.47 18.71 

education household head = 1 if      

primary school  0.1556*** 0.1564*** 0.1553*** 0.14073*** 
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 22.64 22.91 22.96 26.99 

Lower secondary school 0.2618*** 0.2659*** 0.2659*** 0.2524*** 

 33.02 33.83 34.16 44.32 

Higher secondary school 0.4159*** 0.4187*** 0.4186*** 0.39063*** 

 37.96 38.45 39 47.55 

Short-term technical worker 0.4881*** 0.4993*** 0.5066*** 0.47005*** 

 32.19 33.25 33.84 37.51 

Long-term technical worker 0.5566*** 0.5626*** 0.5668*** 0.5312*** 

 38.19 38.83 39.74 44.43 

Professional secondary school 0.5787*** 0.5832*** 0.5833*** 0.55974*** 

 37.36 37.69 37.8 42.96 

College diploma and above 0.8133*** 0.8130*** 0.8099*** 0.76219*** 

 51.35 52.7 54.59 65.25 

Days ill in bed, senior household members 0.0001 0.0001 0.0001 0.0000 

 0.71 0.67 0.6 0.47 

Days ill in bed, adult household members -0.0002 -0.0002 -0.0002 -0.0002*** 

 -1.42 -1.45 -1.57 -2.07 

Days ill in bed, children 0.0001 0.0002 0.0002 0.0002 

 0.74 0.84 0.84 0.94 

Own a house (1=yes; 0=no) 0.1393*** 0.1415*** 0.1493*** 0.1592*** 

 9.01 9.28 10.31 15.40 

Own land (1=yes;0=no) -0.7036*** -0.6848*** -0.6848*** -0.7334*** 

 -21.83 -21.67 -21.77 -37.63 

Areas of land owned (squared metres) 0.0782*** 0.0763*** 0.0769*** 0.0883*** 

 19.81 19.68 19.85 38.29 

Community characteristics     

1 if sanitary drinking water in enumeration area -0.0704 -0.0754 -0.0694 -0.0723* 

 -1.5 -1.54 -1.52 -1.74 

1 if sanitary living water in enumeration area 0.0853** 0.0881* 0.0854** 0.1014*** 

 1.97 1.92 2.03 2.51 

1 if electricity in enumeration area 0.0047 0.0145 0.0057 0.0018 

 0.15 0.46 0.18 0.12 

1 if sanitary latrine in enumeration area 0.1062*** 0.1087*** 0.1124*** 0.1002*** 

 7.33 7.51 7.79 12.88 

1 if living on primary or secondary road 0.1199** 0.1011** 0.0856* 0.1080*** 

 2.43 2.07 1.79 4.26 

Log of distance (km) to closest primary or secondary 
road 

0.0234*** 0.0210*** 0.0182*** 0.0194*** 

 3.45 3.13 2.77 5.53 

Log (1+ elevation in meters) 0.0130** 0.0066 0.0066 0.0008 

 2.15 1.04 1.05 0.22 

Log (1+diff bw highest & lowest elevation in 1 km2) -0.0072 -0.0089 -0.0096 -0.0172*** 

 -1.05 -1.33 -1.46 -4.62 

Log (1+tenths hours to urban area of > 25,000 
people) 

-0.0353*** -0.0366*** -0.0404*** -0.0530*** 

 -3.43 -3.5 -3.85 -8.10 

Log (1+tenths of hours to urban area of > 100,000 
people) 

-0.0565*** -0.0555*** -0.0531*** -0.0426*** 
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 -5.39 -5.23 -4.94 -6.03 

Log (1+tenths of hours (6 minute periods) to urban 
area of > 500,000 people) 

-0.0958*** -0.0947*** -0.1442*** -0.1190*** 

 -9.85 -9.57 -9.81 -11.73 

Regional characteristics     

1 if urban; 0 otherwise 0.3176*** 0.3128*** 0.3045*** 0.27923*** 

 21.81 21.79 21.22 34.94 

Region 2: Northeast 0.0824*** 0.0819*** 0.0628*** 0.0860*** 

 4.14 4.01 3.03 5.25 

Region 3: Northwest 0.044 0.0505 0.0436 0.0335 

 1.28 1.51 1.35 1.31 

Region 4: Northcentral Coast -0.0347 -0.0254 -0.0727*** -0.0504** 

 -1.56 -1.04 -2.89 -2.41 

Region 5: Southcentral Coast 0.2475*** 0.2438*** 0.1464*** 0.1409*** 

 8.97 8.36 4.32 5.55 

Region 6: Central Highlands 0.0664** 0.0900*** 0.0411 0.0687*** 

 2.08 2.8 1.28 2.75 

Region 7: Southeast 0.2904*** 0.2881*** 0.2367*** 0.2347*** 

 15.97 13.07 9.76 12.07 

Region 8: Mekong Delta 0.2757*** 0.2701*** 0.2518*** 0.2157*** 

 11.24 8.42 7.8 9.86 

1 if year 2004; 0 otherwise 0.3368*** 0.3367*** 0.3385*** 0.33537*** 

 36.4 35.88 35.18 44.92 

1 if year 2006; 0 otherwise 0.6360*** 0.6387*** 0.6458*** 0.64451*** 

 69.34 67.54 67.28 88.39 

Constant 7.5505*** 7.6402*** 7.8854*** 7.0465*** 

 95.01 94.78 86.6 67.38 

r2/ln L 0.57 0.57 0.58 -23,761.1 

F 481.45 404.4 359.8  

N 46985 46985 46985 47,167 

Pooled VHLSS data from 2002, 2004 and 2006. Drought if 20% below annual median rainfall; excess rainfall if > 300 mm in 5 

consecutive days at least once in a year; flooding recorded in Darthmouth Flood Observatory and within 2 m elevation 

difference from river or coast; hurricane force winds if wind 65 knots (118 km/hour) or more.  

ln(hours) from 500k city are in effect the ln(1+ tenths of hours) from 500k city with  tenths of hours being 6 minute periods 
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Table 2: Extreme weather events can have substantial negative effects on household welfare, 

immediately and through adaptation over time, with adaptation and disaster relief often mitigating 

the immediate losses 

Dependent variable Log 
exp/capita 

(excl. health 
expenditure) 

Log (asset and 
consumer 

durable value) 

Disaster 
relief  

Domestic 
remittance

s 

Remittance
s from 

outside VN 

Herfindahl 
index 

 ML OLS  Tobit  OLS 

 (1) (2) (3) (4) (5) (6) 

 parameter/ 
t-value 

parameter/ 
t-value 

parameter/ 
t-value 

parameter/ 
t-value 

parameter/ 
t-value 

parameter/ 
t-value 

Extreme weather event in 
community 

      

Droughts       

Drought this year 0.0245 0.193 -667 423 -13387*   -0.0232 

 0.58 0.95 -0.5 0.91 -1.91 -0.92 

Drought this year*drought 
frequency 

0.0704 0.9981    0.029 

 0.46 1.22    0.36 

Drought this year*ln(hours) from 
500k city 

-0.0006 -0.0923* 549 -128 4192**  0.0058 

 -0.06 -1.95 1.56 -1.07 2.28 1.03 

Drought last year -0.0008 -1.2525* -288 -2208 17699 0.0538 

 -0.01 -1.68 -0.05 -1.49E+00 0.75 0.67 

Drought last year*drought 
frequency 

-0.1257 -1.0411    -0.1084 

 -0.45 -0.85    -0.94 

Drought last year*ln(hours) from 
500k city 

0.0111 0.3263** -388 313 -4247 -0.0053 

 0.31 2.24 -0.28 0.87 -0.72 -0.3 

Drought frequency (proportion) -1.2609*** -3.4800** 11703 10822*** 64532 -0.3115** 

 -4.25 -2.26 1.11 2.98 1.18 -2.15 

Drought frequency*ln(hours) from 
500k city 

0.2845*** 1.0100** -3830 -2761*** -19709 0.0738* 

 3.72 2.36 -1.43 -2.93 -1.35 1.96 

Excess rain       

Excess rain this year -0.0768** -0.3798** -8908*** 707 12524**  -0.0214 

 -2.21 -2.51 -2.92 1.52 2.07E+00 -1.34 

Excess rain this year*Excess rain 
frequency 

0.0685* -0.1213    -0.0265 

 1.90 -0.51    -1.34 

Excess rain this year*ln(hours) 
from 500k city 

0.0159 0.1455*** 2280*** -277** -1759 0.0101* 

 1.49 2.96 3.17 -2.34 -1.14 1.95 

Excess rain last year 0.1337*** 0.3661** 2005 1201** -13616**  -0.016 

 4.14 2.51 1.31 1.99 -2.25 -1.01 

Excess rain last year*Excess rain 
frequency 

-0.0852** -0.5361**    -0.0191 

 -2.17 -2.39    -0.86 

Excess rain last year*ln(hours) 
from 500k city 

-0.0182* -0.0327 -310 -303** 3492**  0.0068 

 -1.95 -0.74 -0.84 -2.05 2.3 1.47 

Excess rain frequency (proportion) -0.2828** -0.8208 14364** 1237 -54117**  0.057 

 -2.26 -1.49 2.52 0.85 -2.41 0.91 
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Dependent variable Log 
exp/capita 

(excl. health 
expenditure) 

Log (asset and 
consumer 

durable value) 

Disaster 
relief  

Domestic 
remittance

s 

Remittance
s from 

outside VN 

Herfindahl 
index 

 ML OLS  Tobit  OLS 

 (1) (2) (3) (4) (5) (6) 

 parameter/ 
t-value 

parameter/ 
t-value 

parameter/ 
t-value 

parameter/ 
t-value 

parameter/ 
t-value 

parameter/ 
t-value 

Excess rain frequency*ln(hours) 
from 500k city 

0.0798** 0.1031 -3694*** -129 12517**  -0.0151 

 2.77 0.73 -2.79 -0.39 2.53 -1.05 

Riverine flood       

Riverine flood this year -0.0575* 0.3427* -1729 -826* -6324 0.0267 

 -1.87 1.93 -1.21 -1.87 -1.48 1.58 

Riverine flood this year*Riverine 
flood frequency 

0.1440** -0.1806    -0.0531 

 2.20 -0.48    -1.32 

Riverine flood this year*ln(hours) 
from 500k city 

0.0091 -0.0955** 538 259** 1857 -0.006 

 1.17 -2.24 1.43 2.14 1.41E+00 -1.4 

Riverine flood last year -0.1723*** -0.8076*** -2582** -331 -2185 -0.0546*** 

 -5.417 -5.42 -2.04 -0.74 -0.42 -3.02 

Riverine flood last year*Riverine 
flood frequency 

-0.0051 1.2278***    -0.0018 

 -0.07 2.91    -0.04 

Riverine flood last year*ln(hours) 
from 500k city 

0.3397*** 0.1197*** 612* 74 1222 0.0134*** 

 3.66 2.99 1.75 5.60E-01 7.90E-01 2.96 

Riverine flood frequency 
(proportion) 

0.0407*** 0.6768 7506* 1177 11479 0.0434 

 4.87 1.58 1.7 0.82 0.64 0.86 

Riverine flood frequency*ln(hours) 
from 500k city 

-0.1041*** -0.3161** -1828* -212 -4749 -0.0088 

 -4.24 -2.49 -1.66 -0.56 -0.99 -0.66 

Hurricane force wind       

Hurricane force wind this year -0.7309*** 0.0771 -40831 -2183 -22448 -0.0999 

 -2.93 0.08 -1.32 -1.17 -0.58 -0.96 

Hurricane force wind this 
year*Hurricane force wind 
frequency 

-0.9634 1.1605    -0.2275 

 -1.41 0.41    -0.71 

Hurricane force wind this 
year*ln(hours) from 500k city 

0.1737*** -0.0017 8208 626 3153 0.0188 

 2.99 -0.01 1.33 1.54 0.39 0.75 

Hurricane force wind last year -0.1642 -1.7442*** -4902 -963 -79326*   0.0122 

 -0.96 -2.86 -0.76 -0.45 -1.7 0.19 

Hurricane force wind last 
year*Hurricane force wind 
frequency 

-1.4028** -3.0042    -0.4922* 

 -2.06 -1.32    -1.8 

Hurricane force wind last 
year*ln(hours) from 500k city 

0.0762** 0.4991*** 1038 248 19613*   0.0105 

 1.97 3.77 0.72 0.49 1.85E+00 0.74 

Hurricane force wind frequency 
(proportion) 

-2.1608*** -1.3598 -5555 -834 -9578 0.0226 

 -7.45 -1 -0.46 -0.24 -0.22 0.18 

Hurricane force wind 
frequency*ln(hours) from 500k city 

0.4584*** -0.0417 1891 400 -8326 -0.0282 
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Dependent variable Log 
exp/capita 

(excl. health 
expenditure) 

Log (asset and 
consumer 

durable value) 

Disaster 
relief  

Domestic 
remittance

s 

Remittance
s from 

outside VN 

Herfindahl 
index 

 ML OLS  Tobit  OLS 

 (1) (2) (3) (4) (5) (6) 

 parameter/ 
t-value 

parameter/ 
t-value 

parameter/ 
t-value 

parameter/ 
t-value 

parameter/ 
t-value 

parameter/ 
t-value 

 5.79 -0.09 0.6 0.41 -0.65 -0.76 

Household characteristics       

log of household size -0.2832*** 0.9004*** 268** -380*** 1996**  -0.0772*** 

 -56.634 36.13 2.1 -6.2 2.01 -29.53 

dependency ratio -0.0047*** -0.0073*** 25*** 6*** 49*   0.0010*** 

 -36.03 -14.26 4.07 3.27 1.78 15.03 

1 if ethnic minority; 0 otherwise -0.2422*** -0.9442*** 482 -371*** 3368 -0.0237*** 

 -29.05 -14.54 1.54 -3.11 1.49 -4.62 

1 if household head is female 0.0005 -0.0971*** 75 235*** 4958*** -0.0037 

 0.10 -4.56 0.53 3.6 4.5 -1.48 

log of age of household head 0.1317*** 0.1358*** 269 1502*** 11890*** -0.0019 

 18.71 4.02 1.51 15.21 6 -0.49 

education household head = 1 if        

primary school  0.14073*** 0.4720*** -68 130** 2851**  -0.0044 

 26.99 17.65 -0.47 1.97 2.16 -1.55 

Lower secondary school 0.2524*** 0.7603*** 13 106 5739*** -0.0112*** 

 44.32 28.11 0.07 1.5 3.78 -3.55 

Higher secondary school 0.39063*** 1.0970*** -469* 261** 11165*** -0.0018 

 47.55 32.37 -1.96 1.99 5.68 -0.42 

Short-term technical worker 0.47005*** 1.2881*** -528 340** 10008*** 0.0191*** 

 37.51 26.95 -1.48 2 3.66 2.83 

Long-term technical worker 0.5312*** 1.3951*** -359 635*** 5688**  0.0218*** 

 44.43 31.19 -1.14 3.7 2.08 3.5 

Professional secondary school 0.55974*** 1.3057*** -1704*** 345* 3299 0.0360*** 

 42.96 30.58 -3.06 1.79 1.14 5.56 

College diploma and above 0.76219*** 1.7775*** -654 1177*** 378 0.0488*** 

 65.25 43.09 -1.44 5.19 0.16 7.32 

Days ill in bed, senior household 
members 

0.0000 0 2 3*** 13 0 

 0.47 0.09 0.77 2.86 0.89 0.76 

Days ill in bed, adult household 
members 

-0.0002*** -0.0017*** 11*** 3** 25*   0 

 -2.07 -3.9 3.72 1.97 1.68 0.92 

Days ill in bed, children 0.0002 -0.0004 7 3 -8 -0.0001 

 0.94  1.49 1.29 -0.25 -0.91 

Own a house (1=yes; 0=no) 0.1592*** 0.8281*** -36 157 3892**  -0.0132** 

 15.40 13.75 -0.13 0.79 2 -2.25 

Own land (1=yes;0=no) -0.7334*** -2.5031*** 746 -306 -16968*** -0.1328*** 

 -37.63 -23.52 1.26 -1.33 -3.51 -10.36 

Areas of land owned (squared 
metres) 

0.0883*** 0.3802*** -138* 40 1265**  -0.0038** 

 38.29 28.21 -1.93 1.4 2.2 -2.38 
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Dependent variable Log 
exp/capita 

(excl. health 
expenditure) 

Log (asset and 
consumer 

durable value) 

Disaster 
relief  

Domestic 
remittance

s 

Remittance
s from 

outside VN 

Herfindahl 
index 

 ML OLS  Tobit  OLS 

 (1) (2) (3) (4) (5) (6) 

 parameter/ 
t-value 

parameter/ 
t-value 

parameter/ 
t-value 

parameter/ 
t-value 

parameter/ 
t-value 

parameter/ 
t-value 

Community characteristics       

1 if sanitary drinking water in 
enumeration area 

-0.0723* 0.1658 -949** -124 -2687 0.0011 

 -1.74 0.47 -2.09 -0.84 -1.02 0.04 

1 if sanitary living water in 
enumeration area 

0.1014*** -0.1143 18 96 8013*** 0.014 

 2.51 -0.34 0.04 0.6 2.67 0.58 

1 if electricity in enumeration area 0.0018 0.18 76 333*** 2023 -0.0324** 

 0.12 0.96 0.31 3.36 0.87 -2.09 

1 if sanitary latrine in enumeration 
area 

0.1002*** 0.4157*** -179 403*** 13758*** 0.0176*** 

 12.88 6.65 -1.1 6.47 9.02 3.22 

1 if living on primary or secondary 
road 

0.1080*** -0.2622 1127 216 -4525 -0.0018 

 4.26 -1.54 1.13 0.57 -0.79 -0.11 

Log of distance (km) to closest 
primary or secondary road 

0.0194*** -0.0373 117 56 -432 -0.0012 

 5.53 -1.55 0.88 1.11 -0.53 -0.52 

Log (1+ elevation in meters) 0.0008 0.003 94 61 2879**  -0.0035 

 0.22 0.1 0.44 0.69 2.21 -1.03 

Log (1+diff bw highest & lowest 
elevation in 1 km2) 

-0.0172*** -0.0773** -359 -161* -4553*** -0.0004 

 -4.62 -2.51 -1.56 -1.84 -3.98 -0.11 

Log (1+tenths hours to urban area of 
> 25,000 people) 

-0.0530*** -0.1523*** 626* -199* -1339 0 

 -8.10 -3.58 1.72 -1.67 -0.83 -0.01 

Log (1+tenths of hours to urban area 
of > 100,000 people) 

-0.0426*** 0.0482** 46 43 -1286 0.0023 

 -6.03 2.22 0.35 0.91 -1.45 1.1 

Log (1+tenths of hours to urban area 
of > 500,000 people) 

-0.1190*** -0.0751*** 276* -62 -152 -0.0022 

 -11.73 -3.28 1.74 -1.15 -0.15 -0.99 

Regional characteristics       

1 if urban; 0 otherwise 0.27923*** 0.4571*** -469 30 2260 0.0247*** 

 34.94 10.56 -1.52 0.25 1.44 5.48 

Region 2: Northeast 0.0860*** 0.1445** 1004* 304* 1642 -0.0226*** 

 5.25 2.46 1.67 1.93 6.20E-01 -3.49 

Region 3: Northwest 0.0335 0.0545 1637** -454 9462*   0.017 

 1.31 0.43 2.14 -1.29 1.87 1.45 

Region 4: Northcentral Coast -0.0504** 0.0366 1516** 613*** 7550**  -0.0072 

 -2.41 0.48 2.32 3.51 2.46 -0.91 

Region 5: Southcentral Coast 0.1409*** 0.2884*** 5111*** 515** 8506**  0.0254** 

 5.55 2.8 4.44 2.15 2.08 2.49 

Region 6: Central Highlands 0.0687*** 0.1144 1936** 811*** 5428 0.0605*** 

 2.75 0.87 2.32 3.24 1.18 5.24 

Region 7: Southeast 0.2347*** 0.2871*** 3449*** 835*** 12333*** 0.0825*** 
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Dependent variable Log 
exp/capita 

(excl. health 
expenditure) 

Log (asset and 
consumer 

durable value) 

Disaster 
relief  

Domestic 
remittance

s 

Remittance
s from 

outside VN 

Herfindahl 
index 

 ML OLS  Tobit  OLS 

 (1) (2) (3) (4) (5) (6) 

 parameter/ 
t-value 

parameter/ 
t-value 

parameter/ 
t-value 

parameter/ 
t-value 

parameter/ 
t-value 

parameter/ 
t-value 

 12.07 3.88 4.2 4.32 3.87 10.37 

Region 8: Mekong Delta 0.2157*** 0.2418** 2840*** 686*** 13412*** 0.0927*** 

 9.86 2.29 3.6 2.91 3.64 8.84 

1 if year 2004; 0 otherwise 0.33537*** 0.7683*** -5885*** 729*** -304 -0.0395*** 

 44.92 23.52 -5.23 6.33 -0.2 -10.53 

1 if year 2006; 0 otherwise 0.64451*** 1.0031*** -4341*** 1050*** 249 -0.0246*** 

 88.39 30.59 -5.08 9.79 0.16 -6.59 

Constant 7.0465*** 5.7400*** -12589*** -5697*** -121334*** 0.7821*** 

 67.38 14.06 -4.1 -8.86 -8.12 22.73 

r2/ln L  0.3                   0.29 

F  135.18 0.77 16.14 3.56 127.76 

N 47,167 46985 46985 46985 46985 46916 

 Pooled VHLSS data from 2002, 2004 and 2006. ML corrected for spatial correlation, cluster design and heteroskedasticity.  OLS and Tobit 

estimators corrected for cluster design and heteroskedasiticy using Hubert-White correction. Drought if 20% below annual median rainfall; 

excess rainfall if > 300 mm in 5 consecutive days at least once in a year; flooding recorded in Darthmouth Flood Observatory and within 2 

m elevation difference from river or coast; hurricane force winds if wind 65 knots (118 km/hour) or more. 

ln(hours) from 500k city are in effect the ln(1+ tenths of hours) from 500k city with  tenths of hours being 6 minute periods 
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Table A1: Inverse elevation difference weighted rainfall index most important in predicting monthly 

rainfall in wettest months (April-November), while inverse distance squared weighted rainfall index 

also important for predicting rain during drier months (December-March) 

Dependent variable = log (monthly rainfall) 

 month constant inverse distance squared 
weighted rainfall index 

inverse elevation difference 
weighted rainfall index 

mean rainfall 
(mm) 

1 -0.19 0.64 0.34 24.7 
 2 -0.27 0.49 0.52 27.5 
 3 -0.56 0.34 0.75 41.3 
 4 -0.95 0.06 1.11 78.1 
 5 -0.72 0.02 1.10 220.8 
 6 -1.05 0.07 1.10 232.1 
 7 -1.16 0.08 1.11 277.1 
 8 -0.95 0.07 1.09 314.7 
 9 -0.20 0.05 0.97 242.2 
 10 -0.51 0.16 0.91 194.8 
 11 -0.30 0.32 0.69 117.2 
 12 -0.13 0.58 0.38 65.6 
 Notes: OLS estimated coefficients from regressing (log) monthly rainfall in 166 rainfall stations from 

across in Vietnam during 1980-2006 on the logs of their respective inverse distance squared weighted 
and inverse elevation difference weighted indices, monthly dummies and their interaction terms; R-
squared=0.768; Mean rainfall reflects averages of rainfall stations taken over 2001-2006 

R-squared: 0.768 
     


