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Outline 

 
I introduce the concept of socioeconomic mobility as the change in the degree of 
dependence between two variables whose correlation is meaningful, such as the 
education of partners. Such multivariate conception entails a departure from traditional 
univariate analysis of mobility. In order to measure how the joint dynamics of two 
variables affects the degree to which they correlate to one another, I propose an index 
suited for discrete variables based on one originally proposed by Bartholomew (1982), 
analog to the symmetric-movement indices of Fields and Ok (1996, 1999). I propose 
indices for both short-term and long-term co-dependence. A criterion to compare two 
distribution in terms of which one leads to higher concentration of co-dependent 
variables is proposed, which is useful, direct test with analytically derivable standard 
deviations. For an empirical application I compare mobility in educational assortative 
mating between male indigenous household heads and their non-indigenous counterparts 
in Peru. I ask four empirical questions: are the two mobility regimes statistically 
homogeneous?; which mobility regime exhibits more persistence in terms of reproducing 
better the initial joint distribution?; which mobility regime leads to a higher degree of 
educational homogamy?; and within each mobility regime, is it the case that the more 
homogamous the parents the more homogamous the sons? To answer the third question 
I also propose a multidimensional extension of one of Shorrocks indices. I find 
heterogeneity between the indigenous and non-indigenous transition matrices. The 
indigenous sample exhibits more persistence but the difference is not statistically 
significant. The non-indigenous mobility process leads to relatively higher long-term co-
dependence in the education of the partners with statistical significance and finally I do 
not find evidence in any of the samples of higher homogamy among the sons of more 
homogamous parents. 
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1. Introduction 
 
Several meanings of socioeconomic mobility have been discussed in the Economics and 
Sociology literature. Some meanings, like mobility as time-dependence, or as positional 
movements, focus on the degree of persistence of the variable across time and at 
different parts of the variable’s distribution.2 Indices measuring these meanings do not 
necessarily follow an axiomatic or welfare-based approach (e.g. as explained by van de 
Gaer et. al., 2001) although they can be used to measure, for instance, mobility as equality 
of opportunity in the sense of the degree of dependence of children’s outcomes on 
parental background. Other meanings of mobility are more complex in that they require 
mobility to be associated with another outcome worthy of concern based on either 
axiomatic or welfare criteria. Examples of these meanings are mobility as progressivity, 
i.e. as an inter-generational equalizer of the expected value of outcomes (Benabou and 
Ok, 2001); or mobility as equalizer of welfare attributes/outcomes (Shorrocks, 1978b; 
Maasoumi Zandvakili, 1986) or equalizer of long-term outcomes (Fields, 2002; Fields et. 
al. 2007).  
 
In this paper I introduce the concept of socioeconomic mobility as the change in the 
degree of dependence between two variables whose correlation is meaningful, such as the 
education of partners or their ethnicity. By contrast to the aforementioned meanings of 
economic mobility, this conception is multivariate. It entails a departure from traditional 
analysis of mobility in which just one variable (at a time) is followed across time. In order 
to measure how the joint dynamics of two variables affects the degree to which they 
correlate to one another, I propose an index suited for discrete variables based on one 
originally proposed by Bartholomew (1982) and resembling the symmetric-movement 
indices of Fields and Ok (1996, 1999). These precursor indices measure the distance, i.e. 
the difference, between a variable in its current state and in a past state. In the index I 
propose distance is measured between different but correlated variables. I propose 
indices for both short-term and long-term concentration, i.e. co-dependence, of welfare 
characteristics and also propose a criterion to compare two distribution in terms of 
which one leads to higher concentration of co-dependent variables, which is a test with 
analytically-derivable standard errors.  
 
As an application I investigate the dynamics of educational assortative mating in Peru 
looking at mobility differences between matrices of indigenous male heads and non-
indigenous ones. The evolution of assortative mating has been a topic of interest for long 
time both in Economics and Sociology (e.g. see Becker, 1993; Kalmijn, 1991a, 1991b, 
1994, 1998; Schwartz and Mare, 2005). In terms of its relevance beyond the interest for 
its own sake, at least since Plato thinkers and scientists have been concerned with the 
impact of assortative mating on intergenerational transmission of welfare and in general 
with the distribution of welfare and living conditions in society.3  
 
The empirical study of assortative mating has traditionally focused on cohorts and relied 
on the pooling of cross-sectional data sources and the use of log-linear models4 (e.g. 

                                                 
2 For a discussion of these meanings see Fields et. al. 2007. 
3 For recent empirical applications of the impact of assortative mating on income mobility see, for 
instance, Ermisch et. al., 2006, who find a significant effect of marital sorting on income mobility in 
Germany; or Blanden, 2005, who performs a similar assessment and finds similar qualitative results for 
the UK. 
4 For the rationale and implementation of log-linear models see Bishop et. al., 1975; Everitt, 1992; 
Agresti, 2002. 



Schwartz and Mare, 2005). Only a handful of studies (e.g. Kalmijn, 1991a) have relied on 
retrospective data to assess the impact of parental background on assortative mating 
among the offspring. This paper assesses how parental assortative mating itself is related 
to children’s assortative mating. By connecting parental to children’s assortative mating I 
estimate a model of assortative mating dynamics and look at its consequences on the 
degree of long-term homogamy in a society.  
 
More specifically I construct bi-dimensional transition matrices which link up the final 
joint distribution of education of male household heads and that of their respective 
spouses with the initial joint education distribution of the heads’ fathers and respective 
mothers. Then I compare the respective matrices of indigenous Peruvian household 
heads with those of non-indigenous Peruvian heads seeking to answer four empirical 
questions: are the two mobility regimes statistically homogeneous?; which mobility 
regime (indigenous or non-indigenous) exhibits more persistence (i.e. is likely to 
reproduce better the initial joint distribution?); which mobility regime leads to a higher 
correlation5 between the educational levels of the spouses, i.e. a higher degree of so-
called homogamy in education; and within each mobility regime, is it the case that the 
more homogamous the parents the more homogamous the sons?  
 
The first question is answered using multinomial tests as suggested by Anderson and 
Goodman (1957). I reject homogeneity of the bi-dimensional transition matrices. For the 
second question I propose an extension of the Shorrocks index of persistence 
(Shorrocks, 1978a, first section) and find that the transition matrix of indigenous heads 
exhibits more persistence but the difference is not statistically significant. For the third 
question, I apply the proposed indices of concentration-inducing mobility based on one 
of Bartholomew´s original persistence indices as well as the concentration comparison 
criterion and find with statistical significance that the mobility regime of indigenous 
heads leads to relatively lower correlation of educational outcomes between spouses. 
Finally, for the fourth question I test for the monotonicity of the transition matrices that 
connect the absolute values of the differences in educational levels between the head’s 
father and the head’s mother with the absolute values of the differences in educational 
levels corresponding to the head itself and his spouse. No evidence of monotonicity is 
found in either sample therefore a higher degree of parental homogamy is not necessarily 
conducive to relatively higher offspring homogamy in the Peruvian samples. 
 
The rest of the paper is organized as follows. The next section lays out the conceptual 
framework in which I explain the estimation of first-order multidimensional Markov 
chains and the implementation of homogeneity tests on them. The section then explains 
the multidimensional Shorrocks index used to asses the relative persistence of the 
compared samples. Thereafter the main part of the section presents the indices of short-
term and long-term concentration of variables along with the criterion used to test 
whether one sample leads to higher co-dependence of variables relative to another one. 
The next section discusses the nature, advantages and limitations of the dataset used for 
the empirical application and then there is a section of results with the quantitative 
answers for the empirical questions. Finally the paper has a concluding section with 
further discussion on the reach and limitations of this study. 
  
 
 

                                                 
5 Throughout the paper I refer to correlation, co-dependence and concentration indistinguishably. 



2. Conceptual framework and methodological results 
 

a. Multidimensional Markov chains 
 
Markov chains represent a time-series dataset as a vector of probabilities of being in a 
certain state conditional on past information of the observations (e.g. see Anderson and 
Goodman, 1957; Luenberger, 1978; Hamilton, 1994). With discrete variables the states 
are naturally defined by the values the variable can take. However states can be merged 
or split further depending on the variable’s measurability. The narrower the width and 
greater the number of states the more informative the model is, assuming a large enough 
sample size. For a given sample size, a more refined model of conditional probabilities 
comes at the cost of efficiency in the estimation of the transition probabilities.  
 
In a uni-dimensional first-order Markov chain model the distribution of one variable 
conditional on one prior state of it is estimated. By contrast, in a multidimensional first-
order Markov chain the joint distribution of two variables conditional on an initial joint 
state is estimated. In both first-order cases the models assume that all path-dependence 
information is condensed in the last period, i.e. the probability of being in a given state in 
the present depends only on the state occupied in the immediately prior period. Let 

( )j iM t be the transition matrix of a first-order Markov chain in period t. Its typical 
element is the probability of being in state j at period t conditional on having been in 
state i in the immediate past, i.e. period t-k,6  denoted by ( )j ip t . Assuming that the 
number of states is s, its respective log-likelihood function and maximum likelihood 
estimator of probabilities is: 
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Analogously the typical element of a first-order bi-dimensional Markov chain transition 
matrix in period t, ( )ij ghM t , e.g. the probability of being in joint state i of variable 1y and 

j of variable 2y at period t conditional on having been in joint state g of variable 1y and h 

                                                 
6 For1 1k t≤ ≤ − . The choice of time interval in discrete Markov models, usually constrained by the 
type and quantity of data available, is non-trivial for two reasons. First, because it may or may not 
coincide with the natural time or rate of potential transition of the observed units, which might even 
exhibit different transition propensities (and realized transitions) in the same time interval. Secondly, 
unless the choice of time interval and the natural rate of potential transition are identical (or assumed 
identical), then some discrete Markov models may not be compatible with the actual data. For further 
elaboration and examples see Singer and Spilerman (1976, p. 451-2).    



of variable 2y  in the immediate past, i.e. period t-1 (or t-k) is ( )ij ghp t . Assuming that the 

number of states for variables 1y and 2y  is, respectively, s1 and s2, its respective log-
likelihood function and maximum likelihood estimator is: 
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Where ( )jihgN t  is the absolute frequency of units of the sample who find themselves in 

states i and j at time t and in states g and h at time t-1;  ( )..ghN t , is the number of 
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As with a uni-dimensional Markov chain, in a multi-dimensional Markov chain an 
equilibrium joint distribution can be calculated from the respective transition matrix. 
Such equilibrium distribution is worthy of interest in empirical applications (e.g. see 
Quah, 1997; Fafchamps and Desmet, 2005; Hites, 2007) and so it is in this paper’s 
analysis of long-term concentration of characteristics. Therefore it is worth mentioning 
how the equilibrium distribution, representing the long-term distribution, is calculated in 
the multidimensional framework. 
 
In the first-order case the equilibrium distribution is calculated by re-presenting the 
multidimensional Markov chain as a uni-dimensional one in which each new state is a 
combination of states from the original multidimensional matrix. For instance, a matrix 
of n dimensions, each of which having si states, has s1s2…sn states when it is re-written as 
a uni-dimensional matrix (e.g. see Hegre and Fjelde, 2007). Then the usual procedure for 
estimation of an equilibrium distribution for a first-order Markov process can be applied 
(e.g. see Fafchamps and Desmet, 2005). The regularity of the matrix (see Luenberger, 
1978) is a sufficient but not necessary condition for having an equilibrium and ergodic 
distribution.7  
 
Homogeneity tests on mutlti-dimensional Markov chains 
 
A population homogeneity test is a standard multinomial test (e.g. see Hogg and Tanis, 
1997). It can take the form of a likelihood ratio or a Pearson chi-square: both are 
asymptotically equivalent.8 The test provides an answer to the question whether two or 
more population samples come from the same common multinomial distribution. 
Applied to Markov models these tests tell whether respective vectors of transition 
probabilities are different (or not) with statistical significance across different subsamples.  
 
In the Pearson chi-square form the test for first-order stationary bi-dimensional Markov 
chains is the following: 
 

                                                 
7 Sennot (1985) provides criteria to determine the non-ergodicity of a multidimensional Markov chain.  
8 Anderson and Goodman (1957, p. 106)  
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Where the index w denotes the compared population sub-groups. In the chi-square 
statistic (1) the transition probabilities of each sub-group are compared against the 
transition probability (2) which is a pooled estimate under the null hypothesis that the 
samples under comparison are homogeneous. Under such null the chi-square statistic, 
for first-order bi-dimensional chains, has a limiting chi-square distribution with (W-1) s1s2 
(s1s2-1) degrees of freedom. 
 
The treatment of the degrees of freedom in multinomial tests deserves carefulness 
because as the number of states and the order of the chain increases the sample size gets 
overstretched thinner, leading to the appearance of several (or just more) zeros in the 
transition hyper-surfaces (matrices, cubes, hyper-cubes, etc.). When all compared samples 
exhibit zeros in the same position or grid of the transition matrix then the corresponding 
element of the sums in the likelihood ratio (or the Pearson chi-square) statistic becomes 
indeterminate. The presence of zeros in the contingency table and transition matrix 
literature has been extensively treated.9 In the case of homogeneity tests, when the 
problem of indeterminate elements arises there are two basic approaches.  
 
One approach is to treat the zeros as inadequate sources of evidence reasoning that those 
grids/positions could have had probability mass had the sample size been large enough. 
The statistics literature calls these sampling zeros (e.g. see Bishop et. al., 1975; Everitt, 
1992) and has proposed different techniques to deal with them, especially when the 
interest is in estimating log-linear models (Everitt, 1992, p.136). In the application of 
homogeneity tests Billingsley (1961) suggested subtracting from the degrees of freedom 
for every indeterminate element in the sum of the statistic. This latter option is appealing 
if one does not want to favor the null hypothesis of homogeneity by treating zeros 
common to the subsamples as a true homogenizing feature. On one extreme if all zeros 
common to all subsamples are treated as sampling zeros and Billingsley’s suggestion is 
taken up then an upper bound of discounting of the degrees of freedom is established: 
for a given value of the statistic (be it the likelihood ratio or the Pearson chi-square), this 
approach yields the lowest possible p-value.  
 
Another approach is to treat the zeros as contributors of evidence toward homogeneity, 
since the zeros are common to all subsamples under comparison. The reasoning is that 
no matter how large the sample size is those grids may never have any probability mass 
in them.10 These zeros are referred to as structural zeros in the statistics literature 
                                                 
9 For an introduction see Everitt, 1992. 
10 A classical example from the medicine literature is a contingency table which classifies causes of 
bleeding according to gender. The entry for menstruation and male would always be empty. So if two 
of these tables (say from different countries) are to be compared, the corresponding element for that 
entry will be indeterminate, see Everitt (1992, p. 106-107). 



(Everitt, 1992). In such a case one may still want to discount degrees of freedom after 
structural zeros if the interest is to focus on homogeneity testing within the parts of the 
multinomial distributions that have probability mass. Alternatively, as done by Collins 
(1973), all common structural zeros can be considered in the test as sources of 
homogeneity in which case the statistics are computed without accounting for the 
indeterminate elements and the degrees of freedom are the same as usual. This latter 
approach yields, on the other extreme, a lower bound of discounting of degrees of 
freedom, i.e. the highest possible p-value for a given statistic. Any combination of the 
two extremes is also possible. I report results based on the two aforementioned 
extremes. 
 

b. Multidimensional Shorrocks index 
 
The index developed in the first section of Shorrocks (1978a) is based on a formula for 
the average time spent in a state of a transition matrix originally developed by Prais 
(1955). It is a first-order, transition matrix index which measures mobility as departures 
from the transition matrix’s diagonal. In the uni-dimensional context it is defined by 11: 
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Applied to continuous variables, the Shorrocks index, whether applied to a quantile 
matrix or not, is insensitive to mobility due to changes in the variable which are not large 
enough to generate a state transition. And for the same reason it experiences 
discontinuous variations when a change in the variable is large enough to generate a state 
transition.12 Therefore it may understate mobility understood in terms of path-
dependence13, and this understatement will depend on the magnitude and number of 
states of the transition matrix.14 Shorrocks (1978a) studied four desirable axiomatic 
properties that the Prais index may fulfill: normalization (N), monotonicity (M), perfect 
immobility (PI) and perfect mobility (PM). In the multidimensional index that I propose 
below I check whether they fulfill these desirable properties as well.  
 
Following Shorrocks (1978a) (N) means that 0 Pr 1i i≤ ≤ ; (M) means that if all the off-
diagonal probabilities of a transition matrix are at least as great as those of another matrix 

                                                 
11 The index is indirectly based on the sum of the eigenvalues of the matrix since the latter add up to 
the trace which features in the index’s numerator. 
12 By contrast, continuous indices like those of Fields and Ok (1996, 1999) do capture better path-
dependence and movement in the variable of interest. However because of their continuity, they do not 
differentiate between more and less meaningful transitions (e.g. crossing the poverty line). Indices like 
the one in the first section of Shorrocks (1978a) are better tailored to pick up such so-regarded 
meaningful transitions. This difference has been discussed by Fields and Ok (1999, 462-3.)   
13 That is, the extent to which current economic well-being is determined by the past (see Fields et. al., 
2007, p. 107).  
14 Its standard deviation, as shown by Schluter (1998), Trede (1999) and Formby et. al. (2005) is: 
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then the value of the mobility index for the former one should be accordingly higher; 
(PI) states that for a perfectly immobile transition matrix, i.e. an identity matrix, the value 
of the index should be zero and perfect (PM) establishes that the value for the index 
should be one for a transition matrix exhibiting perfect mobility, the latter understood as 
equality of the constituting conditional probability vectors, i.e. perfect unpredictability or 
path-independence.    
 
The multidimensional index proposed in this paper inherits all these latter properties. But 
in a multidimensional setting the diagonal has s1s2…sn elements as opposed to just si. The 
bi-dimensional Shorrocks index takes the following form: 
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The index (3) takes the value of 0 when perfect persistence across time takes place 
therefore satisfying (PI) and partially (N), i.e. since it has a lower bound at zero. The 
index also satisfies (M) but in order to satisfy (PM) a restriction on the set of possible 
contingency tables, similar to the one imposed by Shorrocks (1978a), must be imposed. 
The restriction, which in the case of Shorrocks (1978a) implies focusing on matrices with 
quasi-maximal diagonals15, is that the matrices under comparison should fulfill the 
following condition: 
 
(4)

 ij klij ij kl ijp p kl ijμ μ≥ ∀ ≠  
 
Where 

1 211,..., s sμ μ are positive.  
 
Condition (4) ensures that: 
 

                                                 
15 According to Shorrocks (1978, p. 117) a matrix with quasi-maximal diagonal is one in which: 
 
 ,i ji i j ip p i jμ μ≥ ∀  . Where 1,..., sμ μ are positive. This condition, in the context of Shorrock’s 

analysis, ensures that so-called periodical matrices are excluded from consideration. Periodical matrices are 
such that the distribution of the variable of interest experiences shifts of probability mass from one tail to 
another and vice versa after every transition with corresponding reversals in the relative density of each tail. 
Such matrices do not have equilibrium distributions and are never observed in empirical applications of 
households economics since they would imply significant reversals of ranks (which could be too stark in 
the case of intra-generational mobility). Besides as Shorrocks points out, they imply a higher degree of 
predictability of past conditions than a matrix whose conditional probability vectors are identical, even 
though an index which fulfils (M) would rank the periodical matrix as exhibiting more mobility than the 
matrix with identical conditional probability vectors which conceptually should be regarded as exhibiting 
perfect mobility and be attributed the highest value of the index accordingly.   
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Therefore (N) is fulfilled by the index (3). (PM) is also satisfied when perfect mobility in 
terms of perfect time-independence is attained. Moreover when the index (3) is equal to 
one, (5) holds as an equality which therefore implies that: 
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In other words the index (3) will be equal to one if and only if perfect mobility in the 
form of identical conditional probability vectors is present. Such condition was named by 
Shorrocks (1978a) strong perfect mobility (SPM) and is satisfied by the index (3) when 
condition (4) holds. Now its variance is: 
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In some applications, as in this paper’s, the appearance of zeros in the initial joint 
distribution is likely for both theoretical and sampling reasons. In order to ensure that 
the bi-dimensional Shorrocks index is bounded between zero and one the following 
adjusted index is proposed: 
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Where e is the number of empty cells in the initial joint distribution.17 The adjusted bi-
dimensional Shorrocks index will be used in the application to assortative mating in Peru 
to test which of the two population subsamples, indigenous or non-indigenous, exhibits 
higher persistence in terms of the proneness to replicate the initial distribution.  
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17 Its variance is:  
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c. Indicators of co-dependence of welfare attributes in bidimensional  
Markov chains 

 
I introduce the concept of socioeconomic mobility as the change in the degree of 
dependence between two different variables whose correlation is meaningful, such as the 
education of partners or their ethnicity. This conception of mobility provides a criterion 
for comparing bi-variate distributions in terms of the relative degree of (de) 
concentration that they induce in the two variables.  
 
In the following analysis I focus on square bi-variate joint distributions because the 
indices of short-term and long-term co-dependence hereby proposed apply to this type 
of distributions. By square bi-variate distributions I mean, narrowly, that the two co-
moving variables have similar units and ranges.18  
 
The indices are based on an univariate index developed by Bartholomew (1982) originally 
for discrete, ordered, categorical variables which takes the following form: 
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Where s is the number of states and ai is a probability weight.19 The index takes value of 
zero when there is perfect auto-co-dependence or auto-correlation and a value of one at 
the extreme of furthest distance or lack of auto-co-dependence possible. Different 
indices can be derived from (7) when the probability weights take different values.20 An 
important one ensues when the probability weight is the initial distribution of the 
variable. In that case the Bartholomew index is a measure of autocorrelation on the joint 
distribution of the variable. Another important index is the one in which the probability 
weights are given by the equilibrium distribution. In that case the Bartholomew index in 
(7) is measuring long-term auto-correlation. A similar criterion for measuring auto-
correlation, i.e. by looking at the absolute value of distances, was proposed by Fields and 
Ok (1996, 1999) for continuous variables in order to measure so-called symmetric 
movement.21  
                                                 
18 Like in applications to assortative mating in education, occupation, ethnicity or religion. 

19 The original index has the following form: 
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magnitudes corresponding to the states i and j (Field and Ok, 1996, p. 363). The empirical application 
of this paper is based on a proposed index based on (7), the latter being a specific version of  GB  as 
rendered by Formby et. al. (2004).  
20 If the probability weights are independent from j ip then (7) satisfies Shorrock’s axioms of strong 

immobility (SI), and monotonicity (M) (see Shorrocks, 1978a, p. 1015). 
21 Their absolute change index in Fields and Ok (1999, p. 357-8) is: 
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Where N is the number of observations. Their relative change index is: 



 
I hereby propose to measure co-dependence using the distance criterion as in 
Bartholomew (1982) and Fields and Ok (1996, 1999) but instead of looking at auto-
correlations the focus is on how transitions affect both short-term and long-term co-
dependence between two variables whose correlation is of socioeconomic interest and 
whose units and ranges are homogeneous. 
 
The first proposed index measures co-dependence in the bi-dimensional transition 
matrix and takes the following form:   
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Where the agh are probability weights as in (7). Considering properties similar to those 
proposed by Shorrocks (1978) I now propose some desirable axiomatic properties for an 
index of co-dependence, ( )( ) ( )ij ghC M t C M=  , and assess whether the index (8) fulfills 
them: 
 
(N) Normalization:  ( )0 1C M≤ ≤  
 
(MPD): Maximum positive co-dependence: whenever 0ij ghp >  if and only if 

, ,i j g h= ∀ , then ( ) 0C M =  
 
(MND): Maximum negative co-dependence: whenever 0ij ghp >  if and only if i j−  is 

maximized ,g h∀ , then ( ) 1C M =  
 
The axiom (MPD) establishes that a matrix whose conditional joint distributions have 
probability mass only where the attributes are perfectly positively correlated should be 
ranked by the index as exhibiting maximum positive co-dependence. Certainly several 
different matrices may exhibit this property. The importance of this axiom is that an 
index that fulfills it ranks all and only those matrices as having the exact same degree of 
positive co-dependence. Similarly if the index satisfies (MND) it ranks all and only those 
matrices whose conditional joint distributions have probability mass only where the 
attributes appear with maximum distance as having the exact same degree of negative co-
dependence. The index (8) satisfies (N), (MPD) and (MND). 
 
Depending on the probability weights different indices can be derived. I hereby propose 
three of them: 
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• gh gha p= :  where pgh is the initial joint distribution of 1y and 2y . This index 
measures co-dependence of the two variables in the joint distribution of initial 
and final values of 1y and 2y . It is also a measure of current co-dependence based 
on the initial distribution; hence it measures co-dependence in the short term. 
Because current co-dependence, as shown in (8), depends both on the transition 
matrix and on the initial distribution, comparisons of co-dependence may be 
problematic since the initial distribution may explain part or all of the prospective 
differences in co-dependence between two samples. For such reason this index is 
not suitable to compare co-dependence in the long term as departures from the 
initial distribution take place. 

• 21gha s= : This index measures co-dependence in the short term by setting a 
uniform initial distribution thus allowing for comparison of how conducive 
toward co-dependence is one transition matrix with respect to another one. In 
the long-term this index is not suitable as there is less justification to homogenise 
the initial distributions as transitions change current distributions toward long-
term stationary values.22 

• *
gh gha p= : Where *

ghp  is the equilibrium probability of being in states g of 1y and 
h of 2y . This index measures co-dependence in the long term and therefore is 
helpful for stating among compared samples which ones lead to higher co-
dependence in the long term.   

 
Even though the last index is not affected by changing joint distributions like the first 
two, it is inconvenienced by not having analytically derivable standard errors for 
inference. By contrast, the first two indices have readily derivable standard errors.23 

                                                 
22 Provided that regularity conditions hold. For regularity conditions on transition matrices see 
Luenberguer (1978). 
23 For the standard deviation of the first index notice first that: 
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Where ( ) ( ) ( ) ( )( )1 2 1 2Pr , , 1 , 1ijgh y t i y t j y t g y t hθ = = = − = − = is the probability of the joint 
distribution across variables and time. Therefore the standard deviation takes the following form: 
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Where R is a column vector of s4 dimension whose values are the ordered distance values, i j− , 
ranging from 0 to s-1, repeated four times. And W is a square s4xs4 matrix with the following elements: 
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The standard deviation of the second index has a similar form: 
 



 
Yet there is a sufficient condition with which one can state that a sample features higher 
co-dependence in both the short and the long term than another sample. This condition 
basically ensures that any index derived from (8) has a lower (higher) value for one of the 
samples. If the samples are A and B, and A induces more co-dependence the condition 
can be written as: 
 

 (9)
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The advantage of this condition is that it can be tested with traditional multi-contrast 
procedures (e.g. see Stoline and Udry, 1979). The disadvantage is that it requires testing s2 
contrasts. As I hereby show there is a better sufficient condition that ensures long-term 
co-dependence, can be tested with multiple-contrast inference procedures and yields 
much less contrasts. 
 
To attain this condition it is necessary first to re-write the bi-dimensional transition 
matrix as a uni-dimensional one. In this new matrix the states are defined by the 
distances i j− . Therefore, there are now s discrete states ranging from values of 0 to s-
1. Such re-writing implies that certain distances are being equally regarded. For instance, 
in an application to assortative mating of education, the distance generated by the fact 
that a husband with 12 years of education is married to a wife with 8 years of education is 
given the same consideration as the distance generated by a husband with 2 years of 
education married to a wife with 6 years of education. For the purpose of comparing 
samples in terms of how conducive to homogamy they are this equal consideration of 
different cases is sensible. For other research questions differentiated treatment of such 
hypergamous and hypogamous examples is warranted.  
 
In the new uni-dimensional transition matrices the probability of being in a given current 
distance state is conditioned on the distance state occupied in the past. A typical 
probability of the new transition matrix is: 
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Where now Z is a square s4xs4 matrix with the following elements: 
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( ) ( )( )Pr 1h gp s t h s t g≡ = − =  

 
Where s(t) is the distance state occupied in the present period and s(t-1) is the distance 
state occupied in the past period. The second stage consists of suggesting a new 
Bartholomew index for this new uni-dimensional transition matrix: 
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Where gh  is the expected value of the distance variable, h, in the current period 
conditional on a past value g of the same variable measuring the original distance. The 

ga  are weighting probabilities.  
 
Considering properties similar to those proposed for the index (8), (N), (MPD) and 
(MND) are also desirable for (10) but the latter two properties require the following re-
statement: 
 
(UMPD): Maximum positive co-dependence: whenever 0h gp >  if and only if 

0,h g= ∀ , then ( ) 0C M =  
 
(UMND): Maximum negative co-dependence: whenever 0h gp >  if and only if 1h s= −   

g∀ , then ( ) 1C M =  
 
The axiom (UMPD) establishes that a matrix whose conditional probability vectors have 
probability mass only where the attributes are perfectly positively correlated should be 
ranked by the index as exhibiting maximum positive co-dependence. Similarly if the 
index satisfies (UMND) it ranks all and only those matrices whose conditional 
probability vectors have probability mass only where the attributes appear with 
maximum distance as having the exact same degree of maximum negative co-
dependence. The index (10) satisfies (N), (UMPD) and (UMND). 
 
In this context, the sufficient condition for a sample A to lead to higher short-term and 
long-term concentration than a sample B is the following: 
 
(11)
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The contrasts in (11) are now s, as opposed to s2. This condition then ensures that for 
any sample-specific ga : 
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Specifically when *

g ga p= , where *
gp  is the equilibrium distribution of the new uni-

dimensional matrix whose states are distance states: 
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Which is basically the proposed long-term index of concentration, since h is measuring 
the distance i j− . The index in (13) is a normalized, weighted average of the distance 
between the two variables where the weights are the long-term probabilities. Therefore, 
the index (13) is also stationary. By (12) and (13) sample A exhibits higher co-
dependence than sample B.  
 

Continuous case generalization 
 
The previous analysis can be generalized from discrete ordered categorical variables to 
continuous variables, as long as the latter share the same units and range of values. Take 
co-dependent continuous variables 1y and 2y , and let y and y be respectively the lower 
and upper bounds of the two variables’ range. In the bi-dimensional setting the 
Bartholomew-based index for continuous variables would be: 
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analogue to sufficient condition (9) for a sample A to exhibit higher co-dependence than 
a sample B is: 
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As with the discrete case, a better sufficient can be found if the bi-dimensional matrix is 
expressed as a new uni-dimensional matrix where the states are the differences between 
the two variables. In such case the Bartholomew-based index is: 
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condition (11), for a sample A to lead to higher co-dependence than a sample B is: 
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Finally notice that both (14) and (16) satisfy the translation invariance axiom of Fields 
and Ok (1996, p. 352) and the scale invariance axiom of Fields and Ok (1999, p. 457), 
which means that the indices’ values do not change when affine transformations are 
applied to 1y  and 2y ( ) ( )1 2 1 2, , , , , ,b bC y y y y C ky l ky l ky l ky l= + + + +  and 

( ) ( )1 2 1 2, , , , , ,bu buC y y y y C ky l ky l ky l ky l= + + + + . 
 

d. Comparing bivariate distributions in terms of co-dependence of welfare 
attributes 

 
The contrasts of condition (11) can be used to test, based on (12), the null hypothesis 
that two samples, A and B, lead to the same degree of long-term co-dependence against 
the alternative hypothesis that one of them, e.g. say A, leads to higher co-dependence 
both in the short and the long term: 
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Because gh is a weighted sum of random variables multinomially distributed, it is 
asymptotically distributed as normal. Its variance is: 
 
(19)

g

2
h 'H VHσ =   

 
Where H is a column vector of s dimension whose values are the ordered distance 
values, h, ranging from 0 to s-1. V is a square sxs matrix with the following elements: 
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Where Ng is the number of observations with an initial distance equal to g. Employing 
the respective standard deviations derived from (19) and (20), the test of (18) are 
performed for the s contrasts of (11) with z-scores using the special critical values for the 
studentized maximum modulus distribution with infinite degrees of freedom developed 
by Stoline and Udry (1979).24 The critical value depends on the number of contrasts 
which in this case depends on the original number of states of the variables whose 
distances are being considered for co-dependence analysis. 
 
 
 
 

                                                 
24 For an earlier application in Economics of the tables of the studentized maximum modulus 
distribution to contrasts of means of Bernoulli-distributed variables see Anderson (1996). 



e. Testing the monotonicity of a transition matrix 
 
The last question of this paper is whether sons of relatively more homogamous parents 
tend to be more homogamous themselves. It turns out that, working with the uni-
dimensionalized distance matrices, an answer to that question can be provided by testing 
a sufficient condition, i.e. whether the distance transition matrix is monotonic. In 
transition matrices whose states are ordered in terms of a magnitude, monotonicity 
means that the conditional probability vectors corresponding to higher state values 
stochastically dominate (in the first order) conditional probability vectors corresponding 
to relatively lower state values, so that the expected current value of the variable in 
question conditional on the higher initial state is higher than the expected current value 
conditional on a lower initial state, regardless of the magnitudes of the states. Such latter result 
was first introduced, along with others, into the Economics literature by Dardanoni 
(1995).25 Formally, a uni-dimensional transition matrix, representing a first-order Markov 
process, is monotonic if and only if: 
 

(21)
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In a transition matrix where states denote a distance between welfare attributes of 
spouses, from perfect homogamy to perfect heterogamy in a specific context, 
monotonicity provides a sufficient condition for the Markov process to lead to higher 
homogamy among the observations whose initial conditions reflect more homogamy. 
 
In order to test for monotonicity, I perform tests of first-order stochastic dominance on 
pairs of conditional probability vectors from the transition matrix. I start with the first 
vectors with the lowest value for the initial distance state versus the adjacent second 
vector and then test the second vector versus the consecutive third and so on. The null 
hypothesis is that for every pair there is no stochastic dominance and it is tested against 
the alternative hypothesis that the probability vector conditional the lower initial state is 
stochastically dominated by the one with the relatively higher initial state. The actual first-
order stochastic dominance tests are based on contrasts from (21) following Anderson 
(1996). If there are s states then s-1 contrasts are tested simultaneously.26 The critical 
values of the t statistics are drawn from the maximum modulus distribution with infinite 
degrees of freedom developed by Stoline and Udry (1979). For the null hypothesis to be 
rejected it is necessary that equation (21) for a pair (j, k) of states holds as a statistically 
significant inequality at least for one of the s-1 contrasts. If the cumulative probabilities 
from (21) cross with statistical significance then there is indetermination: the evidence 
supports neither stochastic dominance nor homogeneity of the two cumulative 
distributions.  
 
Finally, in order to state that a matrix is monotonic the test on (21) has to hold for every 
pair under comparison. If first-order stochastic dominance can not be proven for one of 
the pairs then there is no evidence that the more homogamous the parents are the more 
homogamous the children will be.  

                                                 
25 The monotonicity property features prominently in Benabou and Ok (2001) who consider these 
matrices to perform their mobility analysis in terms of their relative degree of progressivity.  
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3. Data 
 
Peru is an interesting case-study because, as other developing countries, it underwent a 
dramatic socioeconomic transformation during the 20th century to such an extent that it 
ought to exhibit, first, heterogeneity in the mobility regimes across cohorts, in several 
attributes like education, occupation, living standard or general social status indicators. 
Secondly, differential growth rates in educational attainments across gender and 
ethnicities, as happened in Peru during the aforementioned period of transformation, 
should have an effect in the patterns of assortative mating across different population 
groups, e.g. among indigenous and non-indigenous adults.  
 
By 1940 (date of the earliest census of that century) the country’s population was mostly 
rural (65%) and living in the highlands (63%). By 1993 (date of the latest census of that 
century) cities held the majority of the population and the coast had become the major 
region of population settlement (Contreras y Cueto, 2000). Simultaneously, starting 
incipiently in the 1920s and 1930s the construction of state school facilities boomed 
between the 1940s and the 1960s (Portocarrero et. al., 1988). These major changes in 
both demand-side and supply-side factors brought increasing levels of literacy and 
educational attainment in general (e.g. illiteracy rates fell from 59% in 1940 to 11% in 
1993). More importantly they increasingly weakened the links between parental and 
offspring education. As I show in another paper (Yalonetzky, 2008) uni-variate 
educational mobility as measured by one of the Bartholomew indices27, increased during 
the aforementioned periods, although not always monotonically, for men and women in 
urban and rural areas, and also for indigenous versus non-indigenous heads.  
 
The dataset is the Peruvian 2001 Household National Survey (ENAHO) with 
information for 16,515 households. Education for household heads, spouses and 
respective offspring are available in an educational module. For the education of the 
parents of heads and spouses there is a special module on “Household perception” 
including retrospective questions on education, language and ethnicity characteristics of 
the parents and grandparents of heads and spouses. Parental education of the head and 
spouse is available in terms of the following levels (not in years): no education, 
incomplete primary, complete primary, incomplete secondary, complete secondary, 
incomplete technical tertiary, technical complete tertiary, incomplete university tertiary, 
complete university tertiary. 28 Matching categories were defined for constructing the 
respective variable in which the tertiary categories include technical and university 
education.  
 
Ethnicity is a multidimensional phenomenon, as has been acknowledged elsewhere (e.g. 
see Valdivia, 2002), and so is ethnic identification in applied, quantitative research. 
                                                 
27 The one deemed M2 by Formbi et. al. (2003). Let m be the number of states and iiθ  the joint 
probability of being in initial state i and in final state i, the index is defined as follows:
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characterized by time-independence B=1 although the reverse is not necessarily true (in fact it is also 
possible that B>1 without time-independence).  
28 For this reason I work with education in levels instead of years.  



Considering this aspect, and in order to perform comparisons between indigenous and 
non-indigenous people I used two indicators of ethnicity available in the dataset: by 
mother tongue and by self-identification. This information was only available to 
household heads and spouses. Those who answered quechua, aymara or “other 
indigenous language” as their mother tongue, were categorized as indigenous according 
to the first definition. Similarly, those who answered “indigenous from the Amazon”, 
“Quechua” and “Aymara” to the question “For your ancestors and according to your 
customs you regard yourself as” in the same module were deemed indigenous.29  
 
The adults sample is comprised of household heads and spouses. Adult offspring 
cohabiting with parents are excluded because no attempt was made to impute ethnicity to 
them. A minimum age of 16 was defined for being an adult, because it was the age of the 
youngest household head. People who said to be studying were excluded from the 
sample to dispose of censored observations but it is still possible that some young people 
found in recess between two periods of studies made it into the dataset.  
 
Even though few Living Standard Measurement Surveys in developing countries have as 
much retrospective information on parents of household heads and spouses as the 
Peruvian  ENAHO 200130 I do not have information on the age at which parents of 
households heads and spouses gave birth to them. Such information is only available for 
adults found living in the same households as their parents. Therefore I can not control 
for parental cohort effects and/or the effects of life-cycle patterns of household resource 
allocation on the inter-generational transmission of education. This limitation is also 
present in other studies of Peru which have resorted to this dataset or others lacking the 
same information. 
 
In this paper I study the changes in assortative mating of male household heads with 
respect to their parents and compare indigenous versus non-indigenous heads. As it 
turns out in table 3.1, the average educational level has increased from older to younger 
cohorts for the population subgroups involved in this paper’s analysis, i.e. indigenous 
male heads, non-indigenous male heads and their respective spouses. The cohort 
averages tend to be the largest for non-indigenous males heads and the smallest for the 
spouses of indigenous males heads. Interestingly, the predominance in the averages of 
male indigenous heads over the spouses of non-indigenous heads depends on the cohort. 
Another interesting observation is that the educational attainment gaps between heads 
and their spouses do not seem to have changed significantly across cohorts. For 
indigenous, the gap is about 0.7 favouring male heads whereas for non-indigenous it is 
about 0.5 also favouring male heads. Such gaps suggest the possibility of heterogamy in 
both samples but potentially less so among non-indigenous. Whether relatively more 
homogamy is expected of the non-indigenous sample in the long term, assuming that 
current trends prevail is one of this paper’s research questions which is answered in the 
next section.  
 

                                                 
29 A discussion of the interaction and overlap of the two definitions is available upon request to the 
author. 
30 Some exceptions include the datasets used by Hertz et. al. (2007), the five African datasets used by 
Bossuroy et. al. (2007), the Brazilian Household Survey used by Bourguignon et. al. (2003) and 
Cogneau and Cigneaux (2005) and the Bangladeshi dataset of rural households used by Assadulah 
(2006). Also the special ENNIV module used by Benavides (2002), although the latter has a 
significantly smaller sample size. 



Table 3.2 offers information on cross-sectional trends in the degree of perfect 
homogamy31 across cohorts for indigenous and non-indigenous male household heads. 
Such information considers surviving marriages and hence might be affected by selective 
marital dissolution. The sample of non-indigenous heads exhibits a higher percentage of 
perfect homogamy than that of indigenous heads in all age cohorts but one. By contrast, 
the comparison of perfect homogamy between the parents of indigenous and non-
indigenous heads reveals a more complex outlook. For the older cohorts it seems that 
fathers of indigenous exhibit relatively larger perfect homogamy whereas for the younger 
cohorts even the opposite is observed in some cases. In both samples the degree of 
perfect homogamy is remarkably higher for fathers than for the heads. Therefore the 
ratios of son-to-father homogamy are always below unity. With one cohort exception, 
the ratios are higher among the non-indigenous samples. This cross-sectional 
information reveals higher perfect homogamy among the youngest cohort of non-
indigenous and a history of relatively higher perfect homogamy among non-indigenous 
for most cohorts. Whether this current trend continues toward the future considering the 
current patterns of intergenerational transmission of education and assortative mating 
can only be answered, under certain interpretative assumptions, with information that 
links individual heads with their respective parental background information.  
 
I focus on young couples up to 35 years old primarily because of the patent cross-cohort 
breaks in the individual transmissions of education (which I have documented in 
Yalonetzky, 2008) and also because by focusing mostly on relatively newlyweds selective 
marital separation is less of a problem.32 The data include 1,118 couples in which the 
male partner is indigenous and 1,696 in which the male partner is non-indigenous all 
belonging to the aforementioned age bracket (each with information on the education of 
the parents of both heads and spouses).  
 
In the next section I report results to the four empirical questions considering different 
state specifications of the transition matrices. Such considerations are due to concerns 
about the size of the compared samples. First, I consider three states based on the 
educational levels in which state 1 stands for no education, state 2 represents incomplete 
primary and state 3 includes complete primary and any higher achievement. Arguably this 
specification compresses the educational-level space significantly but it can be used to 
study educational transitions with an emphasis on the region of educational poverty or 
destitution. Then I consider five states in which the first two states of the former 
specification are kept but now a state 3 stands for complete primary, a state 4 represents 
incomplete secondary and state 5 refers to complete secondary or more. In this 
specification complete secondary is compressed with tertiary education due to concerns 
about the relatively small sample size for tertiary achievement. Then six states are 
considered in which the first four are the same as in the just mentioned specification, 
then the fifth stands just for complete secondary and the sixth state includes any 
additional tertiary education irrespective of whether the tertiary degree was finished or 
not.33 Finally, when working with the uni-variate distance state matrices I consider also a 
cap on the maximum possible distance because the latter usually show up, if at all, with 
few observations. I set a limit of four educational levels of distance as the maximum 

                                                 
31 I measure the degree of perfect homogamy as the percentage of all couples in which both spouses 
have exactly the same educational level.  
32 Schwartz and Mare (2005), though, do report evidence about changes in homogamy in the United 
States using both data from newlyweds and from surviving marriages. 
33 I have information on whether a tertiary degree was finished but the size of the samples of those who 
did not finish is too small. 



(even though with six educational levels the real maximum with these ordered, 
categorical variables would be five).   
 

4. Empirical results 
 
Homogeneity tests: do indigenous and non-indigenous mobility processes resemble each other? 
 
The results for the homogeneity tests are in table 4.1. In both three specifications 
homogeneity between indigenous and non-indigenous samples can not be rejected when 
all the common zeros are regarded as source of evidence favoring homogeneity. 
However when all those zeros are discounted from the degrees of freedom homogeneity 
is rejected with 99% of confidence in the matrices with 5 and 6 specified states, but still 
homogeneity can not be rejected the three-state matrices. That is evidence of 
heterogeneity between indigenous and non-indigenous in the parts of the Markov chains 
where there is non-zero probability mass in the more detailed transition matrices. 
Interestingly the p-values are significantly lower in the state specifications where the 
sample sizes are stretched thinner. This result makes sense though because transition 
toward the top state of the 3-state specification matrix, measuring complete primary 
education, has been significantly high for both heads and their spouses in both samples.  
 
Homogeneity tests were also performed on the uni-dimensionalized matrices whose 
states are the absolute educational distances between heads and their respective spouses. 
The results are in table 4.4 showing evidence of heterogeneity in the Markov processes 
that model the transmission of educational distance from fathers to sons between 
indigenous and non-indigenous samples, for the three state specifications.  
 
Multidimensional Shorrocks index tests: which mobility process replicates better the initial conditions? 
 
The test results on the multidimensional Shorrocks indices are in table 4.2. In all three 
state specifications the sample of non-indigenous exhibits higher mobility but the 
difference is never statistically significant. The indices’ values for both samples are in fact 
very close to unity. I attribute this result to the significant increase in educational 
attainment across cohorts and from parents to children in Peru during the 20th century 
which renders the conditional probabilities of replicating initial relatively low joint 
educational levels very low or even empty.  
 
Co-dependence tests: which mobility process leads to a higher degree of co-dependence in the short and the 
long term? 
 
The Bartholomew-based indices for the bi-dimensional matrices are in table 4.3. They 
were calculated for the aforementioned weighting probabilities: initial distributions, 
uniform distributions, discounted uniform distributions and ergodic distributions. For all 
the three state specifications and for all weighting probabilities, the results indicate that 
the mobility process of the non-indigenous leads to higher co-dependence of the 
educational levels of heads and spouses both in the short term and in the long term. The 
differences are statistically significant with the exception of the differences between the 
indices calculated with the two uniform distributions as weights in the case of three 
educational levels.  
 
In table 4.5 the Bartholomew-based indices have been calculated for the uni-
dimensionalized matrices. The point estimates must be different because the distance 



states of the uni-dimensionalized matrix are aggregations of states of the bi-dimensional 
matrix. The sample of non-indigenous exhibits a higher propensity toward relative 
homogamy vis-à-vis that of indigenous as measured by the Bartholomew-based indices, 
both in the short term and in the long term, although no confidence intervals are 
reported for the indices based on ergodic distributions. The differences are again 
statistically significant with the exception of the comparisons based on both uniform 
distributions in the specification with six educational levels.  
 
The results on the sufficient condition for the co-dependence comparison are in table 
4.6. The point estimates of the weighted averages (e.g. see condition (11)) are all lower 
for non-indigenous with a three state specification. With three contrasts the z-statistic for 
a one-tailed test with p-value of 0.01 is equal to -2.934 (Stoline and Ury, 1979, p. 88) 
which, following the criterion laid out by Anderson (1996), implies that in the sample of 
indigenous more assortative mating in education is expected both in the short and in the 
long term, with statistical significance since the z-score for the initial distance zero is 
higher in absolute value than the critical value.  
 
When five states are specified the weighted average for the initial state with the greatest 
distance has a different sign to the others. However it is not statistically significant since 
with 98% of confidence the null hypothesis of equality of averages for that initial state 
can not be rejected, considering that for five contrasts the z-statistic is near -3.143 and 
3.143 at every tail for one-tailed p-values of 0.01.34 On the other hand, because two of 
the remaining negative z-scores have absolute values higher than -3.143 I reject 
homogeneity of the weighted averages in favor of the alternative hypothesis, again, of 
higher co-dependence in the sample of non-indigenous. 
 
As with three states when six states are specified all weighted averages are lower for non-
indigenous. However the z-scores do not warrant rejecting the null hypothesis of 
homogeneity in weighted averages at 98%. The greatest z-score in absolute value 
corresponds to the initial distance state of zero and is equal to -2.16 which falls within -
2.378 and -2.091, i.e., the critical values for 90% and 80% of confidence. Therefore there 
is not sufficient evidence to reject the null hypothesis in this case but I suspect that, 
considering the point estimates, I would reject homogeneity with a larger sample size. 
 
Monotonicity tests: is it the case that in any of the two samples under comparison the more homogamous 
the fathers the more homogamous the sons? 
 
In tables 4.7 through 4.9 I report results for the monotonicity tests aimed at ascertaining 
whether more homogamous fathers are related to more homogamous sons. It turns out 
that for the three state specifications I can not conclude monotonicity of the respective 
matrices for both indigenous and non-indigenous. In the case of the three states, one of 
the comparisons does not provide evidence of first-order stochastic dominance for non-
indigenous, whereas in the case of indigenous homogeneity of the conditional probability 
vectors can not be rejected. In the case of the five states specification, there is evidence 
of first-order stochastic dominance in the comparisons of the first two pairs of 
conditional probability vectors of the non-indigenous sample (counting from the lowest 
initial state) but the stochastic dominance relationship gets reversed thus leading to 
rejection of monotonicity. In the case of indigenous, homogeneity can not be rejected in 
the comparison between the first pair of conditional probability vectors. Then in the case 

                                                 
34 The tables of Stoline and Udry (1979) do not have values for 5 and other numbers of contrasts. 



of six states, the comparison of the first pair is reported in table 4.9. No stochastic 
dominance can be ascertained in either sample, therefore monotonicity is rejected too.  
 
Evidence from estimations with limits to maximum distance 
 
From tables 4.10 to 4.13 I report results on the same tests but instead of capping the 
maximum educational level I cap the maximum distance. I set the maximum distance 
between spouses’ education at 4, thereby any couple whose educational gap is above 4 is 
attributed an educational gap of 4 nevertheless. The results from this new estimation 
coincide with the previous ones. Table 4.10 reports that homogeneity is rejected at 95% 
of confidence but not at 99%. In table 4.11 and 4.12 there is evidence that the sample of 
non-indigenous leads to higher short-term and long-term co-dependence of spouses’ 
education. In table 4.13 the results for first-order stochastic dominance tests of the first 
pair of conditional probability vectors for both samples are reported. I only report the 
first pairs because already it is clear that there is no stochastic dominance relationship 
present in them and therefore the conclusion is that neither matrix is monotonic.  
 

5. Conclusions 
 
In this paper I sought to contribute both to the economic mobility literature and to the 
household economics literature, regarding assortative mating. Firstly I introduced the 
notion of socioeconomic mobility as the change in the dependence across welfare 
attributes. This notion suggests thinking about mobility in terms of the co-movement 
across time of variables whose correlation is meaningful for social science. From a 
measurement perspective it implies looking at multivariate trajectories as opposed to 
univariate ones which has been the case in the mobility literature. This is not to say that 
there is a lack of interest in looking at changes in the correlation of certain variables. That 
interest exists. But usually this analysis is performed by tracking cohorts along time, 
whereas in this paper I have proposed looking at multivariate mobility following the 
same units, e.g. households, dynasties, individuals, etc. along time.   
 
For such purpose, on top of the already existing literature on log-linear models, I 
suggested the adaptation of old indices from the mobility literature, one of Shorrocks’ 
indices and one of Bartholomew’s, to a multivariate setting. With the extended Shorrocks 
index I sought to measure the degree to which the joint distribution of potentially 
correlated variables persists through time. With the adaptation of the Bartholomew 
indices I aimed at measuring and comparing the degree to which a mobility process leads 
to relatively more co-dependence of the variables both in the short term and in the long 
term. I focused that part of the analysis on bi-variate distribution and related it both to 
the work of Bartholomew (1982) and to that of Fields and Ok (1996, 1999). The use of 
longitudinal datasets and questionnaires with retrospective questions allows for the 
estimation of equilibrium distributions thus enhancing long-term analysis, which is not 
possible with just tracking cohorts from pooled cross-sections. 
 
I also suggested a sufficient condition that enables the comparison of two bi-variate 
mobility processes in terms of the degree of co-dependence that they lead to and 
provides a multiple-contrast statistical test of relative co-dependence. With such test it is 
possible to state with sufficiency whether one distribution entails higher co-dependence 
than another one both in the short term and in the long term. 
 



In order to generally test whether more homogamous parents have more homogamous 
children I proposed the use of monotonicity tests on uni-dimensionalized transition 
matrices of bi-variate distributions. This emphasis on monotonicity links this paper’s 
work to that of Dardanoni (1993) and Benabou and Ok (2001).  
 
I applied these techniques to analyze assortative mating in education across samples of 
indigenous males and non-indigenous males in Peru. I found that the transition matrix of 
non-indigenous males exhibits slightly less persistence as measured by the Shorrocks 
index although the difference is never statistically different. Regarding relative co-
dependence I found evidence of relatively higher short-term and long-term co-
dependence in the education of spouses among non-indigenous. As for monotonicity, 
the lack thereof in both samples suggests that among Peruvian couples sons of relatively 
more homogamous parents are not more likely to be relatively more homogamous than 
their peers of relatively less homogamous parents.   
 
The latter empirical illustration brings about questions worth considering for further 
research. For instance, is the lack of monotonicity to be expected as a general rule or is it 
an otherwise unusual feature of the Peruvian case? Is there any particular reason why the 
non-indigenous samples tend to be more homogamous beyond a faster increase in the 
education of non-indigenous females vis-à-vis indigenous ones?  
 
Methodologically, the multivariate analysis of mobility should be further expanded to 
account for more than two variables, for continuous variables and combinations of 
continuous and discrete variables, for higher-order Markov processes and multi-period 
setting, among other aspects. Several potential applications are interesting, ranging from 
assortative mating in education and other variables like income or ethnicity, to the more 
general mobility analysis of multidimensional welfare both at the micro-level (e.g. 
following households or individuals) and at the macro-level (e.g. following countries or 
regions). 
  



 
Descriptive statistics 
 
Table 3.1. Average educational levels by age cohorts 

Age cohorts 
Indigenous  Non‐indigenous 
Male head  Spouse of male head  Male head  Spouse of male head 

16-29 3.914992 3.243144 4.301232  3.904698
30-34 4.012132 3.26779 4.460285  3.997785
35-39 3.798825 3.078275 4.495677  4.056663
40-44 3.852542 2.926276 4.444227  3.985792
45-49 3.423146 2.571721 4.286192  3.782554
50-54 3.214765 2.379487 4.163408  3.551613
55-59 2.89589 2.138264 3.7  3.325
60-onward 2.407984 1.703325 3.119136  2.652833

 
Table 3.2. Degree of perfect educational homogamy by age cohorts 

Age 
cohorts 

Indigenous  Non‐indigenous 

Male head 
Father of 
male head 

Ratio: 
son/father  Male head 

Father of 
male head 

Ratio: 
son/father 

16-29 36.39  53.18 0.684279804 39.87  52.61 0.757840715
30-34 32.65  56.47 0.578183106 38.65  60.4 0.639900662
35-39 36.42  59.05 0.616765453 36.31  59.04 0.615006775
40-44 31.76  58.35 0.544301628 37.98  59.44 0.638963661
45-49 31  65.62 0.472416946 38.61  59.04 0.653963415
50-54 33.59  66.68 0.50374925 35.71  63.31 0.564049913
55-59 32.8  71.43 0.459190816 38.63  61.42 0.628948225
60-onward 37.09  74.95 0.494863242 42.52  65.83 0.645906122

  



 
Results 
 
Table 4.1. Homogeneity tests for the multi-dimensional matrices 
Educational levels 3 5 6 
Chi-square statistic 59.83617 405.8265 454.9623
Degrees of freedom 72 600 1260
P-value 0.435237 1 1
Empty cells 20 344 872
Discounted degrees 
of freedom 52 256 388
P-value 0.212573 6.97E‐09 0.01068
 
Table 4.2. Bi-dimensional Shorrocks indices 
Educational levels 3 educational levels 5 educational levels 6 educational levels 
Non-indigenous 0.974049 0.981123 0.981296
Indigenous 0.968979 0.967008 0.963658
z-score 0.383811 0.806978 1.296825
 
 
Table 4.3. Bartholomew indices for the multi-dimensional matrices 
 Choice of 

ga  
Initial 
distribution 

Uniform 
distribution 

Uniform 
distribution 
discounted 

Ergodic 
distribution 

3 
educational 
levels 

Non-
indigenous 0.11704 0.142899 0.142899  0.047323
Indigenous 0.179235 0.161164 0.161164  0.07289
z-score ‐9.14861 ‐1.03116 ‐1.03116   

5 
educational 
levels 

Non-
indigenous 0.174823 0.136372 0.14823  0.096004
Indigenous 0.218433 0.184865 0.20094  0.140494
z-score ‐8.42829 ‐5.56707 ‐5.56707   

6 
educational 
levels 

Non-
indigenous 0.170873 0.131817 0.1438  0.112478
Indigenous 0.19212 0.143196 0.171835  0
z-score ‐6.19883 ‐2.55586 ‐5.14567   

 
 
Table 4.4 Homogeneity tests for the uni-dimensional matrices 
Educational levels 3 5 6 
Chi-square statistic 54.56075 76.84756 40.02574
Degrees of freedom 6 20 30
P-value 5.69E‐10 1.34E‐08 0.104367
Empty cells 0 3 9
Discounted degrees 
of freedom 6 17 21
P-value 5.69E‐10 1.38E‐09 0.007383
 
 
 



Table 4.5 Bartholomew indices for the uni-dimensional matrices 
 Choice of 

ga  
Initial 
distribution 

Uniform 
distribution 

Uniform 
distribution 
discounted 

Ergodic 
distribution 

3 
educational 
levels 

Non-
indigenous 0.11704 0.121592 0.121592  0.115079
Indigenous 0.179338 0.181936 0.181936  0.179894
z-score ‐6.24603 ‐3.76346 ‐3.76346   

5 
educational 
levels 

Non-
indigenous 0.174823 0.158477 0.158477  0.172737
Indigenous 0.21847 0.210871 0.210871  0.21821
z-score ‐5.11501 ‐2.34875 ‐2.34875   

6 
educational 
levels 

Non-
indigenous 0.170873 0.157979 0.157979  0.169689
Indigenous 0.192129 0.194863 0.194863  0.192536
z-score ‐3.02775 ‐1.34766 ‐1.34766   

 
Table 4.6 Sufficient condition on the Bartholomew averages for uni-dimensional 
matrices. : , :A B A B

g g g gHo h h Ha h h g= ≤ ∀  

Educational 
levels 

Initial distance 
state 

Non-
indigenous 

Indigenous z-score 

3 educational 
levels 

0 0.219846 0.367316 ‐5.8031
1 0.271071 0.338583 ‐1.89514
2 0.238636 0.385714 ‐1.71667

5 educational 
levels 

0 0.688605 0.871589 ‐4.12517
1 0.783439 0.885333 ‐1.66655
2 0.594937 0.82716 ‐1.71348
3 0.333333 0.966667 ‐3.17058
4 0.769231 0.666667 0.279076

6 educational 
levels 

0 0.861648 0.961165 ‐2.16168
1 0.875252 0.955026 ‐1.28338
2 0.816993 0.986842 ‐1.1818
3 0.595745 0.942857 ‐1.75489
4 0.923077 1 ‐0.17784
5 0.666667 1 ‐0.51355

 
Table 4.7. z- scores for the monotonicity tests with three educational levels. 

1 1 1 1 1 1 1 1
: , :

s s s s s s s s

i j i k i j i k
s i s i s i s i

Ho p p Ha p p j k
= = = = = = = =

= ≥ >∑∑ ∑∑ ∑∑ ∑∑  

 Non-indigenous sample Indigenous sample 
Cumulative 
states 

0 versus 1 1 versus 2 0 versus 1 1 versus2 

0 2.077207 ‐0.96546 ‐0.48344 0.268807
0+1 0.45542 ‐1.19644 ‐1.20096 1.369933
 
 



Table 4.8. z- scores for the monotonicity tests with five educational levels. 

1 1 1 1 1 1 1 1

: , :
s s s s s s s s

i j i k i j i k
s i s i s i s i

Ho p p Ha p p j k
= = = = = = = =

= ≥ >∑∑ ∑∑ ∑∑ ∑∑  

 Non-indigenous sample Indigenous sample 
Cumulative 
states 

0 versus 1 1 versus 2 0 versus 1 1 versus2 

0 3.144995 ‐2.41607 ‐0.42783 ‐1.86844
0+1 0.859707 ‐2.52126 0.600246 ‐0.24045
0+1+2 ‐0.94888 0.430897 0.721861 1.544551
0+1+2+3 0.089793 0.328829 0.363172 2.223517
 
Table 4.9. z- scores for the monotonicity tests with six educational levels. 

1 1 1 1 1 1 1 1

: , :
s s s s s s s s

i j i k i j i k
s i s i s i s i

Ho p p Ha p p j k
= = = = = = = =

= ≥ >∑∑ ∑∑ ∑∑ ∑∑  

 Non-indigenous sample Indigenous sample 
Cumulative 
states 

0 versus 1 0 versus 1 

0 0.506185 ‐0.94877
0+1 0.744307 0.305972
0+1+2 ‐0.59381 0.946634
0+1+2+3 ‐1.52882 0.094615
0+1+2+3+4 ‐‐‐‐ ‐‐‐
 
Table 4.10 Homogeneity tests for the uni-dimensional matrices. Maximum 
distance equal to 4. 
Chi-square statistic 23.57705
Degrees of freedom 12
P-value 0.023208
Empty cells 0
Discounted degrees of freedom 12
P-value 0.023208
 
Table 4.11 Bartholomew indices for the uni-dimensional matrices. Maximum 
distance equal to 4. 
Choice of 

ga  
Initial 
distribution 

Uniform 
distribution 

Uniform 
distribution 
discounted 

Ergodic 
distribution 

Non-
indigenous 0.280857  0.121592 0.265516 0.279437 
Indigenous 0.317829  0.31678 0.31678 0.317677 
z-score ‐3.25282  ‐2.70695 ‐2.70695  
 
 
 
 
 
 
 



Table 4.12 Sufficient condition on the Bartholomew averages for uni-dimensional 
matrices. Maximum distance equal to 4. : , :A B A B

g g g gHo h h Ha h h g= ≤ ∀  

Initial distance 
state 

Non-
indigenous 

Indigenous z-score 

0 0.846389 0.956311 ‐2.45958
1 0.869215 0.949735 ‐1.31863
2 0.803922 0.960526 ‐1.15306
3 0.666667 0.934783 ‐1.61764
 
Table 4.13. z- scores for the monotonicity tests with five educational levels. 
Maximum distance equal to 4. 

1 1 1 1 1 1 1 1
: , :

s s s s s s s s

i j i k i j i k
s i s i s i s i

Ho p p Ha p p j k
= = = = = = = =

= ≥ >∑∑ ∑∑ ∑∑ ∑∑  

 Non-indigenous sample Indigenous sample 
Cumulative 
states 

0 versus 1 0 versus 1 

0 0.506185 ‐0.94877
0+1 0.744307 0.305972
0+1+2 ‐0.59381 0.946634
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