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Abstract 
 

Many common multidimensional indices take the form of a “composite index” which 
aggregates linearly across several dimensions using a vector of weights. Judgments 
rendered by composite indices are contingent on the selected vector of weights. A 
comparison could be reversed at another plausible vector; or, alternatively, the 
comparison might be robust to variations in weights. This paper presents general 
robustness criteria to discern between these two situations. We define a robustness 
quasiordering requiring unanimity for a set of weighting vectors, and utilize methods 
from Bewley’s (2002) model of Knightian uncertainty to characterize this 
quasiordering. We then focus on a particular set of weighting vectors suggested by 
the epsilon-contamination model of ambiguity; this allows the degree of confidence 
in the initial weighting vector to vary analogous to Ellsberg (1961). We provide a 
practical vector-valued representation of the resulting “epsilon robustness” 
quasiordering, and propose a related numerical measure by which the robustness of 
any given comparison can be gauged. Our methods are illustrated using data on the 
Human Development Index from the 2006 Human Development Report.  
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1. Introduction 
 Composite indices, or weighted linear aggregation methods, are commonly used 

in social and economic assessments involving multiple dimensions. A prominent example 

is given by the Human Development Index, which can be viewed as an average of three 

dimensional achievement levels – one representing income, a second education and a 

third health.1 Another example is provided by annual college rankings that combine 

multiple attributes, including tests scores and educational facilities, into a composite 

index to measure quality of a university or an academic department. The associated 

rankings generate substantial interest, and may have significant impact on resource 

allocation and other economically relevant outcomes.  

 Each ranking generated by a composite index is, however, contingent on the 

choice of initial weights; a slight variation in weights may well lead to a different 

judgment between a given pair of alternatives. And while there are a number of plausible 

methods for selecting initial weights, none is so compelling or precise as to exclude all 

alternative weights. Given the possibility that any judgment rendered by a composite 

index could be reversed, it would be useful to have additional information on the 

robustness of comparisons with respect to changes in the weights. This is the motivation 

for the present paper, which presents new and tractable methods for evaluating the 

robustness of rankings generated by composite indices.   

 We consider two related approaches - one that is based on quasiorderings and a 

second based on a numerical measure of robustness. The first approach is similar to 

techniques used in the evaluation of poverty, in which poverty comparisons are subjected 

to robustness checks over a range of lines; and is also closely linked the way the Lorenz 

quasiordering tests the robustness of comparisons generated by a single inequality 

measure.2 A “robustness quasiordering” is defined based on an a priori specification of a 

set of weighting vectors. A comparison made by the composite index is said to be robust 

if it is not reversed for any weighting vector in the set. The analysis draws from structures 
                                                 
1 Country-based composite indices have proliferated of late, and include indices of sustainability, 
corruption, rule of law, economic policy efficacy, institutional performance, happiness, human well-being, 
transparency, globalisation, human freedom, peace and vulnerability. 
2 See Atkinson (1970, 1987), Foster and Shorrocks (1988a,b), and Foster and Sen (1997) for related 
discussions. Other examples include stochastic dominance (Bawa  1975), the usual Pareto dominance 
ranking, and social choice models with partial comparability (Sen 1970). 
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found in the literatures on multiple prior models of ambiguity (Gilboa and Schmeidler, 

1989) and on Knightian uncertainty (Bewley, 2002). Motivated by a result from Bewley, 

we characterize this specific form of quasiordering from among all possible relations that 

might be used to check robustness. We further show a straightforward link between the 

quasiordering and the Gilboa-Schmeidler maximin criterion. 

 In order to implement the robustness approach in practice, a specific set of 

weighting vectors must be selected. One convenient possibility is suggested by the 

epsilon-contamination model from decision theory: the set of weighting vectors that can 

be expressed as a convex combination of the initial weighting vector and any other 

weighting vector, where the coefficients on each are respectively 1-ε and ε. The 

coefficient 1-ε is interpreted as the level of confidence in the initial vector; the 

“contamination” parameter ε is a direct measure of the size of the set around this vector. 

Greater confidence in the initial weighting vector is reflected in a lower level of ε-

contamination and a smaller set. Our main result characterizes the resulting ε-robustness 

relation and demonstrates that it has a tractable vector-valued representation; in other 

words, one can check robustness by mapping alternatives to a vector space ordered by 

vector dominance.3  

 A second approach seeks to obtain a continuous measure of the robustness of a 

given comparison, rather than employing a zero-one test. We construct a measure 

comprised of two elements: the difference between the levels of the composite index of 

the two alternatives; and the maximal “contrary” difference across all weighting vectors. 

We show that the measure has an intuitive interpretation as the maximal level of 

contamination ε for which comparison is ε-robust, and note its relationship to the 

maximin function. 

 The purpose of this paper is to present methods that can be used in practice to 

help refine our understanding of rankings generated by composite indicators. We 

therefore present an extended illustration of our methods based on country data obtained 

from the 2006 Human Development Report. The Human Development Index or HDI is a 

                                                 
3 See Foster (1993, 2010) and Foster and Sen (1997, p. 205-207) for a detail discussion on vector valued 
representation. 
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composite index that aggregates over three dimensions representing income, education 

and health achievements in a given country using equal weights. We find that a 

significant proportion of pairwise comparisons across countries are fully robust, while 

other comparisons are quite sensitive to variations in the weighting vector. We fix the 

value of ε and provide examples of comparisons that satisfy and fail our ε-robustness test. 

We calculate a table of robustness levels for comparisons among ten countries with the 

highest HDI levels, and then examine the overall prevalence of the various levels of 

robustness in the 2006 data and two previous years. Our example suggests that these 

techniques can be readily employed to help interpret rankings generated by composite 

indices. 

The rest of the paper is structured as follows. Section 2 provides the notation and 

definitions used in the paper. A formal treatment of the general robustness quasiorderings 

as well as ε-robustness is provided in Section 3. Section 4 constructs the robustness 

measure and demonstrates its relationship to ε-robustness. Section 5 provides an 

application to inter-country comparisons of the Human Development Index. The paper 

concludes in Section 6.  

2. Notation and Definitions 

Let X ⊆ RD denote the nonempty set of alternatives to be ranked, where each 

alternative is represented as a vector x ∈ X of achievements in D ≥ 2 dimensions. For a, b 

∈ RD, the expression a ≥ b indicates that ad ≥ bd for d = 1, …, D; this is the vector 

dominance relation. If a ≥ b with a ≠ b, this situation is denoted by a > b; while a >> b 

indicates that ad > bd for d = 1, …, D. Let Δ = {w ∈ RD: w ≥ 0 and w1+…+wD  = 1} be the 

simplex of weighting vectors. A composite index C: X × Δ → R combines the dimensional 

achievements in x ∈ X using a weighting vector w ∈ Δ to obtain an aggregate level 

C(x;w) = w⋅x = w1x1+…+wDxD. In what follows, it is assumed that an initial weighting 

vector w0 ∈ Δ satisfying w0 >> 0 has already been chosen; this fixes the specific 

composite index C0: X → R defined as C0(x) = C(x;w0) for all x ∈ X. The associated strict 

partial ordering of achievement vectors will be denoted by C0, so that x C0 y holds if and 

only if C0(x) > C0(y). For every d ∈ {1,…,D}, we denote the D-dimensional basis vector 
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by vd, whose dth element is equal to one and the rest of the elements are zero. For 

example, v1 = (1,0,…,0), v2 = (0,1,0,…,0), and so forth. 

3. Robust Comparisons 

We construct a general criterion for determining when a given comparison x C0 y 

is robust. Let W ⊆ Δ be a nonempty set of weighting vectors. Define the weak robustness 

relation RW on X by x RW y if and only if C(x,w) ≥ C(y,w) for all w ∈ W. If both x C0 y 

and x RW y hold for w0 ∈ W, then we say that x robustly dominates y (given w0 and W), 

and denote this by x CW y. In words, the level of the composite index is higher for x than 

y at w0, and this ranking is not reversed at any other weighting vector in W. If instead x C0 

y holds, but x RW y does not, then this indicates that the ranking C(x,w0) > C(y,w0) is not 

robust (relative to the given W) since the initial inequality is reversed at another 

weighting vector, say, C(x,w1) < C(y,w1) for w1 ∈ W. 

The relations RW and CW are closely linked with other dominance criteria, 

including Sen’s (1970) approach to partial comparability in social choice and Bewley’s 

(1986) multiple prior model of Knightian uncertainty. Bewley’s presentation, in 

particular, suggests a natural characterization of RW among all binary relations R on X. 

Consider the following properties, each of which is satisfied by RW. 

Quasiordering (Q):  R is transitive and reflexive. 

Monotonicity (M):  (i) If x > y then x R y; (ii) if x >> y then y R x cannot hold. 

Independence (I):  Let x, y, z, y', z' ∈ X where y' = αx +(1–α)y  and z' = αx + (1–α)z for    

0 < α < 1. Then y R z if and only if y' R z'. 

Continuity (C):  The sets {x ∈ X  | x R z} and {x ∈ X  | z R x} are closed for all z ∈ X. 

Axiom Q allows R to be incomplete. Axiom M ensures that R follows vector dominance 

when it applies, and rules out the converse ranking when vector dominance is strict. 

Axiom I is a standard independence axiom, which requires the ranking between y and z to 

be consistent with the ranking of y' and z' obtained from y and z, respectively, by a 

convex combination with another vector x. Finally, Axiom C ensures that the upper and 
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lower contour sets of R contain all their limit points. We have the following 

characterization, the proof of which is given in the appendix.4 

Theorem 1: Suppose that X is closed, convex and has a nonempty interior. Then a binary 

relation R on X satisfies axioms Q, M, I, and C if and only if there exist a non-empty, 

closed and convex set W ⊆ Δ such that R = RW. 

Thus any robustness relation satisfying the four axioms is generated by pair-wise 

comparisons of the composite index over some fixed set W of weighting vectors.  

The relation RW has an interesting interpretation in terms of the well-known 

maxmin criterion of Gilboa and Schmeidler (1989) for multiple priors. Suppose we know 

that x RW y for some nonempty, closed set W ⊆ Δ. By linearity of the composite index, 

this can be expressed as C(x – y,w) ≥ 0 for all w ∈ W, or as minw∈W C(x – y,w) ≥ 0. The 

Gilboa-Schmeidler evaluation function GW(z) = minw∈W C(z,w) represents the maxmin 

criterion, which ranks a pair of options x and y by comparing GW(x) and GW(y), or the 

respective minimum values of the composite indicator on the set W. Our robustness 

ranking x RW y is obtained by applying GW to the net vector (x – y) and checking whether 

the resulting value is nonnegative. Indeed, x RW y if and only if GW(x – y) ≥ 0.5 

Theorem 1 shows that under the given axioms, the selection of a robustness 

criterion reduces to the choice of an appropriate set W of multiple weighting vectors used 

in RW.  But which W should be used? As we argue below, the answer depends in part on 

the confidence one places in the initial weighting vector w0. If one has confidence that w0 

is the most appropriate weighting vector, then this would be reflected in the selection of a 

smaller set W containing w0. The limiting case of W = {w0} indicates utmost confidence 

in w0 and hence entails no robustness test at all: x C0 y is equivalent to x CW y. On the 

other hand, a larger W would suggest less confidence in w0, a more demanding robustness 

test RW, and correspondingly fewer robust comparisons according to CW. Clearly CW' is a 

                                                 
4 All proofs are found in the Appendix.  
5 The maxmin criterion applies when GW(x) - GW(y) ≥ 0, while our robustness criterion holds when GW(x-y) 
≥ 0. The maxmin criterion generates a complete relation, but requires comparisons of C(x,w) with C(y,w') 
for some w ≠ w', which is not easily interpreted in the present context. See Ryan (2009) for related 
discussions of Bewley (1986) and Gilboa and Schmeidler (1989).  
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subrelation of CW whenever W ⊆ W'. We now investigate the robustness relations for 

some natural specifications of the set W of allowable weighting vectors.6 

Full Robustness 

We begin with the limiting case where W is the set Δ of all possible weighting 

vectors, and denote the associated robustness relations by R1 and C1. When x C1 y holds 

we say the comparison x C0 y is fully robust since it is never reversed at any configuration 

of weights. Of course, requiring unanimity over all of Δ is quite demanding and 

consequently C1 is the least complete among all such relations; however, when it applies 

the associated ranking of achievement vectors is maximally robust.  

Consider the vertices of Δ, given by vd = ed for d = 1,…,D, where ed is the usual 

basis element that places full weight on the single achievement d. Clearly C(x,vd) = xd, 

which suggests a link between the robustness relations and vector dominance. Indeed, we 

have the following characterizations of R1 and C1. 

Theorem 2:  Let x, y ∈ X.  Then (i) x R1 y if and only if x ≥ y and (ii) x C1 y if and only if 

x > y. 

In order to check whether a given ranking x C0 y is fully robust, one need only verify that 

the achievement levels in x are at least as high as the respective levels in y.  

One interesting implication of Theorem 1 is that judgments made by C1 are 

“meaningful” even when variables are ordinal and no basis of comparison between them 

has been fixed.7 Suppose that each variable xd in x is independently altered by its own 

monotonically increasing transformation fd(xd) and let x' = (f1(x1),…, fD(xD)) be the 

resulting transformed achievement vector. It is clear that x > y if and only if x' > y', and 

consequently, by Theorem 2 we have x C1 y if and only if x' C1 y'. In other words, if C1 

holds for any given cardinalization of the ordinal variables, it holds for all 

cardinalizations. Note that while C0 on its own is not meaningful in this context (as y' C0 

                                                 
6 Since CW is the intersection of C0 and RW, it is a strict partial order (transitive and irreflexive) satisfying 
conditions I and M.  
7 For a formal discussion of “meaningful statements” see Roberts (1979). 
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x' is entirely consistent with x C0 y), the fully robust relation C1 is preserved and hence is 

appropriate for use with ordinal variables. 

Epsilon Robustness 

Now consider Δε ⊆ Δ defined by Δε = (1-ε){w0} + εΔ for 0 ≤ ε ≤ 1, which is made 

up of vectors of the form (1-ε)w0 + εw, where w ∈ Δ. Parameter value ε = 0 yields Δ0 = 

{w0} and hence the “no robustness” case, while ε = 1 yields Δ1 = Δ or full robustness. 

Each Δε with 0 < ε < 1 is a scaled down version of Δ located so that w0 is in the same 

relative position in Δε as it is in Δ. Figure 1 provides examples of Δε for the case of D = 3 

and ε = ¼, where Panel 1 has w0 = (1/3,1/3,1/3) and Panel 2 has w0 = (3/5,1/5,1/5). As 

noted in the Figure, ε is a measure of the relative size of Δε. Moreover, for a given w0 the 

sets are nested in such a way that Δε ⊂ Δε' whenever ε' > ε.  

Figure 1: Multiple Weighting Vectors: The ε-Robustness Set Δε 

 

The set Δε of weighting vectors can be motivated using the well-known epsilon 

contamination model of multiple priors commonly applied in statistics and decision 

theory.8 In that context, w0 corresponds to an initial subjective distribution and Δε 

contains probability distributions that are convex combinations of w0 and the set of all 

                                                 
8 See for example, Carlier, Dana, and Shahidi (2003); Chateauneuf, Eichberger, and Grant (2006); 
Nishimura and Ozaki (2006); Carlier and Dana (2008); Asano (2008); and Kopylov (2009). 

 7



objectively possible distributions, where (1-ε) represents the decision maker’s level of 

confidence in w0 and ε is the extent of the “perturbation” from w0. The Gilboa-

Schmeidler evaluation function GW then reduces to a form invoked by Ellsberg (1961), 

namely Gε(z) = (1-ε)C(z,w0) + ε minw∈ΔC(z,w) using our notation. 

Substituting Δε in the definitions of RW and CW yields the ε-robustness relations 

Rε and Cε. Since the sets Δε are nested for a given w0, it follows that x Cε y implies x Cε' y 

whenever ε > ε'. The rankings clearly require C(x,w) ≥ C(y,w) for all w in Δε and hence at 

each of its vertices  = (1-ε)w0 + εvd.  Define xε = (ε
dv x1

ε ,…, xD
ε ) where  = C(x,vε

dx d
ε ) = 

vd
ε ·x, and let yε be the analogous vector derived from y. The following result 

characterizes Rε and Cε. 

Theorem 3:  Let x, y ∈ X.  Then (i) x Rε y if and only if xε ≥ yε and (ii) x Cε y if and only if 

xε > yε.   

Theorem 3 shows that to evaluate whether a given comparison x C0 y is ε-robust, 

one need only compare the associated vectors xε and yε. If each component of xε is at least 

as large as the respective component of yε, then the comparison is ε-robust; if any 

component is larger for yε than xε, then the comparison is not. Checking whether the xε 

vector dominates yε is equivalent to requiring the inequality C(x,w) ≥ C(y,w) to hold for 

each vertex w = vd
ε  of the set Δε. Note further that xε is a convex combination of the 

vectors (C0(x),…,C0(x)) and x, namely, xε = (1-ε)(C0(x),…,C0(x)) + εx, so that when ε = 1 

we obtain the condition x ≥ y in Theorem 2, while when ε = 0, the condition reduces to a 

simple comparison of C0(x) and C0(y).  

4. Measuring Robustness 

Our method of evaluating the robustness of comparison the x C0 y fixes a set Δε of 

weighting vectors and confirms that the ranking at w0 is not reversed at any other w ∈ Δε, 

in which case the associated ε-robustness relation applies. Theorem 3 provides simple 

conditions for checking whether x Cε y holds. The present section augments this approach 
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by formulating a robustness measure that associates with any comparison x C0 y a number 

r ∈ [0,1] that indicates its level of robustness.   

We construct r using two statistics – one that might be expected to move in line 

with robustness and another that is likely to work against it. The first of these is A = 

C(x;w0) – C(y;w0) > 0, or the difference between the composite value of x and the 

composite value of y at the initial weighting vector w0. Intuitively, A is an indicator of the 

strength of the dominance of x over y at the initial weighting vector. The second is B = 

maxw∈Δ[C(y;w) – C(x;w), 0], or the maximal “contrary” difference between the composite 

values of y and x. Note that when the original comparison is fully robust, then C(y;w) – 

C(x;w) ≤ 0 for all w ∈ Δ and there is no contrary difference. Consequently, B = 0. On the 

other hand, when the comparison is not fully robust, then C(y;w) – C(x;w) > 0 for some w 

∈ Δ, and hence B = maxw∈Δ[C(y;w) – C(x;w)] > 0. B is the worst-case estimate of how far 

the original difference at w0 could be reversed at some other weighting vector. 

We propose r = A/(A+B) as a measure of robustness. Notice that when the initial 

comparison x C0 y is fully robust, then B = 0 and hence r = 1.  Alternatively, when the 

initial comparison is not fully robust and B > 0, the measure r is strictly increasing in the 

magnitude of the initial comparison A, and strictly decreasing in the magnitude of the 

contrary worst-case evaluation B.  In addition, if A tends to 0 while B remains fixed, the 

measure of robustness r will also tend to 0. These characteristics accord well with an 

intuitive understanding of how A and B might affect robustness. 

Practical applications of r may be hampered by the fact that it requires a 

maximization problem to be solved, namely, maxw∈Δ[C(y;w) – C(x;w)]. However, by the 

linearity of C(y;w) – C(x;w) = (y – x)⋅w in w, the problem has a solution at some vertex vd 

where the difference C(y;w) – C(x;w) becomes yd – xd. Consequently, B = maxd(yd – xd), 

or the maximum coordinate-wise difference between y and x. The measure r can be 

readily derived using this equivalent definition.  

Now what is the relationship between the robustness measure r and the relation Cε 

developed in the previous section? The following theorem provides the answer. 
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Theorem 4:  Suppose that x C0 y for x, y ∈ X and let r be the robustness level associated 

with this comparison. Then the ε-robustness relation x Cε y holds if and only if ε ≤ r. 

Raising ε leads to a more demanding robustness criterion and a more incomplete 

relation Cε. Theorem 4 identifies r as the maximal ε for which x Cε y holds, and hence the 

largest set Δε for which the original comparison is not reversed. Alternatively, it 

corresponds to the lowest level of confidence (1-ε) for which the Gilboa-Schmeidler (or 

Ellsburg) evaluation function of the net achievement vector (x–y) is always nonnegative; 

i.e., the largest ε for which Gε(x–y) = (1-ε)C(x–y,w0) + ε minw∈ΔC(x–y,w) ≥ 0.  

5. Application 

 We illustrate our methods using data from the 2004 Human Development Index 

(HDI) dataset as published in the 2006 Human Development Report.9 The HDI is a 

composite index C(x;w0) constructed by taking the simple average of three dimension-

specific indicators (of education, health and income) and hence w0 = (1/3,1/3,1/3) is the 

initial weighting vector. Table 1 provides information on the top ten countries according 

to the HDI, including their rankings and HDI values.10 This yields the C0 relation over 

these 10 countries, but says nothing about the robustness of any given judgment. 

Table 1: Human Development Index: The Top 10 Countries in 2004 

Rank  Country HDI 
1  Norway 0.965 
2  Iceland 0.960 
3  Australia 0.957 
4  Ireland 0.956 
5  Sweden 0.951 
6  Canada 0.950 
7  Japan 0.949 
8  United States 0.948 
9  Switzerland 0.947 

10  Netherlands 0.947 

                                                 
9 Our underlying dataset was obtained directly from the UNDP and is less severely rounded off than the 
published data.  
10 Due to rounding off, the HDI levels of Switzerland and Netherlands appear to be equal; in fact, 
Switzerland has a slightly higher HDI than Netherlands. 
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Table 2 focuses on three specific comparisons; the middle columns provide the 

dimensional achievements x1, x2, and x3 needed to ascertain whether full robustness C1 

obtains. The achievement vector for Australia dominates the achievement vector for 

Sweden, and hence by Theorem 2 this comparison is fully robust. However, the 

comparison for Iceland and USA reverses in the income dimension, while the Ireland and 

Canada comparison has a reversal in health, and so neither of these rankings is fully 

robust. Observe that the HDI margin between Australia and Sweden (0.006) is identical 

to the margin for Ireland and Canada, and yet the robustness characteristics of the two 

comparisons are quite different. The HDI margin between Iceland and USA is twice as 

large (0.012) and yet it too is not fully robust.  

Table 2: Robustness of Three HDI Comparisons 

Rank Country HDI 
Hel Edu Inc Hel Edu Inc 
x1 x2 x3 25.0

1x  25.0
2x  25.0

3x  
3 Australia 0.957 0.925 0.993 0.954 0.949 0.966 0.956 
5 Sweden 0.951 0.922 0.982 0.949 0.944 0.959 0.951 
2 Iceland 0.960 0.931 0.981 0.968 0.953 0.965 0.962 
8 USA 0.948 0.875 0.971 0.999 0.930 0.954 0.961 
4 Ireland 0.956 0.882 0.990 0.995 0.937 0.964 0.966 
6 Canada 0.950 0.919 0.970 0.959 0.942 0.955 0.952 

 

The final columns of Table 2 give the entries of the associated xε vectors for ε = 

0.25 in order to ascertain ε-robustness of the comparisons. A quick evaluation in terms of 

vector dominance reveals that both the Australia/Sweden and the Iceland/USA 

comparisons are ε-robust, but the reversal in the Ireland/Canada comparison implies that 

ε-robustness does not hold for this ranking when ε = 0.25. By Theorem 3 we know that 

there are weighting vectors in Δε at which Canada has a larger composite index level than 

Ireland.  

The levels of robustness can also be calculated for each of these comparisons. The 

Australia/Sweden comparison is fully robust, with A = 0.006 and B = 0, and hence r = 

100%. The Iceland/USA comparison has A = 0.012 and B = 0.031, and hence r = 28%.  

In contrast, the Ireland/Canada ranking has A = 0.006 and B = 0.037, and therefore r = 

14%. Table 3 presents the level of robustness of pair-wise comparisons for the top ten 
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countries in the HDI ranking. For every cell below the diagonal the “column country” of 

the cell has a higher ranking according to C0 than the “row country”. The number in the 

cell indicates the level of robustness of the associated comparison, expressed in 

percentage terms. Out of the 45 pair-wise comparisons, four are fully robust as denoted 

by r = 100%, while 20 of them, or 44.4 percent, are robust at r = 25%. For the entire 

dataset of 177 countries for the same year, 69.7 percent of the comparisons are fully 

robust and about 92 percent are robust for r = 25%. 

Table 3: Measure of Robustness (%) 

Country   NOR ISL AUS IRL SWE CAN JPN USA SWI NLD 
 Rank 1 2 3 4 5 6 7 8 9 10 

Norway 1 –          
Iceland 2 20 –         
Australia 3 35 19 –        
Ireland 4 86 14 4 –       
Sweden 5 53 94 100 11 –      
Canada 6 61 100 60 14 14 –     
Japan 7 28 34 23 9 7 2 –    
USA 8 77 28 17 67 5 3 1 –   
Switzerland 9 49 100 41 16 17 20 6 2 –  
Netherlands 10 100 68 57 47 25 13 4 7 1 – 

 

Prevalence of Robust Comparisons 

 The let us shift our focus from individual comparisons to the entire collection of 

comparisons associated with a given dataset X̂  and an initial weighting vector w0. The 

first question is how to judge the overall robustness of the dataset. One option would be 

to use an aggregate measure (such as the mean) that is strictly increasing in each 

comparison’s robustness level. However, rather than settling on a specific measure we 

use a “prevalence function” based on the entire cumulative distribution of robustness 

levels, and employ a criterion analogous to first order stochastic dominance to indicate 

greater robustness.  

(The theoretical part has been shortened and some notations changed) Suppose 

the initial weighting vector is w0 and there is a dataset X̂  containing n observations. 
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Without loss of generality, we enumerate the elements of X̂  as x1, x2, …, xn where C0(x1) 

≥ C0(x2) ≥ … ≥ C0(xn). The analysis can be simplified by assuming that no two 

observations in X̂  have the same initial composite value, so that C0(x1) > C0(x2) > … > 

C0(xn).11 There are m = n(n – 1)/2 ordered pairs of observations xi and xj with i < j, and 

each comparison xi C0 xj has an associated robustness level rij. Let P = [rij] represent the 

robustness profile of X̂  (given w0), which lists the level of robustness rij for every 

ordered pair in a manner similar to Table 3. We summarize robustness levels in P in a 

way that reflects the entire distribution. For any given dataset X̂  and initial weighting 

vector w0, define the prevalence function p:[0,1]→[0,1] to be the function which 

associates with each r ∈ [0,1] the share p(r) ∈ [0,1] of the m comparisons whose 

robustness levels are at least r. In other words, p(r) is the proportion of comparisons for 

which the Cr relation applies.12  

  

Figure 2: Prevalence Functions of HDI for Various Years 
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11 This is true for each of the HDI examples presented below. 
12 At r = 0 the complete relation C0 is used and hence p(0) = 1. 
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 Figure 2 depicts the prevalence functions obtained from HDI datasets for three 

different years, which uses equal weights across three dimensions to rank 177, 175, and 

174 countries, respectively.13 Several initial observations can be made from the 

prevalence functions given in Figure 2. Each graph is downward sloping; reflecting the 

fact that as r rises, the number of comparisons that can be made by Cr is lower (or no 

higher). As r falls to 0, all functions achieve the 100% comparability arising from C0; in 

the other direction, the value of p(r) at r = 1 is the percentage of the comparisons that can 

be compared using C1 and hence is fully robust. There is a wide variation in p(1) across 

datasets. It is reasonably large for all the HDI examples, with p(1) being about 69.8% in 

2004, 69.2% in 2001, and 71.5% in 1998. The shapes of the p(r) functions are essentially 

linear for all three HDI dataset. These regularities of prevalence functions are worth 

examining from a more theoretical perspective. If we set a target of 25 percent 

robustness, then on an average 92 percent to 93 percent of the HDI comparisons are 

robust. 

6. Conclusion 

Rankings arising from composite indices receive remarkable attention. Yet they are 

dependent upon an initial weighting vector, and any given judgment could, in principle, 

be reversed if an alternative weighting vector was employed. This leads one to question 

rankings provided by composite indices, especially when there is a disagreement over the 

set of weights they employ.  

This paper examines a variable-weight robustness criterion for composite indices, 

drawing from structures found in the literatures on multiple prior models of ambiguity 

(Gilboa and Schmeidler, 1989) and on Knightian uncertainty (Bewley, 2002). The idea is 

to check how robust a ranking is to the variation or contamination in the initially chosen 

weights or the prior. A ranking is considered robust if the ranking is not reversed for a set 

of feasible weights around the initially chosen weights and not robust if the ranking is 

reversed for any weights in the set. This idea is analogous to the concept of partial 

ordering. It is argued that the size and the shape of the set should depend on the 

confidence one places on the initial choice. If one is supremely confident about the initial 
                                                 
13 Note that the Human Development Indices for the years 1998 and 2004 are obtained from UNDP (2000 
and 2006), respectively. 
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choice, then the set reduces to a singleton set containing the initially chosen wights only 

and there is no reason for checking robustness. On the other hand, if one is not confident 

about the initial choice at all, then the set contains all possible weights and fewest robust 

comparisons can be made.  

This paper proposes an intermediate approach where one is partially confident 

about the initial choice and a smaller set of weights around the initial weights is used for 

checking robustness of ranking. It characterizes the resulting robustness relations for 

various sets of weighting vectors. An illustration of how these relationships moderate the 

complete ordering generated by the composite indices is provided. A measure by which 

the robustness of a given comparison may be gauged is then proposed, and illustrated 

using the Human Development Index (HDI).  

Few other studies have also delved into the issues of robustness of ranking. 

Chercheye et al. (2008) analysed the issue in terms of HDI ranking using an approach 

based on Generalized Lorenz ordering. Our approach significantly differs from. The two 

main areas where their approach diverges from that of ours are that their approach is 

applicable to a particular type of normalization only and assumes that dimensions are 

anonymous to each other. We, on the other hand, are more interested in dimension 

specific pair-wise comparison. There is another branch of studies that uses sensitivity 

analysis to verify the strength of comparisons. The sensitivity analysis is different from 

the robustness analysis in the sense that it estimates confidence intervals around each 

composite index depending on different scenarios. If the confidence intervals of two 

composite indicators do not overlap, an unambiguous comparison is possible. See for 

example Saisana et al. (2005). 

In the current paper, we primarily focus on the ranking of composite indices that 

are linear on dimensional achievements. However, it can be easily shown that our 

approach may be extended to the composite indices that are weighted average of the 

monotonic transformation of the dimensional achievements. Examples include the indices 

such as the Human Poverty Index and the classes of indices proposed by Bourguignon 

(2003), and Foster, López-Calva, and Székely (2005). 
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Appendix 

 
Proof of Theorem 1. Let R be a binary relation on a set X that is closed, convex, and has 

some z in its interior. 

If R = RW for some non-empty, closed, and convex W ⊆ Δ, then it is immediate 

that RW satisfies Q, M, I, and C.  

Conversely, suppose that R satisfies Q, M, I, and C. Define U = {x ∈ X: x R z} be 

the upper contour set of R at z. We know that z ∈ U by Q and U is closed by C. 

Moreover, we can show that U is convex. Pick any x, y ∈ U. Let x' = αx + (1 – α)y for 

some α with 0 < α < 1. Then, where z' = αz + (1 – α)y, we have x', z' ∈ X and by axiom I 

it follows that x' R z'. Moreover, by a second application of I, it follows from y R z that z' 

R z. Therefore, by Q we have x' R z and so U is convex. 

Since, z is in the interior of X, there exists ε > 0 such that Nε = {x ∈ RD: ||x – z|| ≤ 

ε} ⊆ X. Define Uε = U ∩ Nε and note that it is compact, convex, and contains z, so that 

the set Kε = {z} – Uε is compact, convex, and contains 0. Let K = Cone Kε be the cone 

generated by Kε. It is immediate that K is closed, compact, and contains 0. We can state 

that K has the property that for x, y ∈ X we have x R y if and only if y – x ∈ K. To see 

this, let x, y ∈ X and select α > 0 small enough that z' satisfying z = αy + (1 – α) z' lies in 

Nε and x' = αx + (1 – α) z' is also in Nε. Clearly, z – x' = α(y – x) for α > 0. So if x R y, 

we know that x' R z by I, and hence z – x' ∈ K which implies y – x ∈ K. On the other 

hand, if y – x ∈ K, then since z – x' ∈ K, we have x' R z so that x R y by I, establishing the 

result. 

 Now let P = {p ∈ RD: p·k ≤ 0 for all k ∈ K} be the polar cone of K, so that by 

standard results on polar cones, P is closed and convex. It is clear that P ⊆ DR+ , since by 

monotonicity, we have –vd ∈ K and so p·(–vd) ≤ 0 and pd  ≥ 0, where vd is the D-

dimensional usual basis vector for co-ordinate d. In addition, we can show that P contains 
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at least one element p ≠ 0. Indeed, it is clear from M that K contains no k >> 0 (otherwise, 

we would have x << z with x R z). Then, K ∩ DR++

ε 
1v

ε 
1v

 = ∅ and since both sets are convex, we 

can apply the Minkowski separation theorem to find p0 ≠ 0 in P. Let W = Δ ∩ P, so that 

cone W = P. Clearly, K is the polar cone of both P and W, hence, K = {t ∈ RD: w·t ≤ 0 for 

all w ∈ W}. 

 We now show that R = RW. If x R y, then y – x ∈ K and so w(y – x) ≤ 0 for all w ∈ 

W, hence x RW y. Conversely, if x RW y, then by definition we have w(y – x) ≤ 0 for all w 

∈ W, hence x – y ∈ K or x R y. □ 

 

Proof of Theorem 2. Suppose that x C0 y is true.  If x ≥ y holds, then clearly C(x;w) = 

w⋅x ≥ w⋅y = C(y;w) for all w ∈ Δ, and thus x C1 y. Conversely, if x C1 y holds, then setting 

w = vd in C(x;w) ≥ C(y;w) yields xd ≥ yd for all d, and hence x ≥ y. □ 

 

Proof of Theorem 3. We need only verify that x C0 y and xε ≥ yε imply x Cε y. Pick any w 

∈ Δε, and note that since Δε is the convex hull of its vertices, w can be expressed as a 

convex combination of , say w = α1 +…+αD  where α1+…+αD = 1 and αd 

≥ 0 for d = 1,…,D. But then C(x;w) = w⋅x = α1 ⋅x+…+αD ⋅x = α1

εε
Dvv ...,, 

1
ε 

Dv

ε 
Dv 1xε +…+αD Dxε , and 

similarly C(y;w) = α1 1yε +…+αD Dyε ; therefore xε ≥ yε implies C(x;w) ≥ C(y;w).  Since w 

was an arbitrary element of Δε, it follows that x Cε y. □ 

 

Proof of Theorem 4. Let x C0 y and suppose that 0 < ε ≤ r. By the definition of r, we 

have ε ≤ A/(A + B) and hence εB ≤ (1 – ε)A. Pick any d = 1,…,D. Then using the 

definitions of A and B, we see that ε(yd – xd ) ≤ (1 – ε)(w0⋅x – w0⋅y) and hence εvd⋅y + (1 – 

ε)w0⋅y ≤ εvd⋅x + (1 – ε)w0⋅x. Consequently, ⋅y ≤ ⋅x, and since this is true for all d, it 

follows that xε ≥ yε and hence x Cε y by Theorem 3. 

ε 
dv ε 

dv
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Conversely, suppose that x C0 y and yet r < ε ≤ 1. Then (1 – ε)A < εB so that (1 – 

ε)(w0⋅x – w0⋅y) < ε(yd – xd ) for some d, and hence ⋅y  > ⋅x or  for this same 

d. It follows, then, that xε ≥ yε cannot hold, and neither can x Cε y by Theorem 3. □ 

ε 
dv ε 

dv εε   
dd xy >
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