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Abstract

It is widely believed that health plays a major role in retirement decisions. The most important

problem in including health in retirement models is the lack of availability of a good measure

of health at the individual level in existing data sets. This problem is exacerbated when

a model spanning multiple countries is desired, because self-reports on health may not be

comparable across countries. Arguably, physical measures are less influenced by cultural

and linguistic differences than self-reports on general health or even on health conditions.

We develop a cross-country measurement model for health in which the relations between

functional limitations, self-reports, and physical measures like grip strength are used to

construct health indexes. Comparability across countries is achieved by using the physical

measurements to define the measurement scales, and allowing other parameters to vary across

countries to account for cultural and linguistic differences in reponse patterns. The usefulness

of the health indexes is then investigated by including it in some simple retirement models.

1 Introduction

Many countries around the world face an aging population, with at the same time decreasing

average retirement ages (see, e.g., Gruber & Wise, 1999, 2004, 2005, 2007). This pattern has

substantial economic effects, the most obvious of which is that more pensions have to be paid by

fewer workers, at least for pay-as-you-go pension systems, and the question arises whether such

systems can be afforded in the future. A solution that is often mentioned in the public debate is to

increase rather than decrease retirement ages. As a result, the study of the determinants of (early)

retirement has become a key focus in economic research. A problem with studying retirement

∗RAND Corporation, 1776 Main Street, P.O. Box 2138, Santa Monica, CA 90407-2138, meijer@rand.org
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is that many determinants that are expected to play a major role in this decision vary little or

sometimes not at all within a country. An obvious example is the age at which one becomes

eligible for public pensions and other aspects of social security systems, but the same holds for

tax laws and other economic institutions. Cross-country variation in institutions and retirement

ages then forms a source of information about the role of these institutions. These mechanisms

are under government control and are thus important public policy tools to influence retirement

decisions. Hence, cross-country study of retirement has high public policy relevance.

In order to study the role of institutions in retirement decisions across countries, other

determinants of retirement must be accounted for as well. If these determinants also vary across

countries, excluding them from a model leads to incorrect attribution of cross-country differences

in retirement to institutions. Of course, these other determinants may be of considerable interest

in their own right as well.

One of the determinants of retirement most often mentioned is worsening of health with

increasing age. Gordon and Blinder (1980) mention two main ways in which health may

affect retirement decisions. The first is that deteriorating health leads to decreasing productivity

and hence possibly to decreasing (real) wages and more generally less attractive employment

opportunities. The second hypothesis is that decreasing health may shift the relative preferences

for leisure versus work, e.g., because work becomes more burdensome. The latter is a fairly direct

effect of health on labor supply, whereas the former leads to intricate market interactions between

labor supply and labor demand. On the other hand, if affordable health insurance is linked to

employment, the direction of the preference shift becomes ambiguous a priori. An incomplete list

of papers discussing the relationships between health and retirement (usually in a broader context)

is Anderson and Burkhauser (1985), Sammartino (1987), Bound, Schoenbaum, Stinebrickner, and

Waidmann (1999), Coile (2004), French (2005), Bound, Stinebrickner, and Waidmann (2008),

as well as the overview by Currie and Madrian (1999) and the more general overviews about

retirement by Hurd (1990) and Lumsdaine and Mitchell (1999).

One of the most intractable problems in international research on health is the comparability

(or incomparability) of health measures across countries or cultures. The conventional approach to

evaluating health within and across nations relies heavily on using measures of subjective health

assessment such as self-reports of health and health conditions. Arguably, these measures are

conditioned by cultural or social norms, differences in thresholds for medical diagnosis and access

to health care resources, so that comparisons of health across different populations may be difficult

or impossible with such gauges. In response to this issue, research on modeling comparable

health measures has focused on finding objective measurement tools that would provide consistent

evaluations of health across and within nations.

The ability to compare health across countries is a prerequisite for understanding the role of

national policies and institutions in influencing behavior. Health plays a substantial role in many

economic models, including models of labor force participation, retirement, or savings decisions.

Omitting health for a lack of comparable health measures may produce biased estimates of model

parameters if health is correlated with the variables of interest. Although economic models differ
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greatly in what categorization and specific pecuniary factors they use, the reality is that economic

incentives (e.g., disability benefits) are often conditioned on health. In a cross-national study of

economic behavior, the use of comparable health measures helps not only to provide unbiased

assessment of behavior but also to predict the effects of changes in policies. Based on comparable

measures of health, we can evaluate effectiveness of different policy initiatives, assess health

interventions across countries, and set priorities for intervention.

The analysis of inequalities in health within and across nations points at another dimension

of research that needs comparable health measures. Health inequalities that are generally traced

to inequalities in income, education and other socioeconomic categories persist in all countries

but there are cross-national differences in their level, rate of change and strength of association

(Carlson, 1998; Kopp, Skrabski, & Szedmak, 2000; Kunst et al., 2005; Macinko, Shi, Starfield, &

Wulu, 2003; van Doorslaer et al., 1997).

Efforts to develop comparable, composite measures of population health have a long history.

Yet, despite many efforts to develop a consistent instrument to measure health, there seems to

be no standard that is universally accepted (Murray, Salomon, Mathers, & Lopez, 2002). The

measures developed to date differ methodologically (on, for example, the use of weights for health

problems or coverage of health domains) and conceptually (composite measures of individual

health vis-à-vis population health). From a conceptual point of view, indices designed to capture

the detailed components of individual health require a different set of considerations than more

general, population-oriented health status measures. The latter include generalizable data on

mortality, the prevalence, incidence and natural history of non-fatal conditions, prevalence-based

valuations for the disability weights associated with these conditions (Murray et al., 2002).

One of the best known summary measures of population health is the disability-adjusted life

year (DALY) that made its debut in the World Development Report 1993 (World Bank, 1993).

The DALY measures the gap between a population’s actual health and some explicit goal, and is

calculated as the present value of the future years of disability-free life that is lost, to all causes,

whether from premature mortality or from some degree of disability during a period of time

(Erickson, Wilson, & Shannon, 1995; Murray et al., 2002). Another common summary measure

of population health used by the World Health Organization (WHO) is the Disability-Adjusted

Life Expectancy (DALE) that measures the expected number of years of life in full health, or

healthy life expectancy. DALE estimates are based on the estimates of severity-weighted disability

prevalence developed for the non-fatal component of disease and injury burden (Murray et al.,

2002).

There is no single instrument to monitor population health in the US. Measures used by the

US government agencies include the Centers for Disease Control and Prevention Health-Related

Quality-of-Life 14-Item Measure (CDC HRQOL-14) “Healthy Days Measures”1 and the Health

1The CDC HRQOL-14 combines three modules: “Healthy Days core module” that evaluates self-reported general

health, number of days over the last 30 days in ill physical health, mental health or health-related limited functional

ability; “Activity Limitations Module” with 5 questions about physical, mental, or emotional problems or limitations in

daily life, and “Healthy Days Symptoms Module” with 5 questions about the number of days in the past 30 days
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and Activity Limitation Index (HALex), also known as the Years of Healthy Life (YHL) that is

based on age-specific mortality rates, activity limitation and self-rated overall health (Erickson,

1998; Sondik, 2002; Stewart, Woodward, & Cutler, 2005). YHL was used as a summary health

measure in Healthy People 2000, the primary prevention initiative in the US. For the Healthy

People 2010 program no single summary measure has been identified. About 20 leading health

indicators serve as a summary set of nation’s health measures (Sondik, 2002).

While summary measures like DALE, YHL, or HRQOL are useful for comparisons of overall

health across countries and for the measurement of progress of one nation’s health, they offer

limited power in measuring the current health status of an individual that is essential in economic

models. Self-rated health and reports of doctor-diagnosed chronic conditions have been common

measures of the current individual health status in most types of modeling. On the one hand, health

self-assessment is a good measure of health because the question has high response rates and

predictive power for other health measures and mortality. On the other hand, self-reported health

evaluations are subject to many biases related to differences in culture, language and institutional

environment. In international comparisons of health, it is impossible to separate the observed

variation in the subjective health responses into the variation in genuine health and the differences

related to cultural or social norms. Furthermore, self-reported measures may be unstable over

short periods of time.

Recent innovations in the design and data collection of some household surveys make it

possible to construct internationally comparable health measures using a more objective and

accurate evaluation of health than self-perceived health. These advances include collecting

information on physical measures like grip strength and walking speed in cross-national

multidisciplinary studies such as the U.S. Health and Retirement Study (HRS), the English

Longitudinal Study of Ageing (ELSA), and the Survey of Health, Ageing and Retirement in

Europe (SHARE). Interviewers take physical measures of health such as grip strength using the

same protocol across all countries. Such assessments are therefore less likely to be subject to

the biases affecting self-reports of health, and may overcome the measurement issues of cultural

differences in how people evaluate their health. The importance of using objective measures of

health was stressed by Bound (1991) and Burkhauser and Cawley (2006).

The primary objective of this paper is to construct internationally comparable measures of

health. To address the scaling issues inherent in cross-national comparability of subjective health

questions, we develop a model that relies on objective health indicators like grip strength to arrive

at comparable scales. We next incorporate the health measures in a simple model of retirement.

It is often stated that an objective measure of health is essential because of justification bias,

which asserts that people who have retired early rate their health lower to justify their exit from

the labor force. However, empirical evidence for the existence of justification bias seems very

limited (Dwyer & Mitchell, 1999). Therefore, we include self-rated health measures in addition

to an objective measure in our models. But, as shown by Lindeboom and van Doorslaer (2004),

when experiencing specific symptoms. More detail about the CDC HRQOL-14 is available at the CDC website

http://www.cdc.gov/hrqol/hrqol14 measure.htm

4



self-reports may differ between populations because of differences in reporting patterns that are

unrelated to health. They regress self-reports on another health variable that is considered more

objective. Jürges (2007) takes the same approach, but includes a large number of health variables

as explanatory variables. Between-population differences in the resulting coefficients are then

interpreted as reflections of differing reporting patterns. Our approach is based on similar ideas

as those of Lindeboom and van Doorslaer, but different in the operationalization: we treat our

objective measures not as infallible measures of health, but as imperfect indicators that are still

subject to measurement error, but not to differences in reporting patterns. We also use more

indicators of health than Lindeboom and van Doorslaer do, and different ones than Jürges does.

Section 2 describes the health data we use, while section 3 presents our model for health. Once

the model has been estimated, one can use this to construct health measures. This is discussed in

section 4. Section 5 then presents the empirical results, in the form of the measurement model

estimates, the distribution of the health index, and its relation to age and socio-economic status.

After a prelude presenting data on retirement patterns across countries in section 6, section 7

presents a simple retirement model that includes our health measures next to demographics and

economic incentive measures. At this point the retirement model is primarily illustrative. Section 8

concludes.

2 Data on Health

We use information collected in the first wave of the Survey of Health, Ageing and Retirement in

Europe (SHARE), which is a multidisciplinary cross-national longitudinal survey of continental

Europeans over the age of 50 and their spouses. The baseline SHARE study includes

data on 12 countries providing a balanced representation of the different European regions

from Scandinavia (Denmark and Sweden) through Central Europe (Austria, France, Germany,

Switzerland, Belgium, The Netherlands) to the Mediterranean (Spain, Italy, Greece, and Israel).

We use data from SHARE Wave 1, Release 2.0.1 (July 5, 2007).

Designed after the role models of HRS and ELSA, SHARE combines information on

health (e.g., self-reported health, physical and cognitive functioning, health behaviors, health

care utilization and expenditure), psychological conditions (e.g., mental health, well-being, life

satisfaction), socio-economic status (e.g., work activity, job characteristics, income, wealth and

consumption, housing, education), and social support (e.g., social networks, volunteer activities).

The SHARE Wave 1, Release 2.0.1 sample includes 31,115 respondents. The survey has been

administered by means of computer assisted personal interviewing (CAPI), mostly in 2004, with

additional data collected in 2005 and 2006, to probability samples of individuals of 50 and over in

all participating countries. The sampling plan follows a complex probabilistic multistage design

to produce estimates representative of the non-institutionalized population aged 50 and above

in each country. The study also interviews spouses younger than 50. The response rate varies

by country but on average is 62% for households and 85% for individuals within participating
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Table 1: Sample composition by country and gender.

Country Male Female Total

Austria 777 1,072 1,849

Belgium 1,696 1,921 3,617

Denmark 757 857 1,614

France 1,365 1,671 3,036

Germany 1,364 1,566 2,930

Greece 1,235 1,424 2,659

Israel 1,135 1,349 2,484

Italy 1,125 1,382 2,507

The Netherlands 1,344 1,515 2,859

Spain 984 1,357 2,341

Sweden 1,406 1,588 2,994

Switzerland 448 497 945

Total 13,636 16,199 29,835

Note. Unweighted number of respondents.

households. A detailed description of the SHARE data and methodology has been published

elsewhere (Börsch-Supan et al., 2005; Börsch-Supan & Jürges, 2005). The data are available to

registered users from the SHARE website (http://www.share-project.org).

Sample selection

Because we estimate the models using sampling weights, we removed all cases for which the

individual sampling weight was missing. These are mostly persons younger than 50 years of age,

and a few persons whose age and/or gender was missing. We decided not to remove cases with

missing data on any of the other variables. How we deal with the missings is described below.

The resulting analysis data set contains 29,835 cases. Table 1 gives a breakdown by country and

gender.

Missing data

There are 129 cases with all dependent variables for the health model missing. These do not

contribute anything to the loglikelihood and thus have no influence on the estimation of the

parameters of the health model. Nevertheless, it may be useful to include them in the retirement

model, because we will be able to compute health indexes for them, although these will evidently

be less precise than for observations with fewer missing values.

There are 686 cases with missing height and/or weight, including a few cases with unlikely

values (height < 110 cm or weight < 10 kg).

SHARE uses multiple imputations for various missing variables; most important for our

purposes are household income, assets, and education. Imputations for Israel were not yet
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available in our data set. We use the means of the five imputations as our income and asset

variables. In the modeling, we have treated zero mean incomes as missing (negative incomes do

not occur). For education we use the first imputation, but there are only 83 observations for which

education had to be imputed. We have classified “other” education as missing.

Health

SHARE contains extensive modules on physical health, combining information on subjective

health assessment (based on the US categorization on the five-point scale from “poor” to

“excellent” and the European categorization on the five-point scale from “very bad” to “very

good”), indicators of doctor-diagnosed chronic conditions (heart disease, high blood cholesterol,

hypertension, stroke, diabetes, lung disease, asthma, arthritis/rheumatism, osteoporosis, cancer,

ulcer, Parkinson’s disease, cataracts, hip fracture), a battery of functional limitations from

more severe limitations with activities of daily living (ADL) to less disabling problems with

instrumental activities of daily living (IADL) and mobility limitations. In addition, SHARE

contains a limited number of physical measures, including self-reported body weight and height,

interviewer-measured walking speed (for respondents aged 76 and older and those who had

indicated having difficulty with walking 100 m) and grip strength (for all respondents). The

appendix gives a detailed list of the variables we use.

Grip strength is a core physical measure of health that potentially enables cross-national

comparability of health estimates and avoids some of the endogeneity problems inherent in more

subjective health measures like self-rated health. It also helps to overcome the measurement issues

related to biases that arise from subjectivity of self-reported health and health conditions due to

cultural differences across and within countries, differential physician contacts or cross-national

differences in the criteria for thresholds of medical diagnosis. At the same time, predictive validity

of grip strength for assessing health was established in studies that found grip strength to be a better

predictor of future medical problems than self-reported health (Christensen et al., 2000; Rantanen

et al., 1999, 2000; Al-Snih, Markides, Ray, Ostir, & Goodwin, 2002).

SHARE asked respondents to report whether they had any difficulties doing various activities

because of a health or physical problem in the last month before the interview (difficulties expected

to last less than three months were excluded). We have selected 25 indicators to measure health

and functional ability in SHARE, including reports of limitations with 10 activities of mobility,

arm function and fine motor function, 6 ADLs, 7 IADLs, self-reported health, and grip strength.

Table 2 summarizes the distribution of our analysis sample across countries and gender for

selected health indicators. We report four measures of subjective health assessment in SHARE:

any limitation with ADL, IADL, mobility limitations, and self-reports of fair or poor general

health. The distribution of the data on self-reported health is particularly illustrative of the large

cross-country differences embedded in self-reports. For example, the percentage of men who rate

their health as poor or fair is more than three times as large in Germany as in Sweden, whereas

approximately the same proportion of men in both countries report having some chronic health
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Table 2: Percentage reporting health-related limitations or fair/poor self-reported health.

At least one limitation Fair/poor
Country Mobility ADL IADL self-reported health

Male

Austria 44.1 7.8 11.8 28.2

Belgium 39.6 9.4 13.4 25.0

Denmark 34.2 9.9 11.7 24.6

France 38.3 12.8 13.0 32.7

Germany 47.5 8.5 11.1 37.1

Greece 44.4 6.5 11.3 25.2

Israel 40.9 11.8 18.5 38.0

Italy 43.8 10.1 9.6 34.6

The Netherlands 31.7 6.4 10.5 25.6

Spain 43.1 10.2 16.9 34.9

Sweden 35.5 8.0 11.5 11.1

Switzerland 28.4 4.5 4.7 13.8

Total 42.2 9.6 12.0 32.4

Female

Austria 58.3 10.6 22.0 31.5

Belgium 58.1 16.2 24.2 29.5

Denmark 50.3 11.0 21.9 26.3

France 59.0 12.5 21.5 35.8

Germany 61.7 12.0 18.7 42.6

Greece 64.6 11.4 25.9 37.3

Israel 56.7 13.0 29.7 38.7

Italy 60.2 13.9 20.6 47.8

The Netherlands 51.5 10.7 21.6 29.7

Spain 64.9 15.1 30.1 49.4

Sweden 55.5 12.7 22.5 15.6

Switzerland 46.4 8.7 11.8 18.5

Total 60.0 12.8 21.9 40.2

Note. Weighted results.

condition (about 70%, not reported in the table). Another example is the male population of

Denmark, whose life expectancy is on average one year less than of French men, but who are 20%

less likely than the French to rate their health as poor/fair.

Table 3 presents the mean value and standard deviation of grip strength measurements by

country and gender. The cross-national variation in grip strength is much smaller than the observed

differences in self-reports of health. The difference between the highest and the lowest average

national measurements is about 25% for both men and women. In all countries, the average grip

strength of women is around two-thirds of the average level for men.
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Table 3: Mean and standard deviation of maximum grip strength (kg).

Male Female

Country Mean s.d. Mean s.d.

Austria 46.1 9.8 28.9 7.8

Belgium 44.0 10.2 26.2 7.1

Denmark 46.7 10.5 26.9 7.3

France 42.4 10.7 25.5 7.0

Germany 46.0 10.9 28.3 7.8

Greece 41.2 11.1 24.9 6.9

Israel 39.4 11.7 23.4 7.5

Italy 39.7 11.1 23.3 7.2

The Netherlands 45.5 10.4 27.7 7.6

Spain 37.4 10.5 22.3 7.6

Sweden 44.9 10.0 26.4 7.3

Switzerland 44.3 9.5 27.2 7.2

Total 42.6 11.2 25.6 7.8

Note. Weighted results.

Covariates

We use a set of standard socio-demographic covariates in modeling physical health and functional

ability. These include a third degree age polynomial, educational achievement (secondary and

tertiary education, primary or no education is the reference category), household size, and whether

or not the individual is living together with a spouse or partner.

Our basic model includes household net worth (PPP adjusted) as an explanatory variable to

reflect the opportunities for more investment in health with higher amounts of economic resources.

In terms of the functional form, we use the inverse hyperbolic sine of net worth rather than the

log, because a nonnegligible fraction of households have negative net worth, which indicates less

access to funds for investing in health, so it is meaningful to take this into account. The inverse

hyperbolic sine function is defined as IHS(x) ≡ log(x +
√

1 + x2 ). For positive numbers not

close to zero, it is virtually indistinguishable from a logarithmic function, IHS(x) ≈ log(2x). For

negative numbers, IHS(x) = −IHS(−x), which is approximately − log(−2x) for x not close to zero.

It is zero for x = 0 and strictly increasing and continuously differentiable for all x.

We also include a measure of relative body weight to account for the well-documented effects

of excessive body weight or obesity on physical health and functioning. Individuals are classified

by relative weight based on their body mass index (BMI), calculated from self-reported weight and

height as weight in kilograms divided by the square of height in meters. We use the evidence-based

clinical guidelines for the classification of overweight and obesity in adults, published by the

National Heart, Lung and Blood Institute of the National Institutes of Health (NIH) to stratify

the study respondents into five weight classes: underweight (BMI < 18.5), normal weight

(18.5 ≤ BMI < 25), overweight (25 ≤ BMI < 30), moderate obesity (30 ≤ BMI < 35), and
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Table 4: Socio-economic and demographic variables: mean and s.d. for continuous variables and

percentage for categorical ones.

Male Female

Variable Mean s.d. Mean s.d.

Age (years) 64.4 10.0 66.6 11.0

Household size 2.3 1.1 2.0 1.0

Household income (e)a,b 44,000 48,000 38,000 46,000

Household net worth (e)b 460,000 1.3 million 360,000 1.1 million

Living with spouse/partner (%) 78.8 55.8

Education (%):

Primary 45.2 58.8

Secondary 34.0 28.0

Tertiary 20.8 13.1

BMI class (%):

Underweight 0.5 2.0

Normal 33.0 43.7

Overweight 50.2 36.3

Moderately obese 13.4 13.6

Severely obese 3.0 4.5
aAnnual, before taxes.
bPPP adjusted.

Note. Weighted results.

severe obesity (BMI ≥ 35). The sample size for extreme obesity (BMI ≥ 40), another weight

class in the NIH guidelines, is too small to enable meaningful analysis. We divide the obesity

group into moderate and severe obesity because there are differential health effects by degree of

obesity. Severe obesity is associated with more chronic health problems than moderate obesity,

and the onset is at earlier ages (Field et al., 2001; Hillier & Pedula, 2001; Must et al., 1999).

Table 4 presents sociodemographic characteristics and the BMI distribution of the sample.

3 A measurement model for health

The data for which we develop our model consist of explanatory variables collected in a vector

x
n

for the n-th observation and corresponding dependent variables collected in a vector y
n
. The

explanatory variables include a constant, continuous variables, and dummy variables. Nonlinear

relationships between health and age, and between grip strength and height and weight, are

accommodated by including powers and products of the original variables in the vector x
n
.

Categorical explanatory variables like education are transformed into a set of dummy variables.

The dependent variables consist of a combination of continuous (grip strength), binary (most

mobility limitations, ADLs, and IADLs), and ordinal (climbing stairs, self-reported health)
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variables. For the dependent variables, limited dependent variables must be treated quite

differently from continuous variables. As with standard limited dependent variables regression

models (Maddala, 1983), we assume that the binary and ordinal variables in y
n

are reflections of

underlying latent response variables y∗
n
. For grip strength, y

n
= y∗

n
. For the binary and ordinal

dependent variables, the relationships between y
n

and y∗
n

are step functions, with steps at given or

estimated thresholds, as in binary and ordinal probit models.

We assume that y∗
n

follows a linear structural equation model, conditional on x
n
. The

resulting complete model is a special case of a LISCOMP model, although it is slightly differently

parameterized for computational convenience and easier interpretation. See Muthén and Satorra

(1995) or Wansbeek and Meijer (2000, section 11.4) for an extensive discussion of the LISCOMP

model. Our model closely resembles the health measurement submodel of Börsch-Supan,

McFadden, and Reinhold (1996), although we add a continuous physical measure (grip strength),

which allows us to make cross-country comparisons with relatively weak assumptions. Our

approach also resembles the approach of Soldo, Mitchell, Tfaily, and McCabe (2006), who

estimate an item response theory (IRT) model to compare health across cohorts in the U.S. They

use similar data as we do, but select a somewhat different set of health indicators to base their

analysis on.

The work of Bound et al. (1999) for U.S. data is also related, but they use the limitations

as explanatory variables in the health equation, rather than as dependent variables, they do not

have grip strength, and their only dependent variable is self-reported health, whereas we have 24

dependent variables. The work of Jürges (2007) is similar to this in its approach, except that he

mainly uses doctor-diagnosed chronic conditions as explanatory variables, but also adds treatment

for depression, grip strength, and BMI. Below we describe our specific model structure in more

detail.

The linear structural equation model

The central variable in our measurement model is health, denoted by the symbol η
n
. This is a

possibly multidimensional latent or unobserved variable. The latent response variables y∗
n

are

assumed to depend on η
n
, and η

n
in turn depends on the explanatory variables x

n
. With the

exception of grip strength (and the intercepts), the dependence of y∗
n

on x
n

is assumed to be

channeled through η
n
.

Specifically, we assume that the relation between the latent response variables and the latent

health variables and observed explanatory variables is of the following form:

y∗
n
= T x

n
+ Λη

n
+ ε

n
, (1)

where ε
n

is a vector of residuals, which we will usually call measurement errors. If y∗
n

is continous

and observable, and if T = 0 and Λ = I, then (1) is a traditional multivariate measurement error

model, which explains our usage of this term.
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The matrix T is a matrix of regression coefficients and Λ is a matrix of factor loadings.

Compared to the most common model specifications for structural equation models, the term T x
n

is added, although it is also used in the model underlying the Mplus program (Muthén, 1998–2004,

Appendix 2). This term contains the intercepts. In addition, it contains a direct effect of height

and weight on grip strength. This allows for the fact that grip strength will be affected by an

individual’s height and weight, irrespective of one’s health. Preliminary exploration suggested

that a second-degree polynomial captures this relation well.

We interpret (1) as a causal structural relation, with the possible exception of the polynomial

in height and weight for grip strength, which has a more reduced form interpretation. But it is

important in our model development that we assume that the latent response variables structurally

depend on health.

The dependence of η
n

on x
n

is modeled through the (multivariate) regression equation

η
n
= Γx

n
+ ζ

n
, (2)

where ζ
n

is a vector of random errors (disturbances), and Γ is a matrix of regression coefficients.

In contrast with (1), our assumptions in using (2) are quite modest. In particular, it makes little

sense to view this as a structural health production function, because such a function should have

a strong dynamic component, with current health depending on past investments in health over a

longer period of time and not just a few contemporaneous covariates. Instead, (2) has the flavor

of a reduced form model, although net worth cannot be assumed to be exogenous. Therefore, our

term for this equation would be a “predictive equation”. We will discuss the formal status and

assumption in more detail below.

The observation function

The variables y∗
n

are not necessarily observable. We will denote the relationship between the

latent response variables y∗
n

and the observed dependent variables y
n

by the generic expression

y
n
= H(y∗

n
), and we call H(·) the observation function. The observation function is such that each

y
ni

depends only on its latent response counterpart y∗
ni

, i.e., y
ni
= H

i
(y∗

ni
) for the i-th dependent

variable. For grip strength, H
i
(y∗

ni
) = y∗

ni
, the identity function, whereas for the binary dependent

variables, H
i
(y∗

ni
) = I(y∗

ni
> 0), where I(·) is the indicator function, i.e., its value is 1 if its

argument is true and 0 otherwise. Thus, H
i
(y∗

ni
) is a step function with a single step from 0 to 1

at the threshold 0. There are two ordinal dependent variables: limitations with climbing stairs and

self-reported health. For these, the observation function is a step function with multiple thresholds:

H
i
(y∗

ni
) = c

i j
⇔ α

i, j−1 < y∗
ni
≤ α

i j
,

where c
i j

is the j-th category of the i-th variable ({0, 1, 2} for climbing stairs, {1, 2, 3, 4, 5} for

self-reported health), and the α’s are thresholds, with α
i,0 ≡ −∞ and α

i,Ji
≡ +∞, where J

i
is the

number of categories of y
ni

(J
i
= 3 for climbing stairs and J

i
= 5 for self-reported health). It is

now convenient to treat the remaining thresholds as free parameters and normalize the intercepts

for these ordinal variables to zero, as is common in ordinal probit models.
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Covariance parameters, distributional assumptions, and the predictive equation

To complete the model, we define Ψ ≡ Cov(ζ
n
) and Ω ≡ Cov(ε

n
). The matrix Ψ is usually

unrestricted, although for some models, it may be block diagonal. As usual (in factor analysis

and its generalizations), we assume that Ω is a diagonal matrix, so that the dependent variables

are conditionally independent given the latent variables. Furthermore, in line with the standard

LISCOMP model and probit models, we assume that the residuals and measurement errors are

normally distributed. However, it will turn out that with our estimation method, it is fairly

straightforward to use other distributional assumptions for the residuals, which can be used for

sensitivity analyses in assessing to what extent the results are driven by the normality assumption.

We leave this for future research.

We can now be more precise about the formal assumptions concerning the explanatory

variables x
n

and the predictive health equation. The latter, i.e., (2) is now formally interpreted

as meaning

(η
n
| x

n
) ∼ N(Γx

n
,Ψ).

Thus, it is an assumption about a conditional distribution, without being causal or structural. In

addition, it now follows that we assume that the dependent variables are conditionally independent

of the explanatory variables given the latent variables, with the exception of grip strength, which

is allowed to depend on height and weight directly.

Identification, normalizations, and cross-country comparability

In models with latent variables, many restrictions on the parameters are typically needed to obtain

an identified model. Our model is no exception. Each latent variable must be assigned a location

and a scale. This holds for the latent response variables y∗ as well. For these, we use the probit

convention of fixing the scales by normalizing the variances of the residuals in the matrix Ω to

1 and, as already mentioned above, fixing the locations by normalizing the thresholds to 0 for

the binary dependent variables, and normalizing the intercept to 0 for the ordinal ones. For grip

strength, no such normalizations are necessary, because the location and scale of y∗
ni

are determined

by the identity y
ni
= y∗

ni
.

The location and scale of η can be assigned in different ways. For our purposes, the most

convenient and useful normalization is to assign a reference variable from the list of indicators

for each element of η. The factor loading relating the reference indicator to this element of η is

normalized to 1, and the intercept (or one of the thresholds in case of an ordinal variable) of this

reference indicator is normalized to 0.

The arbitrariness of the locations and scales of the latent variables affects the extent to which

parameters, and derived statistics such as the marginal distributions of the latent variables or the

constructed health indexes, can be compared across countries. For example, if the threshold for

reporting a certain type of difficulty is higher in one country than in another country for the

same true health, but these thresholds are normalized to the same value for this variable, then
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the difference shows up as an apparent difference in genuine health. A similar story can be told

for different factor loadings: if a certain activity is more sensitive to health in one country than in

another, the factor loadings are different. But if they are normalized to be the same, this shows

up as a difference in health distributions. We assume that grip strength does not suffer from

such problems of cross-country differences, and therefore use grip strength as our first reference

indicator. This should make the location and scale of the first health dimension comparable across

countries. Furthermore, we assume that the relationship between grip strength and height and

weight is the same for each country, i.e., that the coefficients of the height-weight polynomial are

the same.

With more than one health dimension, selection of the other reference indicators is more

problematic, because all of the remaining indicators may suffer from country-specific response

patterns. Hence, cross-country comparability of the health indexes beyond the first dimension

cannot be assumed. The current paper is limited to one health dimension and thus does not suffer

from this problem, but in future extensions, this will become important.

All other parameters are allowed to be different across countries, to account for cultural

variation in response patterns, different educational and health systems, and other cross-country

attributes that may give rise to country-specific parameters.

3.1 Estimation

It is customary to estimate LISCOMP models in several steps. In the first step, the reduced form of

the linear structural equation model is obtained: y∗
n
= Πx

n
+u

n
, withΠ = T +ΛΓ and u

n
∼ N(0,Σ),

with Σ = ΛΨΛ′+Ω. The elements ofΠ and the threshold parameters are estimated from univariate

linear regressions and probits. Here, Π is unrestricted. In the second step, the estimates from the

first step are fixed and the elements of Σ are estimated from bivariate likelihoods. An estimate

Ŵ of the joint asymptotic covariance matrix of the estimators in the first two steps is obtained

by writing the estimators as the joint solution of a system of generalized estimating equations

(GEE) and applying the standard GEE theory. In the third step, the estimates of the elements of

Π and Σ thus obtained are gathered in the vector ŝ. Furthermore, its population value σ is written

as a function of the free parameters θ: σ = σ(θ). Then the parameter vector θ is estimated by

minimizing the distance function F =
(

ŝ−σ(θ)
)′

Ŵ−1(ŝ−σ(θ)
)

. The asymptotic covariance matrix

of the resulting estimator θ̂ can then be obtained from standard minimum distance theory. See

Muthén and Satorra (1995) or Wansbeek and Meijer (2000, pp. 332–338) for more details.

This procedure is very fast and tends to work very well in most applications. Therefore,

this is the method implemented in structural equation modeling programs like LISREL (Jöreskog

& Sörbom, 1993) and Mplus (Muthén, 1998–2004). However, this procedure breaks down for

our data. The problem is that many variables have very little variation. For several binary

dependent variables, only a small percentage of respondents report limitations, and similarly small

percentages are observed for some of the explanatory variables, most notably being underweight

or severely obese. Therefore, it often happens that a certain cross-table of a binary dependent
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variable and a dummy explanatory variable has an empty cell: only three out of the four possible

combinations occur in the data. The result is that the corresponding coefficient in the reduced-form

probit model is (plus or minus) infinity.

We have solved this problem by writing our own estimation program in Stata. It estimates the

parameters directly by maximum simulated likelihood. The restrictions that the model imposes

on Π and Σ are generally sufficient to estimate the model. However, this procedure is slow and

reasonable starting values must be supplied in order to start the estimation process. Without the

latter, the program is often not able to find feasible parameter values. We will now describe the

method in more detail.

Loglikelihood

It is convenient to reparameterize the covariance matrices in the model. Let C be the Cholesky root

of Ψ, so that Ψ = CC′ and C is a lower triangular matrix. Define ξ
n
≡ C−1ζ

n
, so that ξ

n
∼ N(0, I)

and ζ
n
= Cξ

n
. Analogously, let the diagonal element of Ω corresponding to grip strength be ω2.

The other diagonal elements of Ω are all equal to 1.

With this parameterization, the conditional likelihood of the n-th observation, given both x
n

and ξ
n
, is

L
n,cond =

M
∏

i=1

f
i
(y

ni
| x

n
, ξ

n
),

where M = 24 is the number of dependent variables in the model, and f
i
(y

ni
| x

n
, ξ

n
) is the

conditional probability mass function of the i-th variable, or the conditional density for grip

strength. Specifically, let δ
n
= (T + ΛΓ)x

n
+ ΛCξ

n
, and let δ

ni
be its i-th element. Then for

the binary indicators,

f
i
(y

ni
| x

n
, ξ

n
) = [Φ(δ

ni
)]yni[1 − Φ(δ

ni
)]1−yni ,

where Φ(·) is the standard normal cumulative distribution function. For the ordinal indicators, if

y
ni
= c

i j
, the j-th category of this variable, then

f
i
(y

ni
| x

n
, ξ

n
) = Pr(α

i, j−1 < y∗
ni
≤ α

i j
)

= Pr(α
i, j−1 − δni

< ε
ni
≤ α

i j
− δ

ni
)

= Φ(α
i j
− δ

ni
) − Φ(α

i, j−1 − δni
).

For grip strength,

f
i
(y

ni
| x

n
, ξ

n
) =

1

ω
φ

(

y
ni
− δ

ni

ω

)

,

where φ(·) is the standard normal density function.
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The unconditional likelihood then simply becomes the product of the conditional likelihood

and the density of ξ
n
:

L
n,uncond = Ln,cond f

ξ
(ξ

n
) =

















M
∏

i=1

f
i
(y

ni
| x

n
, ξ

n
)

















f
ξ
(ξ

n
).

Let K ≥ 1 be the number of health dimensions in the model. Then the density f
ξ
(ξ

n
) is the product

of K standard normal density functions, one for each element of ξ
n
.

However, because ξ
n

is not observed, L
n,uncond cannot be used directly. The likelihood of the

observed variables is obtained by integrating ξ
n

out. Thus we obtain

L
n
=

∫

L
n,uncond dξ

n
=

∫

















M
∏

i=1

f
i
(y

ni
| x

n
, ξ

n
)

















f
ξ
(ξ

n
) dξ

n
, (3)

and the loglikelihood of the n-th observation is the logarithm of this: L
n
= logL

n
. The

loglikelihood of the sample then becomes

L =

N
∑

n=1

L
n
,

where N is the sample size. However, SHARE is (largely) a probability sample, with sampling

weights provided. Therefore, with w
n

being the weight for the n-th individual, we instead use the

log-pseudolikelihood function

L
w
=

N
∑

n=1

w
n
L

n
. (4)

Missing data handling

As noted above, our data set contains observations with partly missing data. From preliminary

analyses, we concluded that missingness is systematic. In particular, there is a fairly large group

of respondents with missing grip strength, and this group reports substantially more limitations.

Apparently, grip strength is often missing because of bad health. Consequently, removing all

observations with missing data biases the sample and most likely will distort the parameter

estimates as well.

For missing dependent variables (like grip strength), it is common in this type of model

to assume “missing at random” (MAR), which is a weaker form of randomness than “missing

completely at random” (MCAR). MCAR assumes that the distribution of all random variables is

the same for observations with missings and observations without missings, whereas MAR allows

systematic differences that depend on non-missing variables. See Rubin (1976) and Little and

Schenker (1995) for a formal definition and analysis of MAR. The MAR assumption in our case

means that the missingness of a variable may depend on the values of the observed variables
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(dependent and explanatory), but not on the values of unobserved variables, in particular the value

of the missing variable itself, and the latent variables (health). It is likely that this assumption

is violated to some extent, but because the probability of missingness is allowed to depend on

the values of the observed (non-missing) variables, the distortion is probably not large, because

the observed variables will be able to account for most of the dependence of missingness on the

unobserved variables. If this is not the case, selection models in the spirit of Heckman (1979)

could be estimated, but Little and Schenker (1995) and Jamshidian and Bentler (1999) argued that

these will be very sensitive to minor misspecifications and thus may make things worse rather than

better. Simulation studies have found excellent properties of the MAR-based method if the MAR

assumption is met, and reasonably good properties when it is not (e.g., Muthén, Kaplan, & Hollis,

1987; Jamshidian & Bentler, 1999). Therefore, we use this method. The practical implementation

is that in the loglikelihood, the factor f
i
(y

ni
| x

n
, ξ

n
) is replaced by 1 if the i-th variable is missing

for the n-th respondent.

Missing covariates are more problematic in principle, because we would prefer to make no

assumptions about their (conditional) distributions, and all dependent variables depend on them.

A common practical solution, which we adopt here, is to set the value of a missing covariate to an

arbitrary fixed value (zero) and add a dummy variable for “missingness”.

Thus, if education is missing for the n-th respondent, we set secondary and tertiary education

to zero for this respondent, and set the dummy missedu to 1, whereas this dummy is zero if

education is observed. So we now have three education dummies: “secondary”, “tertiary”, and

“missing”, with primary or no education as the reference group. In this way, the missedu dummy

picks up the (average) main effect of the missing variable. In addition to education, this method has

also been applied for height, weight, and the BMI dummies. The grip strength equation contains

a second degree polynomial in height and weight. In most situations where height was missing,

body weight was missing as well and vice versa, so that all five terms (height, weight, the squares

of both, and their product) are missing. In only a few cases, one of them was missing but not the

other, mainly because we replaced an implausible value by missing. To avoid having to introduce

additional dummies for only a few observations, we have taken a somewhat unorthodox approach

of replacing the observed height or weight by missing as well if the other was missing. In this

way, we can use a single dummy “missing height and weight” to capture the average main effect.

Because the BMI dummies need both height and weight, they are missing as well if height and/or

weight is missing. Therefore, the “missing height and weight” dummy is also used in the health

equation as an additional BMI category.

Maximum simulated likelihood

In principle, obtaining maximum (pseudo-)likelihood estimators is now straightforward. We only

have to maximize L or L
w

as defined above. However, maximizing the loglikelihood is often

a formidable task, because the integrals do not have a closed form solution. We use maximum
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simulated likelihood (MSL) to solve this problem. Observe that (3) can be written as

L
n
= E

ξ

















M
∏

i=1

f
i
(y

ni
| x

n
, ξ

n
)

















, (5)

where the expectation is over the distribution of ξ
n
, i.e., the normal distribution with zero mean

and identity covariance matrix. It now follows immediately that this can be approximated to any

desired degree of accuracy by drawing a (pseudo-)random sample from the distribution of ξ
n

and

computing the resulting sample average of the term in brackets in (5):

Ľ
n
=

1

R

R
∑

r=1

M
∏

i=1

f
i
(y

ni
| x

n
, ξ̌

nr
),

where ξ̌
nr

is the r-th drawing from the distribution of ξ
n

for the n-th observation. The

approximation can be made arbitrarily accurate by generating a larger sample (increasing R).

The simulated log-(pseudo)likelihood is now obtained by replacing L
n

by Ľ
n

in the formula

for L or L
w

, and the MSL estimators are obtained by maximizing the resulting function. Properties

of MSL estimators are derived in Gouriéroux and Monfort (1991), Lee (1995), and Train (2003,

chap. 10). For our purposes, the theory implies that MSL estimators have the same properties

as the estimators that use the exact integrals, as long as the approximation is close enough. To

increase accuracy without unduly increasing the computation time, we use Halton sequences,

which is a more systematic (nonrandom) method to generate drawings in a way that reduces

variance and thus increases precision. Train (2003, pp. 224–238) gives a detailed description.

A function generating Halton sequences is supplied with Stata (Drukker & Gates, 2006). Based

on earlier experience, some experimentation, and the remarks in Train (2003, p. 231), we assumed

that R = 100 Halton draws should be sufficient. However, we experimented a little (for Germany)

with R = 1000 and R = 5000. The differences between 100 and 1000 draws are noticeable but

relatively small. The differences between 1000 and 5000 draws are negligible. More importantly,

none of these differences leads to substantively different conclusions, and the resulting health

indexes are very highly correlated (0.999). Therefore, the results here have all been obtained

using 100 draws, with the exception for Germany, where we use the results with 1000 draws.

Two-step approach to circumvent computational problems

Almost all parameters in the model are either fixed to 0 or 1, or are country-specific free

parameters. If this would hold for all parameters, the model could be estimated for each

country separately, which would be computationally preferable. However, the coefficients of the

height-weight polynomial in the grip strength equation are assumed to be equal across countries.

Because of these cross-country restrictions on the parameters, estimation should ideally be done

jointly for all countries. Unfortunately, this is computationally prohibitive. Therefore, we take

a two-step approach. In the first step, we insert the predictive health equation (2) into the
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grip strength equation of (1) and estimate the resulting reduced-form parameters jointly for all

countries. Then we subtract the estimated height-weight polynomial from grip strength. In the

second step, we use the residual grip strength as an ordinary indicator. Because there are no joint

parameters left, the remaining model is estimated separately for each country.

There are a few technical complications, however, including the treatment of missing grip

strength. We solve it by estimating a Heckman-type sample selection model, with all other health

indicators included in the selection equation. Details are given in Appendix B. This appendix

shows that, apart from innocuous location and scale differences, the residual grip strength is

extremely insensitive to variations in the model specification. Consequently, we can be confident

that the residual grip strength obtained in the first step is a useful indicator in the second step.

4 Estimating the latent variables

In many situations, we would like to estimate the values of the latent variables themselves. Given

the MSL setup, this turns out to be fairly straightforward. The conditional density of the latent

variables for the n-th individual, given the observed data is

f
η|y(η

n
| y

n
) =

f
y|η(yn

| η
n
) f
η
(η

n
)

f
y
(y

n
)

=
f
y|η(yn

| η
n
) f
η
(η

n
)

∫

f
y|η(yn

| η
n
) f
η
(η

n
) dη

n

or, analogously,

f
ξ|y(ξ

n
| y

n
) =

f
y|ξ(yn

| ξ
n
) f
ξ
(ξ

n
)

∫

f
y|ξ(yn

| ξ
n
) f
ξ
(ξ

n
) dξ

n

.

Furthermore,

E(ξ
n
| y

n
) =

∫

ξ
n

f
y|ξ(yn

| ξ
n
) f
ξ
(ξ

n
) dξ

n
∫

f
y|ξ(yn

| ξ
n
) f
ξ
(ξ

n
) dξ

n

=
E
ξ

[

ξ
n

f
y|ξ(yn

| ξ
n
)
]

E
ξ

[

f
y|ξ(yn

| ξ
n
)
]

and

E(ξ
n
ξ′

n
| y

n
) =

∫

ξ
n
ξ′

n
f
y|ξ(yn

| ξ
n
) f
ξ
(ξ

n
) dξ

n
∫

f
y|ξ(yn

| ξ
n
) f
ξ
(ξ

n
) dξ

n

=
E
ξ

[

ξ
n
ξ′

n
f
y|ξ(yn

| ξ
n
)
]

E
ξ

[

f
y|ξ(yn

| ξ
n
)
] ,

from which Cov(ξ
n
| y

n
) immediately follows. In these expressions, E

ξ
denotes the expectation

over the marginal distribution of ξ
n
, i.e., the normal distribution with zero mean and identity

covariance matrix. All expressions are also implicitly conditional on x
n
. The expressions in the

denominators are equal to exp(L
n
), where L

n
is the loglikelihood contribution introduced earlier.

The expressions in the numerators have a similar form, which means that their computation can

be done by a simple extension of the simulated likelihood program.

The resulting expressions for the latent variables η
n

are now obtained as

E(η
n
| y

n
) = Γx

n
+C E(ξ

n
| y

n
)

Cov(η
n
| y

n
) = C Cov(ξ

n
| y

n
)C′.

19



Of course, in practice, we compute these expressions with the parameters replaced by their

estimates from the previous model estimation, as given in section 3 above. The estimate η̂
n

of

E(η
n
| y

n
) is our proposed health index. This is computed for each observation.

4.1 Using the results in a subsequent model

An important reason for estimating the latent variables is to use these estimates as dependent or

explanatory variables in other models. From a strict statistical viewpoint, if the model is correctly

specified, it is preferable to estimate both models jointly, and there is no need to estimate the latent

variable separately. In practice, however, there are several reasons why a two-stage approach may

be preferred. First, there may be many indicators of the latent variables, and thus a complete

joint model may be very large, becoming impractical to estimate. This is even more compelling

if the second stage model is a complicated nonlinear model, such as a dynamic programming

model. Second, related to the first point, one may wish to do an extensive specification search for

a suitable second-stage model, and such a model search procedure is severely hampered by the

need to estimate the complete measurement model over and over again.

Initially, assume that the parameters of the measurement model (first-stage model) are known.

The differences between parameter estimators and true parameter values are of order O
p
(N−1/2),

whereas the differences between latent variables and their estimators conditional on the observed

variables are O
p
(1), so that in large samples the results based on this assumption will give good

approximations. From the formulas above, we can write

η̂
n
= Γx

n
+Cξ̂

n
,

where ξ̂
n
= E(ξ

n
| y

n
). Hence,

ξ
n
= ξ̂

n
+ (ξ

n
− ξ̂

n
) = ξ̂

n
+ v

n
,

where E(v
n
| y

n
) = 0 and E(v

n
ξ̂′

n
| y

n
) = 0. Let w

n
= Cv

n
, then

η
n
= η̂

n
+ w

n
,

with E(w
n
| y

n
) = 0 and E(w

n
η̂′

n
| y

n
) = 0.

To illustrate how estimated latent variables are used in a subsequent model, we discuss a few

examples. As a first example, assume that the model of interest is a linear regression model with

dependent variable q
n

and explanatory variables p
n

and η
n
:

q
n
= β′p

n
+ γ′η

n
+ u

n
,

with all the usual assumptions. We can rewrite this as

q
n
= β′p

n
+ γ′η̂

n
+ û

n
,
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where û
n
= u

n
+ γ′w

n
. Given that w

n
is uncorrelated with η̂

n
, OLS is consistent, provided that w

n

is uncorrelated with p
n

as well. This is the Berkson model (e.g., Wansbeek & Meijer, 2000, p. 30).

If p
n

would be correlated with w
n
, p

n
would contain information about η

n
(or ξ

n
) that has not been

used before. Thus, an improved measurement model would be possible. On the other hand, no

model is perfect, so we may wish to allow for such correlation. In that case, IV estimation would

be necessary. In general, we may conclude that for a linear regression model, consistent estimation

of the parameters is straightforward using estimated latent variables.

A second application is a (binary) probit model, where q
n

is replaced by the latent response

variable q∗
n
, and we now have

q∗
n
= β′p

n
+ γ′η̂

n
+ û

n
,

and we observe q
n
= I(q∗

n
> 0). Normalizing the variance of u

n
to 1 (as is usual in probit models),

the variance of û
n

is σ2
û
= 1 + γ′Σ

w
γ, where Σ

w
= C Var(ξ

n
| y

n
)C′. Clearly, if û

n
is normally

distributed, the probit estimators are consistent estimators of β/σ
û

and γ/σ
û
. Consistent estimators

for β and γ are straightforwardly obtained because Σ
w

is known. (In the more general case, it is

estimated consistently.) However, normality of w
n

is only obtained if all observed indicators are

continuous and conditionally normally distributed. The density of ξ
n
| y

n
is

f
ξ|y(ξ

n
| y

n
) =

f
y|ξ(yn

| ξ
n
) f
ξ
(ξ

n
)

f
y
(y

n
)

.

Here, f
ξ
(ξ

n
) is a multivariate normal density and f

y
(y

n
) is a normalizing constant. But if y contains,

e.g., discrete indicators, f
y|ξ(yn

| ξ
n
) is a nonlinear function of ξ

n
such that the resulting density

f
ξ|y(ξ

n
| y

n
) does not reduce to a multivariate normal density. Hence, the probit estimators will in

general be inconsistent estimators of the parameters of interest, and cannot be easily corrected. On

the other hand, discrete choice models tend to be largely insensitive to the choice of distribution,

so that using a simple probit may still be the preferred choice. In section 7 we will only present

simple probit results.

The theoretically best solution is to use simulated likelihood for the probit model as well, using

the full conditional distribution of q
n
. Evidently,

Pr(q
n
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n
) = Φ
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,

so that
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Because the parameters Γ and C and the density f
ξ|y(ξ

n
| y

n
) are known (or more generally,

consistently estimated), the parameters of interest can be straightforwardly estimated by applying

maximum simulated likelihood to this equation.

As presented here, this method still does not take the variability of the parameter estimators

into account. As argued above, this should be fine in large samples, but in moderate samples, the

uncertainty about the parameters may have a noticeable effect on the precision of the estimate of
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η. One way to incorporate this uncertainty is preceding each draw in the MSL estimation of the

probit model by a draw of a parameter vector from a normal distribution with mean equal to the

parameter estimates and covariance matrix equal to the estimated asymptotic covariance matrix of

the original parameter estimators. Such a procedure, which has a Bayesian flavor, was proposed

by Hamilton (1986) in the related context of estimating the variability of the estimated states in a

state-space model. Another way to incorporate uncertainty in the parameters into the subsequent

estimation procedure would be to use the delta method in some way. We will leave these issues

for future research.

5 Estimation results of the measurement model

As mentioned above, we estimate the models separately for each country-gender combination.

Here, we only present results with one latent dimension, leaving multidimensional health variables

for future research. The variables used in the models have been discussed in section 2 above,

but we have linearly transformed some explanatory variables to obtain better scaling and less

multicollinearity. See the appendix for a detailed account of variable construction. For each

analysis, the fit of the model with the latent health dimension is compared to the fit of the null

model. The null model is the analog of the constant-only model in linear regression. In our case,

the null model is the model without the latent variable η, and thus without Λ, Γ, C, and x. This

model is also called the independence model, because it implies that all dependent variables are

independently distributed of each other and of the explanatory variables. As expected, the model

with the latent variable included fits much better than the model without it: The Scaled LR test

statistic (see the appendix for an explanation) is always extremely large and significant, and the

information criteria AIC and BIC are much smaller for this model than for the null model.

Table 5 presents the corresponding pseudo-R2 measures. These are defined as 1 − Ľ(1)/L(0),

where Ľ(1) is the maximized simulated log-pseudolikelihood for the target model with one health

dimension and L(0) is the maximized log-pseudolikelihood for the null model. Because of the

absence of a latent variable, the latter does not involve simulation. The results in Table 5 indicate

that the latent variable explains a sizeable amount of the variation in the data, but more experience

with the pseudo-R2 in this type of model is needed to be able to judge whether the values reported

here are “good”.

Tables 6–9 present the ranges of the estimates and their t-statistics for the intercepts (T ), factor

loadings (Λ), predictive health equation (Γ and C), and other parameters (Ω, α’s), respectively.

The values of the intercepts are a bit difficult to interpret, but given the unit residual variances

associated with the standard probit specifications, and the generally large t-values, we can

conclude that there is considerable cross-country variation. Also, the generally large negative

values (combined with the values of the factor loadings and the distribution of latent health) reflect

the small number of difficulties that is typically reported, and thus the high threshold for reporting

a difficulty, because the intercept can also be interpreted as the negative of a threshold, with the
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Table 5: Pseudo-R2 values for the health model with one latent variable.
Country Male Female

Austria 0.23 0.24

Belgium 0.21 0.26

Denmark 0.26 0.25

France 0.26 0.26

Germany 0.23 0.25

Greece 0.26 0.26

Israel 0.31 0.35

Italy 0.25 0.30

The Netherlands 0.18 0.29

Spain 0.28 0.29

Sweden 0.28 0.27

Switzerland 0.17 0.20

intercept being zero.

The factor loadings have the expected sign: negative, meaning that better underlying health

gives fewer limitations and better self-reported health. Almost all factor loadings are statistically

significant, most of them very strongly. But again, even from this highly condensed table, it can

be seen that there are substantial differences across countries and gender.

Table 8 shows the estimation results for the “predictive” equation for the latent health variable

η. This has some expected patterns: higher education and higher wealth tend to be associated with

better health and being overweight or obese tends to be related with worse health. The coefficients

of age and its square and cube are a bit difficult to interpret by themselves, although it’s clear

that the linear part points at the expected negative relationship between health and age. Plots of

the cubic polynomial and pointwise confidence bands around them show that this negative slope

generally holds for the complete polynomial, but there are some exceptions at the highest ages. At

these ages, however, the confidence bands are very wide.

From Table 9, we can learn that the estimated residual standard deviations for the grip strength

equation are fairly similar across countries, even though the health equations are different. We

interpret this as an indication that the model is able to capture general health fairly well in

a cross-country comparable way and that our assumption that grip strength is not subject to

cross-country reporting differences is warranted. The cross-country differences between the

threshold parameters for the ordinal indicators (climbing stairs and self-reported health) are larger,

comparable to the results for the intercepts. Closer scrutiny of the original estimation results

indicates that the cross-country differences in the differences between adjacent thresholds are much

smaller, which suggests that differential reporting behavior may only be due to a uniform shift.

As a result of the estimates, we can compute the (unconditional) mean and standard deviation

of health for each country-gender combination, where for this computation, the x variables are

treated as random variables. Also, we computed the health indexes as discussed in section 4
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Table 6: Intercepts (T ).

Male Female

Estimates t-values Estimates t-values

Indicator Min Max Min Max Min Max Min Max

Mobility limitations

Walk 100m −4.121 −1.630 −12.0 −5.8 −3.204 −1.429 −16.9 −6.1

Sit 2hrs −2.713 −1.160 −22.6 −7.5 −2.467 −0.917 −26.8 −7.2

Get up from chair −2.371 −0.593 −16.8 −3.0 −2.659 −0.443 −19.1 −5.1

Climbing stairs 0 0 n.a. n.a. 0 0 n.a. n.a.

Stoop −2.143 −0.333 −13.1 −1.5 −2.159 0.066 −10.6 0.6

Reach −3.567 −1.297 −22.8 −7.0 −2.518 −1.033 −27.4 −8.4

Pull −3.765 −1.441 −15.2 −4.7 −3.027 −0.733 −16.6 −5.9

Lift 5kg −3.558 −0.958 −16.8 −2.8 −1.639 −0.339 −13.5 −3.2

Pick up coin −4.717 −1.608 −16.3 −5.5 −3.313 −1.592 −24.5 −8.2

ADLs

Dress −4.670 −1.593 −15.0 −5.6 −5.355 −1.838 −18.0 −5.2

Walk room −9.584 −2.942 −9.4 −2.6 −7.166 −2.382 −9.4 −5.1

Bath −9.618 −3.063 −10.5 −2.5 −8.020 −2.082 −17.1 −4.4

Eat −6.869 −2.730 −12.6 −4.1 −5.365 −2.337 −12.3 −2.2

Get out of bed −6.024 −2.213 −10.4 −3.6 −6.539 −2.177 −13.1 −5.6

Use toilet −12.308 −2.333 −13.4 −3.0 −9.455 −2.761 −10.2 −4.2

IADLs

Use map −4.631 −1.614 −17.3 −6.2 −2.386 −1.082 −23.0 −7.3

Prepare hot meal −6.326 −1.889 −10.5 −3.3 −7.646 −3.139 −9.7 −2.3

Shop for groceries −13.922 −3.037 −8.5 −2.4 −6.996 −2.242 −11.1 −4.4

Phone calls −8.978 −2.291 −17.9 −4.0 −5.041 −2.875 −11.8 −3.3

Take medication −13.212 −2.721 −11.1 −2.8 −6.074 −3.016 −10.4 −1.3

Work around house −7.509 −1.606 −10.8 −4.3 −4.550 −1.078 −13.2 −6.4

Manage money −6.150 −2.411 −14.4 −4.3 −4.196 −2.016 −15.2 −6.1

Self-reported health 0 0 n.a. n.a. 0 0 n.a. n.a.

Grip strength resid. 0 0 n.a. n.a. 0 0 n.a. n.a.
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Table 7: Factor loadings (Λ).

Male Female

Estimates t-values Estimates t-values

Indicator Min Max Min Max Min Max Min Max

Mobility limitations

Walk 100m −4.572 −1.591 −8.8 −4.5 −4.838 −2.952 −11.6 −4.0

Sit 2hrs −2.355 −0.961 −7.3 −3.6 −2.402 −1.282 −9.4 −3.8

Get up from chair −3.120 −1.329 −8.7 −4.1 −4.139 −2.106 −12.5 −5.3

Climbing stairs −5.251 −1.839 −11.5 −5.4 −4.522 −3.035 −14.3 −5.3

Stoop −3.597 −1.779 −10.3 −4.3 −4.300 −2.682 −13.9 −3.2

Reach −3.003 −1.272 −7.5 −3.7 −3.351 −1.597 −10.7 −4.0

Pull −5.469 −1.710 −8.9 −3.5 −4.169 −2.574 −13.7 −3.8

Lift 5kg −5.762 −1.828 −9.3 −4.4 −3.643 −2.079 −13.8 −3.3

Pick up coin −3.490 −1.534 −6.6 −3.1 −2.965 −1.393 −8.3 −3.3

ADLs

Dress −4.223 −2.040 −8.5 −3.1 −5.858 −2.731 −10.3 −3.8

Walk room −11.836 −3.172 −5.8 −2.2 −8.955 −2.815 −6.4 −3.5

Bath −12.223 −4.004 −6.6 −2.2 −10.215 −3.633 −11.3 −3.9

Eat −5.072 −1.989 −5.4 −3.0 −6.391 −2.162 −6.6 −1.5

Get out of bed −4.851 −2.262 −6.4 −2.4 −6.399 −2.405 −7.9 −3.1

Use toilet −7.429 −1.050 −5.3 −2.1 −8.865 −3.044 −6.5 −2.7

IADLs

Use map −3.693 −1.794 −8.3 −3.4 −3.012 −1.545 −11.0 −3.9

Prepare hot meal −4.342 −2.333 −6.6 −2.0 −10.828 −4.241 −6.9 −1.8

Shop for groceries −12.631 −3.398 −6.3 −2.4 −11.679 −4.698 −9.1 −3.7

Phone calls −5.172 −1.760 −5.4 −2.3 −5.041 −2.499 −6.5 −2.2

Take medication −9.448 −1.419 −5.3 −2.4 −7.605 −2.466 −6.3 −1.1

Work around house −6.313 −2.834 −7.8 −3.2 −7.436 −3.739 −10.8 −5.1

Manage money −5.827 −2.110 −6.5 −2.7 −4.234 −2.993 −8.9 −3.2

Self-reported health −3.525 −0.932 −11.5 −4.7 −3.146 −2.018 −15.6 −4.6

Grip strength resid. 1 1 n.a. n.a. 1 1 n.a. n.a.
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Table 8: Predictive health equation.

Male Female

Estimates t-values Estimates t-values

Predictor Min Max Min Max Min Max Min Max

Aged1 −0.431 −0.104 −8.2 −3.4 −0.211 −0.069 −9.7 −3.2

Aged2 −0.072 0.063 −2.4 2.6 −0.032 0.040 −2.4 1.2

Aged3 −0.045 0.034 −2.4 2.6 −0.024 0.007 −2.9 0.9

Sec. edu 0.035 0.185 0.6 4.1 −0.001 0.176 0.0 4.1

Tert. edu 0.085 0.266 1.1 5.4 −0.003 0.318 −0.1 6.6

Household size −0.093 0.053 −3.4 2.0 −0.081 0.054 −3.9 2.0

Living w/spouse −0.038 0.187 −1.0 1.9 −0.055 0.162 −1.6 3.4

IHS networth −0.003 0.019 −0.7 4.5 0.006 0.017 1.7 5.8

Underweight −1.221 0.169 −5.5 1.1 −0.290 0.023 −3.7 0.4

Overweight −0.075 0.029 −1.4 0.6 −0.150 −0.043 −5.5 −1.2

Moderately obese −0.295 −0.081 −4.0 −1.7 −0.290 −0.153 −7.4 −2.8

Severely obese −0.563 −0.065 −4.4 −0.6 −0.567 −0.181 −8.2 −2.0

Missing edu −0.225 0.234 −2.6 2.1 −0.440 0.277 −3.3 3.5

Missing BMI −0.905 0.482 −2.5 4.1 −0.296 0.112 −4.1 1.1

Constant −0.544 0.049 −4.9 0.6 −0.220 0.273 −4.3 5.4

Residual s.d. 0.274 0.611 6.3 17.1 0.235 0.375 6.3 23.3

Table 9: Other parameters.

Male Female

Estimates t-values Estimates t-values

Parameter Min Max Min Max Min Max Min Max√
Ω

GS
0.687 0.945 18.7 44.4 0.545 0.659 19.0 43.2

α
stairs,1

0.050 2.262 0.2 12.0 −0.252 1.437 −2.2 13.0

α
stairs,2

1.405 3.648 4.5 17.7 0.921 2.943 7.3 21.4

α
SRH,1

−2.891 −0.694 −21.9 −4.7 −3.296 −0.403 −26.9 −1.6

α
SRH,2

−1.516 0.015 −13.4 0.2 −2.026 0.149 −17.7 0.7

α
SRH,3

0.042 1.528 0.2 20.4 −0.257 1.442 −2.5 21.4

α
SRH,4

1.482 2.562 6.6 23.3 1.387 2.495 8.1 28.3
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Table 10: Estimated distribution of latent (true) health η and of the constructed health index η̂.

Country Male Female

latent index latent index

mean s.d. mean s.d. mean s.d. mean s.d.

Austria 0.22 0.31 0.23 0.27 0.21 0.40 0.22 0.36

Belgium 0.08 0.47 0.10 0.40 0.02 0.41 0.02 0.38

Denmark 0.27 0.53 0.28 0.46 0.04 0.40 0.05 0.36

France −0.04 0.55 −0.02 0.48 −0.02 0.40 −0.01 0.36

Germany 0.21 0.56 0.21 0.50 0.17 0.39 0.17 0.36

Greece −0.19 0.53 −0.17 0.44 −0.13 0.31 −0.13 0.28

Israel −0.39 0.74 −0.35 0.64 −0.31 0.48 −0.30 0.45

Italy −0.29 0.63 −0.27 0.54 −0.25 0.42 −0.24 0.38

The Netherlands 0.15 0.46 0.17 0.38 0.05 0.43 0.05 0.39

Spain −0.41 0.57 −0.39 0.49 −0.32 0.47 −0.31 0.43

Sweden 0.04 0.55 0.06 0.47 −0.04 0.41 −0.04 0.37

Switzerland 0.15 0.51 0.15 0.44 0.13 0.40 0.14 0.35

Note. Weighted results.

above, and computed the sample means and standard deviations of this. These results are

presented in Table 10. It reflects large cross-country differences in average health, compared to

the within-country variation (which is fairly similar across countries): the differences between the

countries with the highest and lowest mean health exceed the within-country standard deviation.

The patterns in average health are as expected: average health is worse in Southern European

countries (Spain, Italy, Greece) and better in Central and Northern Europe, with more affluent

countries (Germany, Switzerland, Austria, Denmark and The Netherlands for males). The average

position of Sweden was not anticipated, though. The sample means of the health index track the

estimated means of true health quite closely. The sample standard deviations of the health index

are somewhat smaller than the standard deviations of true health. This is always the case when a

conditional mean is used as the best estimate of a random variable.

Table 11 shows the precision with which individual true health is estimated. It presents the R2

of the predictive health equation derived from the estimates, which is a measure of how well health

is estimated from only the explanatory variables and the model parameters, and the reliability of

the health index, which is the squared correlation between the health index and true health, derived

similarly (see Appendix C). Although the covariates clearly provide some information about true

health, the resulting R2s are too low to use the resulting index functions (i.e., Γ̂x) as a health

index. In contrast, our proposed health index achieves a satisfactory reliability of about 0.80. We

conclude that the health indexes have a satisfactory reliability for measuring (this dimension of)

health, which should make them useful in subsequent modeling, but they are not entirely without

measurement error.

Figures 1 and 2 plot the mean of the health index (aggregated across countries with weights
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Table 11: Squared correlation (R2, reliability) between health measure and true latent health.

Country Male Female

Covariates only Health index Covariates only Health index

Austria 0.22 0.78 0.35 0.84

Belgium 0.17 0.76 0.35 0.85

Denmark 0.29 0.78 0.32 0.83

France 0.30 0.79 0.39 0.83

Germany 0.32 0.81 0.42 0.86

Greece 0.29 0.79 0.43 0.85

Israel 0.32 0.81 0.38 0.88

Italy 0.30 0.79 0.36 0.86

The Netherlands 0.19 0.73 0.32 0.83

Spain 0.22 0.81 0.40 0.88

Sweden 0.34 0.78 0.41 0.84

Switzerland 0.38 0.74 0.29 0.80

Note. Derived from parameter estimates; weighted results.
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Figure 1: Mean health index by age, males (aggregated across countries; weighted).

proportional to population size) against age. From these figures, we see that health deteriorates

linearly over the age range studied.

Figures 3–6 plot the average of the health index versus log household income (PPP adjusted,

Euros) and the inverse hyperbolic sine of household net worth (ditto) for males and females, using

weighted nonparametric regression. Generally, this shows the well-known health-SES gradient:

28



−
.6

−
.4

−
.2

0
.2

.4
H

e
a
lt
h

50 60 70 80 90
Age

Figure 2: Mean health index by age, females (aggregated across countries; weighted).

health is better for the more affluent. However, at very low income levels, the relationship becomes

more erratic. In fact, there is a small number of observations with even lower income and wealth

levels, and for these, the relationships are even more erratic (not shown). Presumably this can

be attributed to the small number of observations and possibly significant measurement errors at

these levels.

6 A descriptive analysis of retirement and some of its determinants

In section 7, we will present some simple retirement models to assess the potential usefulness

of the health index in retirement modeling. This section discusses the criteria for selecting an

analysis sample and their consequences. Furthermore, the variables to be used in the retirement

models are selected and constructed here, and some descriptive statistics are presented as well.

Selection of the analysis sample

Two criteria are used to select our analysis sample. The first is that the observation must have been

selected for the health model as well, which means that age and gender must not be missing and

age must be at least 50. The second criterion is that the respondent must have been working at age

50 or over, i.e., he or she was in the labor force at age 50 (or later). The latter includes respondents

who currently have labor force status “(Self-)employed” and respondents with other current labor

force statuses as long as they were working in the year they turned 50 or later.
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Figure 3: Mean health index by log household income, males (aggregated across

countries,weighted).
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Figure 4: Mean health index by log household income, females (aggregated across countries,

weighted).
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Figure 5: Mean health index by inverse hyperbolic sine of household net worth, males (aggregated

across countries,weighted).
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Figure 6: Mean health index by inverse hyperbolic sine of household net worth, females

(aggregated across countries,weighted).
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Table 12: Sample composition by country and gender.

Country Male Female Total

Austria 727 715 1,442

Belgium 1,538 960 2,498

Denmark 695 710 1,405

France 1,236 1,111 2,347

Germany 1,278 1,093 2,371

Greece 1,145 618 1,763

Israel 987 878 1,865

Italy 1,009 597 1,606

The Netherlands 1,209 743 1,952

Spain 870 488 1,358

Sweden 1,340 1,410 2,750

Switzerland 419 347 766

Total 12,453 9,670 22,123

Note. Unweighted number of respondents.

The reason for the second criterion is that a model relating current health to current retirement

status makes no sense for people who have never worked or who have stopped working at a very

young age, e.g., 25. Ideally, we would use health condition at the age of retirement, but evidently

this is not available. Furthermore, decisions to never enter the labor force or to exit at a very early

age are likely to be very different from health-related retirement decisions later in life. Because 50

is also the age at which one becomes eligible for inclusion in the health model (and for inclusion in

the sample in the first place), this seems to be a reasonable choice of the cutoff age. However, this

criterion leads to a considerable reduction in the sample size, and the respondents selected for the

analysis sample differ substantially from those who are not. Therefore, below we present several

tables comparing the analysis sample with the whole sample including those who are not selected

for the retirement model. The resulting sample size of the analysis sample is 22,123. Table 12

gives a breakdown by country and gender.

Table 13 shows the percentage of respondents included in the health model (i.e., aged 50 and

over) who were already out of the labor force at age 50 and thus were excluded from the retirement

model. (These results and the ones presented further below are all weighted.) It follows that about

6% of males was already out of the labor force at age 50, which is noticeable but not extremely

high. For females, the percentages are much higher, and the differences across countries are

also more significant. These large percentages are mainly due to female homemakers who never

worked or exited the labor force at a very early age. Female labor force participation is generally

higher for later cohorts, so that this percentage will be reduced over time.
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Table 13: Percentage out of the labor force at age 50.

Country Male Female

Austria 5.6 30.5

Belgium 8.1 47.1

Denmark 6.6 13.1

France 4.1 29.6

Germany 5.4 27.4

Greece 5.2 46.9

Israel 3.9 11.7

Italy 8.6 50.5

The Netherlands 8.5 46.4

Spain 7.0 58.7

Sweden 3.9 8.8

Switzerland 3.4 24.5

Total 6.1 37.6

Note. Weighted results.

Current labor force status

Table 14 presents the distribution of current labor force status by country and gender for the

analysis sample, i.e., for those who work(ed) after age 50. For males, the corresponding table

for all respondents is very similar, but for females, the table for all respondents has much higher

percentages of homemakers and correspondingly lower percentages for retired and employed.

Table 14 shows some substantial differences across countries. The most striking phenomenon is

that the percentage of females who are homemakers is much higher in The Netherlands and Spain

than in the other countries. Apparently, becoming a homemaker is an important exit route out of

the labor force in these countries. For our analysis, we consider this group as retired. Similarly,

we consider persons who worked after 50 years of age, but are now permanently sick or disabled

as being retired. Unemployment could be an exit route out of the labor force. Therefore, we

consider retirement to be unknown (missing) for this group. An exception to the preceding rules

is when respondents report being temporarily away from work. In that case, they are considered

not retired, whatever their current self-reported labor force status.

With this definition of retirement, Table 15 gives the percentage of retired in the analysis

sample (i.e., those who worked after 50) by country. Additionally, Figure 7 shows the percent

retired as a function of age (in 5-year categories to smooth the figures somewhat), for males

and females separately. There are sizeable differences across countries. When looking at the

underlying country-level data (not depicted), we see that, for example, individuals in Switzerland

tend to retire relatively late, whereas the French on average retire early (both conditional on being

in the labor force at age 50). Understanding cross-country and cross-gender differences will be an

important goal in the study of retirement.
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Table 14: Current labor force status (analysis sample).

(Self-) Perm. sick/
Country Retired Employed Unemployed Disabled Homemaker

Males

Austria 64.5 31.3 2.4 1.5 0.3

Belgium 62.8 31.8 2.6 2.7 0.1

Denmark 47.8 46.8 4.4 0.9 0.2

France 61.2 33.9 3.6 0.9 0.4

Germany 55.3 37.8 4.8 2.1 0.0

Greece 58.0 40.2 1.3 0.4 0.0

Israel 37.5 55.0 3.2 2.3 1.0

Italy 66.7 30.9 2.0 0.4 0.0

The Netherlands 48.2 45.0 2.2 3.5 0.5

Spain 58.7 36.2 3.9 1.1 0.0

Sweden 49.7 45.9 2.5 1.5 0.0

Switzerland 42.8 54.3 1.6 1.3 0.0

Total 58.3 36.7 3.4 1.4 0.1

Females

Austria 72.6 22.9 2.4 0.8 1.4

Belgium 56.2 33.4 4.5 2.1 3.9

Denmark 54.0 40.0 3.7 1.8 0.6

France 58.3 35.4 3.7 0.5 2.0

Germany 59.2 33.0 3.1 0.8 3.8

Greece 62.0 31.7 1.9 0.3 4.1

Israel 48.8 40.0 3.4 3.0 3.9

Italy 64.7 28.8 1.1 0.1 5.3

The Netherlands 28.4 44.8 2.4 6.1 17.7

Spain 31.6 40.5 7.5 3.8 15.9

Sweden 56.0 39.8 2.0 1.6 0.4

Switzerland 46.5 45.5 1.8 0.9 5.2

Total 56.0 34.5 3.2 1.2 5.0

Note. Weighted results.
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Figure 7: Percent retired by age and gender (analysis sample, weighted results). Solid line:

Weighted average of all 12 countries. Dotted lines: minimum and maximum in each age group.
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Table 15: Percentage who have exited the labor force (analysis sample).

Country Male Female

Austria 65.4 72.0

Belgium 66.9 64.6

Denmark 50.7 58.2

France 64.8 63.1

Germany 60.1 65.9

Greece 56.5 63.8

Israel 42.4 57.0

Italy 67.4 69.8

The Netherlands 53.6 53.6

Spain 60.7 53.6

Sweden 52.6 59.3

Switzerland 40.0 47.8

Total 61.2 63.5

Note. Weighted results.

Stated reasons for exiting the labor force

Table 16 shows the reasons that were given for exiting the labor force, by retirees and homemakers,

for both the whole sample and the analysis sample. Eligibility for a public or private pension of

some sort is the dominant reason to retire. Health is also important, mentioned by about 15% of

the respondents. It is sometimes observed that ill health of the partner is an important reason to

retire for women, but this does not appear to be the case here, unless a large proportion of the

“other reasons” for homemakers falls into this category. The same holds for retiring at the same

time as the partner, which is mentioned by less than 2% of the retired.

The differences between the whole sample and those who were still in the labor force at age 50

are not very large for those who are currently retired. For (current) homemakers, however, health

is a much more important reason to stop working after 50, whereas taking care of children is much

more important before 50 (compare the columns “All respondents” and “Analysis sample”).

Combining all exit routes, 19.9% of all those who stopped working report a health reason,

whereas for the analysis sample, this is 16.7%. In computing these numbers, we have included

the “permanently sick or disabled” among the health reasons, and for the homemakers we have

included “too tiring” among the health reasons.

Table 17 breaks down this number by country and gender for the analysis sample (the whole

sample shows similar patterns). There are some clear differences, both across countries and

between men and women. In Spain, Sweden, and The Netherlands, a relatively large number

of females stopped working because of a health reason. Spain and The Netherlands are also the

countries with many females exiting the labor force to become homemakers. It remains to be seen

whether this indicates that health is worse for females from these countries, whether institutions

(tax systems, social security, pension systems) are such that it is easier to leave the labor force,
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Table 16: Reasons for exiting the labor force.

All respondents Analysis sample

Reported labor force status = Retired

Eligible for public pension 48.4 51.2

Eligible for private occupational pension 6.8 7.6

Eligible for a private pension 5.9 6.8

Was offered early retirement 11.4 13.0

Made redundant 5.3 5.7

Own ill health 15.6 14.2

Ill health of relative or friend 2.5 2.4

Retire at same time as spouse or partner 1.6 1.8

Spend more time with family 6.4 3.6

Enjoy life 5.1 5.4

Other 4.6 3.4

Reported labor force status = Homemaker

Health problems 12.2 23.0

Too tiring 6.0 14.0

Too expensive to hire someone to look after home or family 3.8 1.6

Wanted to take care of (grand)children 41.2 14.5

Other reason 42.5 53.4

Note. Weighted results.
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Table 17: Percentage who stopped working because of a health reason, all exit routes combined

(analysis sample).

Country Male Female

Austria 22.8 15.4

Belgium 15.9 17.7

Denmark 25.6 23.0

France 13.2 11.8

Germany 25.8 16.0

Greece 7.8 10.7

Israel 26.5 17.4

Italy 7.8 11.4

The Netherlands 17.0 28.2

Spain 17.2 37.8

Sweden 22.7 29.6

Switzerland 10.6 10.9

Total 16.8 16.7

Note. Weighted results.

and/or whether this reflects the often mentioned justification bias.

Characteristics of current or last job and eligibility for pensions

Table 18 shows the percentage of people who are (were) self-employed or work(ed) in the public

sector in their current or last job. Furthermore, it shows the percentage of people receiving public

or private pensions or who expect to be eligible for this in the future. Again, there are large

differences across countries and, to a lesser extent, by gender. The large differences in eligibility

for private pensions are likely to have an impact on retirement, and in addition to that on poverty

in old age.

The retirement decision is, of course, strongly related to the amount of pension wealth that has

been accrued. There is ample information about this in the SHARE data, but properly modeling

the effect of wealth on retirement is beyond the scope of this paper. As a very crude proxy for

pension accrual, we can use the number of years worked in the last job (for retired) or in the current

job (for currently employed). However, this variable suffers from the problem that it depends on

the retirement decision itself: if someone decides to retire, no more years are added, whereas

if someone keeps working, additional years are added. Hence, including this as an explanatory

variable in a model for retirement would likely lead to a coefficient with the opposite sign (more

work years are related to nonretirement), which is correct, but not the effect we are aiming to

estimate. Therefore, we have instead constructed a variable that contains the number of years

worked (in the current or last job) at age 50. Given that all respondents in the analysis sample are

50 or over, this does not suffer from the problem mentioned. However, it has other imperfections.
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Table 18: Percentage self-employed and working in public sector in current or last job and

percentage eligible for public and private pensions, now or in the future (analysis sample).

(Current or future)

Current or last job Eligibility for pension

Country Self-employed Public sector Public Private

Males

Austria 12.5 30.9 91.5 8.9

Belgium 15.0 31.7 91.2 9.8

Denmark 15.7 31.0 96.8 57.6

France 19.0 26.5 94.0 68.0

Germany 12.2 24.2 93.3 26.8

Greece 40.9 24.0 77.8 1.5

Israel 25.5 29.6 80.8 37.9

Italy 29.8 25.1 81.6 15.1

The Netherlands 12.7 44.2 97.5 75.6

Spain 27.5 20.0 85.3 4.3

Sweden 17.0 27.6 93.7 30.4

Switzerland 24.6 25.0 96.2 66.4

Total 20.6 25.9 89.7 31.4

Females

Austria 14.0 25.9 91.8 6.7

Belgium 19.7 36.9 90.0 6.2

Denmark 11.0 55.9 97.1 50.9

France 15.4 32.7 94.3 63.2

Germany 7.4 29.5 94.0 19.7

Greece 39.2 18.9 78.9 0.7

Israel 12.0 42.5 85.8 33.2

Italy 28.2 29.4 84.3 10.3

The Netherlands 14.9 48.9 98.4 63.7

Spain 26.4 24.1 77.1 3.3

Sweden 6.8 59.1 94.5 42.3

Switzerland 21.5 29.9 97.9 47.5

Total 15.9 32.4 90.8 29.1

Note. Weighted results.
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For example, it may not capture pension accrual at the retirement age of, say, 62 very well, and

some respondents changed jobs after age 50. The latter have been assigned the number zero on

this variable. For this variable, starting (and ending) ages below age 15 have been recoded as

missing. The resulting variable ranges from 0 to 35, with a mean of 15.9 and a standard deviation

of 11.1 for those who are not retired and a mean of 17.0 and a standard deviation of 11.5 for those

who are. At first sight, these differences do not seem very large, but whether this variable is able

to explain a significant part of retirement is investigated further in the next section.

7 A simple retirement model

There are several types of retirement models. Some retirement models are structural models,

i.e., they embed the retirement decision in an economic model that is intended to capture the

causal mechanisms. Many of these are dynamic programming models, in which a lifetime utility

function based on preferences for consumption, leisure, and sometimes other variables, is assumed

to be maximized by economic agents. The decision whether or not to retire influences the budget

available for consumption and the amount of time available for leisure, and the choice whether or

not to retire (at each age) thus influences current and future utility through the budget and time

available. Examples of dynamic programming models for retirement are Gustman and Steinmeier

(1986a, 1986b, 2000), Berkovec and Stern (1991), Rust and Phelan (1997), and French (2005).

The option value model of Stock and Wise (1990) is a variation on this, but it simplifies the

decision process in the model so that the model becomes more tractable.

Dynamic programming models are often difficult to estimate, for a number of reasons. One

reason is the computational complexity of optimizing an intertemporal utility function over a large

number of periods, with many choice options, and stochastic shocks to many of the variables of

interest. Unrealistic simplifying assumptions often have to be made in order to arrive at a solution.

For example, uncertainty about the future is sometimes eliminated, health is absent or reduced to

a single binary variable (“good” or “bad”), and many decisions and other variables are coarsely

discretized.

Another difficulty with dynamic programming models (and structural models in general) is

that, in order to model the decisions satisfactorily, detailed information about wages, pension

accrual, and other assets, for several time periods must be available, which is often not the case.

Therefore, models with a simpler structure have also been estimated. They take the form of

relatively simple discrete choice models or hazard models that impose less stringent requirements

on the data availability and are computationally simple. On the other hand, they may not accurately

account for important aspects of forward-looking behavior and updating expectations about the

future over time. Examples of such models are Mitchell and Fields (1984) and Michaud (2005,

chap. 2).

A structural dynamic programming model is outside the scope of this paper. Moreover, given

that we have data from only the first wave of SHARE, our model will not be able to capture
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dynamic decision making and the variables used in the model are necessarily limited to the

information available in this single wave. Hence, our model serves as an illustration and a tentative

assessment of the usefulness of the health index in retirement modeling.

The dependent variable in our model is whether or not someone is currently retired, according

to the definition given in section 6. Thus, we model the current state and not the decision to retire

directly. As mentioned in section 6, we restrict our analysis to respondents who were still in the

labor force at age 50.

The explanatory variables that we consider are primarily the ones described in section 6.

Interactions between current or future eligibility for public or private pensions and dummies for

reaching early or normal retirement age (from Coe & Zamarro, 2008, Table 1, with data for Israel

from OECD, 2005, pp. 29–30) are added, each interacted with being self-employed or in the public

sector as well. Furthermore, a third-degree polynomial in age is included, as well as some of the

socio-demographic variables used in the health model: education, household size, and living with

a spouse/partner.

To assess the usefulness of the health index, we estimate models without any health measure,

models with the health index, and models with some alternative health variables. The latter

include grip strength, self-reported health (used as a continuous variable or a set of dummies),

the numbers of mobility limitations, ADLs, and IADLs. In addition, we estimate models that use

entirely different health variables, namely the number of doctor-diagnosed chronic conditions and

the number of symptoms (i.e., directly noticeable physical health problems). We also estimate

models with multiple health measures.

For education and the health variables, we use the approach described earlier to deal with

missing data: we added dummies for missingness and assigned arbitrary values to these variables

(zero, except for self-reported health, where the middle category 3 = “good” was used) if they

were missing. We have made no such attempts for the other explanatory variables, which means

that cases that had corresponding missings were automatically removed by Stata.

To identify variables with the highest explanatory power, we ran forward stepwise probits

with all variables eligible for inclusion in principle. Variables that were logically connected were

declared as such, except for the powers of age. Table 19 indicates which health measures were

selected by this procedure. With the exception of Greek Males, all models include at least one

health variable. Unfortunately, there is not a clear “best” health measure, and even the number of

health measures varies considerably (from 0 to 4).

The stepwise procedure selects a different set of explanatory variables for each country-gender

combination, including the non-health variables. Most likely, correlations between the health

variables and the non-health variables imply that the set of non-health variables selected also

influences which health variables are selected. This makes it difficult to compare the results for

different country-gender combinations.

Therefore, we have also estimated models with a fixed set of explanatory variables that

we considered most interesting, often including ones that were removed from the stepwise

procedure and vice versa. The variables that we included are all three powers of age, living
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Table 19: Health variables selected for the retirement model by the stepwise probit procedure.

(forward, with p-value for entering = 0.05 and p-value for removal = 0.10).

Country Grip strength SRH Mob ADL, IADL Chronic Symptoms η̂

resid. (dummies) (#) (#) (#) (#)

Males

Austria ×
Belgium × ×
Denmark × ×
France ×
Germany × ×
Greece

Israel × × ×
Italy ×
The Netherlands × ×
Spain × ×
Sweden × × × ×
Switzerland ×

Females

Austria ×
Belgium × ×
Denmark × × ×
France × ×
Germany × ×
Greece ×
Israel × ×
Italy ×
The Netherlands × × ×
Spain × × ×
Sweden × ×
Switzerland × ×
Note. Grip strength resid. = the residual grip strength as used in the health measurement model and as

constructed in the appendix; SRH = self-reported health; Mob, ADL, IADL = number of mobility, ADL,

and IADL limitations, respectively; Chronic = number of chronic conditions reported; Symptoms = number

of health symptoms reported; η̂ = the healthindex constructed above.
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with a spouse/partner, household size, education dummies, work years at age 50, self-employed,

employment in the public sector, reached normal retirement age, reached early retirement

age × entitled to a private pension, reached normal retirement age × entitled to a private pension,

reached normal retirement age× self-employed, and reached normal retirement age× entitled to a

private pension × self-employed. These were present in all subsequent models, unless they led to

perfect collinearity among the regressors, in which case some of the regressors were automatically

removed by Stata. In addition to this list, we varied the health variables included in the model.

Just like the stepwise results in Table 19, the country-specific results of this model show

different “preferred” models for different countries, with no discernable overriding pattern.

Tables 20 and 21 give the fit statistics for each of these models after aggregating over countries.

That is, all coefficients in the model are still country-specific, but sample sizes, loglikelihoods, and

degrees of freedom are summed across countries, and then Akaike’s Information Criterion (AIC)

and Schwarz’ Bayesian Information criterion (BIC) were computed for the combined model.

Hence, this indicates how well each model does “on average”.

From these tables, we can observe the following: First, models with some kind of health

measure tend to fit (much) better than the model without health measures when looking at log

(pseudo)likelihood values and AIC. The higher penalty for additional parameters in the BIC

formula, compared to AIC, implies that many models with health measures have a higher BIC

and thus worse fit if BIC is used as a fit criterion. However, whichever fit statistic is preferred,

the best fitting model is one with at least one health measure. According to the BIC criterion, the

model with the health index η̂ as only health measure fits best, both for males and for females.

When looking at the log pseudolikelihood or AIC, the model with the largest number of variables

(and thus the largest number of parameters) fits best, which is a model without η̂, but with

all components that are used in its construction included separately, with their own parameters

(Model 18 in the tables). When restricting attention to models with only a single health component

(Models 2–9), the model with η̂ as health measure fits best according to the AIC as well, and in

terms of log pseudolikelihood, it is only surpassed by the model with self-reported health included

as dummies, at the expense of almost 40 additional parameters.

Hence, the health index η̂ appears to capture the most important dimension of health in its

relation to retirement. However, we interpret these findings also as indications that more than one

dimension of health may be relevant for retirement modeling. We believe that the best way to do

this is to include a second (and perhaps third) latent health dimension to the measurement model

and construct a corresponding multidimensional health index. We leave this for further research.

The models that include the number of chronic conditions and/or the number of health

symptoms in the model, in addition to the health index, do not seem to fit noticeably better than

the model with only the health index. We find this somewhat surprising, because these additional

variables have not been used in the construction of the health index, and we had expected these

to add a dimension not captured by the health index. Especially for the chronic conditions, it

seems obvious that these must have an impact on health and retirement. But apparently, the effects

of these conditions on health are largely captured by the health indicators that are used in our
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Table 20: Fit statistics for selected models with different health variables, males.
Model Health vars N LL0 LL df AIC BIC

1 No health var 11,391 −7637.8 −2682.5 188 5740.9 7120.9

2 η̂ 11,391 −7637.8 −2564.4 200 5528.9 6997.0

3 GS 11,391 −7637.8 −2646.4 212 5716.8 7273.0

4 SRH-lin 11,389 −7636.6 −2580.8 202 5565.7 7048.5

5 SRH-dum 11,389 −7636.6 −2532.7 238 5541.3 7288.3

6 Mob 11,390 −7637.1 −2592.0 201 5586.0 7061.4

7 ADL, IADL 11,389 −7636.6 −2582.2 212 5588.4 7144.5

8 Chron 11,388 −7635.8 −2645.0 202 5694.0 7176.7

9 Sympt 11,389 −7635.4 −2621.8 200 5643.7 7111.8

10 SRH-lin, η̂ 11,389 −7636.6 −2538.5 214 5505.1 7075.9

11 Chron, η̂ 11,388 −7635.8 −2557.8 214 5543.6 7114.4

12 Sympt, η̂ 11,389 −7635.4 −2551.2 212 5526.4 7082.5

13 Chron, Sympt, η̂ 11,382 −7631.4 −2544.6 224 5537.3 7181.4

14 GS, SRH-lin 11,389 −7636.6 −2554.6 226 5561.1 7220.1

15 SRH-lin, Mob 11,388 −7635.9 −2536.2 215 5502.5 7080.6

16 SRH-lin, ADL, IADL 11,387 −7635.4 −2512.8 226 5477.6 7136.5

17 Mob, ADL, IADL 11,389 −7636.6 −2544.1 225 5538.3 7189.9

18 GS, SRH-lin, Mob, ADL, IADL 11,387 −7635.4 −2467.1 263 5460.3 7390.8

19 Chron, Sympt 11,382 −7631.4 −2607.0 212 5637.9 7194.0

Notes. N = sample size; LL0 = log pseudolikelihood of null model (constant-only model per country, or equivalently,

only country dummies); LL = log pseudolikelihood of the target model; df = degrees of freedom; AIC = Akaike’s

Information Criterion; BIC = Schwarz’ Bayesian Information Criterion.

GS = the residual grip strength as used in the health measurement model and as constructed in the appendix; SRH =

self-reported health (lin = as a linear continuous variable, dum = as 4 dummy variables); Mob, ADL, IADL = number of

mobility, ADL, and IADL limitations, respectively; Chron = number of chronic conditions reported; Sympt = number

of health symptoms reported; η̂ = the healthindex constructed above.
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Table 21: Fit statistics for selected models with different health variables, females.
Model Health vars N LL0 LL df AIC BIC

1 No health var 8,920 −5910.8 −2127.4 180 4614.9 5892.2

2 η̂ 8,920 −5910.8 −2020.3 192 4424.5 5787.0

3 GS 8,920 −5910.8 −2086.9 204 4581.7 6029.3

4 SRH-lin 8,920 −5910.8 −2026.5 192 4436.9 5799.4

5 SRH-dum 8,920 −5910.8 −1989.9 228 4435.7 6053.6

6 Mob 8,919 −5910.2 −2024.9 192 4433.9 5796.3

7 ADL, IADL 8,919 −5909.7 −2034.5 204 4477.1 5924.7

8 Chron 8,919 −5910.3 −2074.4 193 4534.8 5904.3

9 Sympt 8,918 −5909.9 −2081.9 192 4547.8 5910.2

10 SRH-lin, η̂ 8,920 −5910.8 −1996.6 204 4401.3 5848.9

11 Chron, η̂ 8,919 −5910.3 −2007.8 205 4425.6 5880.3

12 Sympt, η̂ 8,918 −5909.9 −2009.2 204 4426.3 5873.9

13 Chron, Sympt, η̂ 8,918 −5909.9 −1996.8 217 4427.5 5967.3

14 GS, SRH-lin 8,920 −5910.8 −1998.4 216 4428.9 5961.6

15 SRH-lin, Mob 8,919 −5910.2 −1986.7 204 4381.4 5829.0

16 SRH-lin, ADL, IADL 8,919 −5909.7 −1974.9 216 4381.7 5914.5

17 Mob, ADL, IADL 8,918 −5909.1 −1991.8 216 4415.5 5948.2

18 GS, SRH-lin, Mob, ADL, IADL 8,918 −5909.1 −1927.7 252 4359.3 6147.5

19 Chron, Sympt 8,918 −5909.9 −2055.4 205 4520.7 5975.3

Note. See the notes for Table 20 for an explanation of the abbreviations.
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measurement model, and thus after accounting for these in the form of our health index, the chronic

conditions do not add much predictive power. However, in some country-gender combinations,

chronic conditions have additional explanatory power, and in Table 19, they are included in the

preferred model several times as well.

To get an impression of the size of the health effect, we have computed the actual and predicted

retirement percentages for the analysis sample, and computed the predicted retirement percentages

for the analysis sample after an improvement of health by one (gender and country-specific)

standard deviation for all observations. The model used for these calculations is the one with

η̂ as the only health variable in the model. The predicted retirement percentages are computed as

the means of the predicted retirement probabilities. We have computed the retirement percentages

for each of the 5-year age groups 50–54, 55–59, 60–64, 65–69, 70–74, and 75 and over.

The predicted retirement percentages show a somewhat smoother relation with age group than

the observed ones. For example, in the observed data, retirement percentages do not always

increase monotonically with age group, whereas in the predicted percentages they do. So there

are some small differences between observed and predicted percentages. In order not to confound

the effect of a health improvement with the effect between observed and predicted for the same

health, we confine ourselves to comparisons between predicted percentages with and without

health improvement. Not surprisingly, these effects are typically largest in the age group 60–64,

in which retirement percentages increase rapidly. Figure 8 shows the results for this age group.

The effects vary widely across countries. In some cases, health improvement has almost no

effect, whereas in others, it leads to an almost 20 percentage points lower predicted retirement

rate. The effects are largest in Germany, Spain, and Denmark for males, and Germany, The

Netherlands, and Sweden for females. Although strong causal interpretations of these simple

reduced form models are unwarranted, it appears to indicate that the effects of health on retirement

are noticeable and relevant.

8 Discussion

In this paper we have estimated a measurement model for health, with health as a latent

(unobserved) variable. The indicators that are assumed to depend on health are mobility, arm

function, and fine motor function limitations, limitations of activities of daily living (ADL),

limitations of instrumental activities of daily living (IADL), self-reported health, and grip strength.

The latter is also allowed to depend on a second-degree polynomial in height and weight directly.

In addition to this submodel, the health model contains a predictive health equation, in which latent

health is regressed on a standard set of socio-demographic covariates: a third-degree polynomial in

age, living with a spouse/partner, household size, education dummies, and (the inverse hyperbolic

sine transform of) household wealth, as well as dummies for being underweight, overweight,

moderately obese, or severely obese. The model is a special case of the LISCOMP model, with

a linear structure in the latent domain and threshold relations between latent response variables
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Figure 8: Effect of a 1 s.d. health improvement on percent retired for 60–64 year olds (analysis

sample, weighted results).
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and categorical indicators. All analyses have been done with the SHARE wave 1 data (Survey of

Health, Ageing and Retirement in Europe).

Using the estimation results of the model, we computed a health index for each observation.

This health index is the best possible estimate of the latent health variable in the model. Overall,

the model fit seems satisfactory, although more experience with the pseudo-R2 in this type of

model and comparison with competing models are necessary to be able to make firmer statements

about model fit. The reliabilities of the constructed health indexed are approximately 80%, which

is satisfactory.

In order to assure cross-country comparability of health, the coefficient of latent health in the

grip strength equation was normalized to 1, and the intercept in this equation was normalized to 0.

Using this objective indicator for normalization led to a health variable that is comparable across

countries.

Our primary objective for estimating the health model and the health index is to use the health

index in retirement modeling. We have presented some descriptive statistics on retirement and

its determinants in our data, from which we can already conclude that health plays an important

role in retirement decisions. To assess the usefulness of our health index in retirement modeling,

we have estimated some simple probit models for a subsample of individuals who worked until

at least 50 years of age. “Being retired” at the time of the interview was the dependent variable,

and explanatory variables were mainly socio-demographic variables, in addition to some limited

economic incentives proxies, and health. We varied the health variable(s) included in these

models. It appears that the health index is an adequate predictor of retirement. When judged

by Schwarz’ Bayesian Information Criterion (BIC), the model with the health index as only health

variable is the best fitting model among the wide range of models considered. However, judged

by Akaike’s Information Criterion (or log pseudolikelihood by itself), the model with five health

components, which are used in constructing the health index, separately included instead of the

health index, is the best fitting model overall. We interpret this as an indication that extending

our health model to include a second health dimension may lead to further improvements. It must

be noted, however, that when looking at different country-gender subsamples separately, there is

considerable variation as to which model fits best.

For understanding different retirement patterns in different countries, and the role of that

different institutions in different countries pley in this, retirement models with different health

variables for different countries are less useful. Moreover, even models with the same health

variables, other than a cross-country comparable health index like the one constructed here, are

more difficult to compare, because of the cultural and linguistic differences in the response patterns

to most of the variables.

Using the retirement model with the health index as only health variable, we have assessed

the strength of the relation between health and retirement by hypothetically improving each

individual’s health by one (country-gender specific) standard deviation, and comparing the

resulting predicted percent retired with the predicted percent retired using actual health. This

suggests that in some countries, improved health may lead to considerably lower retirement
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fractions (up to 20 percentage points), especially in the 60–64 age group. However, because

our model is a very simple reduced form model, causal interpretations are unwarranted and result

like these should be viewed as tentative.

Further research is needed to improve the measurement of health and its use in retirement

modeling. As mentioned above, the health model with more than one health dimension is expected

to better reflect the multidimensional nature of health and to explain retirement. Furthermore,

sensitivity analyses using different specifications of the predictive health equation are necessary.

An improvement of the retirement modeling is to take the estimated uncertainty in the health

index into account. This requires simulated likelihood estimation, but it is a viable option. Further

improvements and/or alternative approaches can be obtained by using health in structural dynamic

programming models of health. Our data are not sufficient to estimate these models now, but with

forthcoming subsequent waves of SHARE, this will become possible.
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Appendix

A Variables used

A.1 Health indicators

Mobility

Limitations with mobility, arm function & fine motor function. The table below gives the detailed

content of these variables. They are all yes/no variables (“difficulty with . . . ”).

Walking 100 metres

Sitting for about two hours

Getting up from a chair after sitting for long periods

Climbing several flights of stairs without resting

Climbing one flight of stairs without resting

Stooping, kneeling, or crouching

Reaching or extending your arms above shoulder level

Pulling or pushing large objects like a living-room chair

Lifting or carrying weights over 10 pounds/5 kilos, like a heavy bag of groceries

Picking up a small coin from a table

For the analysis, we have combined “Climbing several flights of stairs without resting” and

“Climbing one flight of stairs without resting” into one ordinal variable with three categories:

no difficulties, difficulties with several flights only, and difficulties with both. A small number

of respondents reported difficulties with one flight but not with several flights. These have been

included in the “both” category. We assume that in these respondents’ view, the several flights

category is implied by the one flight category. They were not asked explicitly about each category,

but rather had to pick the ones that applied to them from a showcard.

ADL

Limitations with activities of daily living. They are also yes/no variables.

Dressing, including putting on shoes and socks

Walking across a room

Bathing or showering

Eating, such as cutting up your food

Getting in or out of bed

Using the toilet, including getting up or down
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IADL

Limitations with instrumental activities of daily living. Again, they are yes/no variables.

Using a map to figure out how to get around in a strange place

Preparing a hot meal

Shopping for groceries

Making telephone calls

Taking medication

Doing work around the house or garden

Managing money, such as paying bills and keeping track of expenses

Self-reported health

We used self-reported health according to the U.S. categorization from “excellent” to “poor”. This

has a more symmetrical distribution than the European version, which uses a categorization from

“very good” to “very bad”. Half of the sample answered the U.S. version before the other health

variables and the European version after, the other half of the sample answered in the reverse

order. Unlike Crossley and Kennedy (2002), we have not found a systematic effect of the order of

presentation on the distribution of this variable, and thus we combine the two half-samples in one

variable.

Grip strength

This is the maximum of up to four measurements: two on the left hand and two on the right hand.

This variable is missing if the original does not have two measurements on at least one hand or if

these differ by more than 20 kg or had implausible values. In the analyses, we have divided the

original variable by 10 to obtain better scaling.

A.2 Selection variables, covariates, and sampling weights

• Country, Gender, and household size are taken directly from the data.

• Age is taken from the imputations file. Age does not vary across imputations, so this is

uniquely defined. Israel is not in the imputations file, so for Israel we computed age as

interview year − birth year, where the birth year variable used is dn003_ from the original

data, which is the one answered by the individual respondents themselves. In the analyses,

we used aged1 = (age − 65)/10, aged2 = aged12, and aged3 = aged13.

• Living with a spouse/partner is a constructed variable, using the variable mstat (answered

by the household respondent), and the variable dn014_, as answered by the respondent and

by the alleged spouse/partner, taking the information about household size into account, as

well as whether either the respondent or the alleged partner was the household respondent
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answering the mstat question. The end result is a variable that is almost the same as mstat

recoded to 1 = living with a spouse or partner and 0 = living as a single, but with the “other”

and “don’t know” categories assigned to either 0 or 1, and four observations recoded from

“living with a partner” to “single”.

• Education is taken from the imputations file. This variable implements the 1997

International Standard Classification of Education (ISCED-97), giving a variable ranging

from 0 (none) to 6 (second stage of tertiary education), and separate categories for “still in

school” (95) and “other, abroad” (97). However, because in most countries, some of the

categories are almost or completely empty, we combined categories 0 (none), 1 (primary

education), 2 (lower secondary education), and 95 (still in school) into one category

(“primary”), categories 3 (upper secondary education) and 4 (post-secondary, non-tertiary

education) into the second category (“secondary”), and categories 5 (first stage of tertiary

education) and 6 (second stage of tertiary education) into the third category (“tertiary”).

Category 97 (other, abroad) was considered “missing”. We have little hope that the resulting

education variable is truly comparable across countries, but this recoding at least allows

us to use the same model structure for different countries. The different coefficients for

different countries are then (partly) a reflection of the differences in educational systems

across countries. For observations in which this variable was imputed (rather than just

derived from the original variables), we have used the first imputation.

• Log household income is the log of purchasing power parity (PPP) adjusted, before tax

household income, in Euros. This variable was supplied as a generated variable in the

supplementary dataset gv_inc1. This variable is based on numerous original variables. For

many observations, one or more of these are missing, where a so-called unfolding bracket,

leading to a range of possible values, also counts as a partial missing. Therefore, the data

set contains five imputations for observations with missings. The variable used is (the log

of) the average of the five imputed income values. From the resulting variable, we have

replaced zero values and values over e1 million by missings.

• IHS net worth is the inverse hyperbolic sine transformation of the average of the five

imputations of PPP adjusted household net worth in Euros, taken from the imputations file.

• Body mass. We use height and weight and a categorization of BMI into underweight,

overweight, moderately obese, and severely obese dummies, with normal weight being

the reference category. See the main text for the thresholds used for these dummies.

We have replaced implausible values (weight less than 10 kg, height less than 110 cm) by

missings. In the grip strength model, we use heightd1 = height/100, heightd2 = heightd12,

weightd1 = weight/10, weightd2 = weightd12, and htwt = heightd1 × weightd1.

• Sampling weight. This is the individual, calibrated sampling weight variable (wgtaci).

For the model estimations, we used a rescaled version, which for each country-gender
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combination sums to the number of observations used in the health model, instead of

the population size. This gives the same estimates as using the original weights, but

the loglikelihood is now of the same order of magnitude as an unweighted (proper)

loglikelihood. In the grip strength model, we have experimented with both, as well as

unweighted analyses, as described in appendix B. In these models, the results from the

analyses using differently scaled weight variables can be different, because population sizes

are different and hence the rescaling per country-gender combination results in different

weighting of countries. For Figures 1–6, we used the original wgtaci variable, so that the

figures represent averages for a representative sample from the 12 countries jointly.

A.3 Reasons for retirement, eligibility for pensions, and other employment and

pension variables

These variables have mostly been taken directly from the original data, although in some cases

the original data had different variables for respondents who report different labor force statuses.

In such cases, we have combined information from different original variables. The main text

describes most of the choices we have made.

The most important issue to note here is that respondents from The Netherlands were not

given the public pension option for future eligibility for pensions, because everyone who lived

in The Netherlands for some time before age 65 is entitled to a public pension at age 65 (with

the benefit amount reduced if one lived fewer than 50 years in The Netherlands between ages 15

and 65). Hence, we have imputed this future eligibility for each respondent younger than 65. We

have not imputed current receipt of public pensions for respondents 65 or older, because from the

description above, it follows that an individual who never lived in The Netherlands before age 65

is not entitled to public pensions after age 65. However, presumably most respondents over 65

who do not report receiving public pensions must misstate their situation, typically because the

respondent’s public pension is deposited in the spouse’s bank account.

Further details of the variable constructions are available from the authors upon request.

B Grip strength correction for height and weight

Grip strength has been shown to be a good predictor of future medical problems (Christensen et

al., 2000; Rantanen et al., 1999, 2000; Al-Snih et al., 2002). Therefore, this is a useful indicator

of health. However, grip strength is also related to overall body size, with larger individuals being

stronger on average than smaller people. Hence, we expect to obtain a better indicator of health if

we develop a corrected measure that partials out the size effect. The conceptual model we use for

this is

GS
cn
= λ′η

cn
+ τ′p

cn
+ ε

cn
, (6)

where η
cn

is “true health” of the n-th individual in the c-th country, which may be

multidimensional; λ is a vector of coefficients; τ′p
cn

is a polynomial in height and weight, with
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p
cn

consisting of height, weight, their squares, and their product, and τ a vector of coefficients to

be estimated. Finally, ε
cn

is a random error term. We do not assume that parameters are equivalent

for males and females and thus, equations, variables, coefficients, and so forth, are gender-specific

throughout, but this will be suppressed in the notation.

Our aim is to estimate τ and then subtract the height-weight polynomial τ′p
cn

from the

observed grip strength, thereby obtaining a better indicator of true health. However, true health is

unknown, and thus, η
cn

is a latent variable and we cannot estimate (6) directly as a linear regression

model. Furthermore, p
cn

may be correlated with true health, so we cannot confidently estimate τ

by regressing grip strength on p
cn

as well.

In our model, we have a predictive equation for true health, of the form

η
cn
= Γ

c
x

cn
+ ζ

cn
, (7)

where x
cn

is a vector of explanatory variables, Γ
c

is a matrix of regression coefficients, and ζ
cn

is a vector of random errors. Note that we do not assume that the regression coefficients in this

equation are the same for different countries. Combining (6) and (7), we obtain

GS
cn
= λ′Γ

c
x

cn
+ τ′p

cn
+ ε

cn
+ λ′ζ

cn

= β′
c
x

cn
+ τ′p

cn
+ u

cn
, (8)

with β
c

and u
cn

implicitly defined. Clearly, this equation can be estimated by a regression of

grip strength on p
cn

and the explanatory variables in x
cn

, with the latter interacted with country

dummies.

However, in the SHARE data, there is a fairly large proportion of individuals for which

grip strength is missing, and these tend to be individuals in worse health (according to other

health indicators that are observed). Hence, estimating (8) by linear regression may suffer from

selectivity bias. To alleviate this potential problem, we can estimate a Heckman selection model

(Heckman, 1979; Meijer & Wansbeek, 2007). Because observing grip strength is related to

health, the selection equation of this two-equation model includes a large number of other health

indicators, interacted with the country dummies, in addition to the variables that are already in the

equation of interest, (8).

Another potential issue is whether to include economic variables in x
cn

. Health is related to

socio-economic status, so in terms of more precise measurement of health, it may be advantageous

to include a measure of income and/or wealth in its predictive equation. On the other hand, the

measurement model consisting of (6), (7), and a large number of additional equations for other

health indicators (mobility and functional limitations, ADLs and IADLs, self-reported health),

will be used to compute a health index for usage as an explanatory variable in retirement models,

and inclusion of income and/or wealth in the construction of the health index may give some

endogeneity problems, especially with income depending on the retirement decision.

Two final considerations are the weights and the functional form of the relation between

grip strength and height and weight. The weights that are supplied in the SHARE data sum to
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population size within each country. If the model is correct, more efficient estimates are obtained

with rescaled weights that sum to the sample size within each country. We employ both, as well

as an unweighted analysis. Sensitivity to functional form is assessed by nonparametric regression

using lowess estimators. This is done sequentially, inspired by the Frisch-Waugh theorem of linear

regression (Wansbeek & Meijer, 2000, p. 352): We regress the dependent variable (grip strength)

on one of the explanatory variables (height) and also regress the other explanatory variable

(weight) on this explanatory variable. Both of these are done by lowess. Then the residuals of

grip strength are regressed on the residuals of weight, and the corrected health indicator is the

residual from this equation.

Thus, we have the following choices: (1) Three types of weighting: unweighted, with

weights that sum to population size, and with rescaled weights that sum to sample size; (2)

with or without selection equation; and (3) different model specifications. For the latter, we

have a base set of explanatory variables, which includes the elements p
cn

of the height-weight

polynomial (consisting of height, weight, height squared, weight squared, height × weight), and

the following additional explanatory variables: a cubic polynomial in age, education dummies,

a dummy for living with a spouse or partner, household size, and body mass index categorized

into five categories, plus dummies to capture missingness of various explanatory variables.

These additional explanatory variables are all interacted with country dummies. If present, the

corresponding selection equation contains the same set of variables plus a set of over 20 binary

health indicators (difficulties with. . . ) and self-reported health, which are also interacted with the

country dummies. The set base + log income adds log household income plus its interactions with

the country dummies, to the set of explanatory variables. The income variable used is the average

of the 5 “imputations” provided. If this is zero, then log income is set to zero. A “zero income”

dummy is added to capture the average effect of this group. The set base + IHS net worth adds the

inverse hyperbolic sine of household net worth to the base set, plus its interactions with the country

dummies. We use the inverse hyperbolic sine function rather than the log, because a nonnegligible

fraction of households have negative net worth, which indicates less access to funds for investing

in health, so it is meaningful to take this into account. The fourth set of explanatory variables,

only height-weight polynomial, only includes the elements p
cn

of the height-weight polynomial,

and the fifth set, Only height-weight, nonparametric, estimates the relation between grip strength

and height and weight nonparametrically, as indicated above. These two sets do not include the

additional explanatory variables or any interactions with the country dummies.

For practical reasons, we do not compute all combinations of possibilities implied by the

classification above, but a subset that should reflect the sensitivity of the resulting indicator to the

choices made. The models estimated are listed in Table 22.

Apart from the arbitrary location and scale differences, which do not influence the usage as

an indicator of health, the residuals of these models are extremely insensitive to the choices made

in specification and estimation. Weights and presence or absence of a selection equation have no

impact whatsoever, and neither does the presence or absence of the income or wealth variables in

the model. The only discernible influence is whether the analysis is restricted to only height and
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Table 22: Estimation settings.

No. Weights Selection eq. Variablesa

1 sum to sample size yes Base

2 sum to sample size yes Base + log income

3 sum to sample size yes Base + IHS net worth

4 sum to population size yes Base

5 sum to population size yes Base + log income

6 sum to population size yes Base + IHS net worth

7 unweighted yes Base

8 unweighted yes Base + log income

9 unweighted yes Base + IHS net worth

10 sum to sample size no Base

11 sum to sample size no Base + log income

12 sum to sample size no Base + IHS net worth

13 sum to sample size no Only height-weight polynomial

14 unweighted no Base

15 unweighted no Base + log income

16 unweighted no Base + IHS net worth

17 unweighted no Only height-weight polynomial

18 unweighted no Only height-weight, nonparametric
a See text for description.
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weight (models 13, 17, and 18, group I, say) or the model includes other explanatory variables as

well (models 1–12 and 14–16, group II, say). The correlations between residuals from group I

on the one hand and residuals from group II on the other hand are between 0.98 and 0.992

for both males and females, whereas the correlations among residuals in group I are all above

0.998 for both males and females, and the correlations among residuals in group II are all above

0.999 for both males and females. This insensitivity is not (necessarily) due to lack of relation

between grip strength and height/weight: For males, the absolute values of individual t-values of

coefficients of the height-weight polynomial are typically between 4 and 7 and the coefficients are

sizeable. For females, though, many coefficients are nonsignificant, although typically one or two

are significant, with t-values between 2 and 3. Also, the inverse Mills’ ratio is highly significant

(absolute t-values between 8 and 25), which clearly points at a selection effect.

Concluding, we can confidently select one of the residuals as a health indicator and do not

need to worry about misspecification of this equation. On the basis of theoretical considerations,

we selected the residual from model 3, i.e., with a correction for selectivity bias, with all the base

explanatory variables included, as well as wealth, and estimated with weights that sum to the

sample size within country. Table 23 presents the means and standard deviations of grip strength

before and after this correction for height and weight, by country and gender. This shows that

there are some shifts in relative positions of some countries, e.g., Sweden drops two places for

both males and females, but these shifts are minor. They do, however, illustrate that the corrections

may be important at the individual level.

C Reliabilities and R
2’s

The fit of linear regression models is usually assessed by means of the R2. This can be done for

each linear equation in the current model as well. However, because y∗
n

and η
n

are (typically) not

directly observed, computation of the R2 cannot be done directly. Instead, the R2 measures are

derived from the parameters. For a linear regression model y
n
= x′

n
β + ε

n
, with ε

n
independent of

x
n
, the R2 is equal to

R2 = 1 −
Var(ε

n
)

Var(y
n
)
= 1 −

Var(ε
n
)

β′ Cov(x
n
)β + Var(ε

n
)
,

where the constant has been removed from x
n

and β. Furthermore, x
n

is treated as random in this

expression, which simplifies the formulas a bit.

The R2’s for the equations in the current model are defined analogously:

R2(η
j
) = 1 −

Var(ζ
n j

)

Var(η
n j

)

R2(y∗
i
) = 1 −

Var(ε
ni

)

Var(y∗
ni

)
.
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Table 23: Means and standard deviations of maximum grip strength by country and gender, before

and after correction for height and weight (kg).

Before correction After correction

Country Mean s.d. Mean s.d.

Males

Austria 46.1 9.8 −168.5 9.5

Belgium 44.0 10.2 −169.9 9.6

Denmark 46.7 10.5 −168.1 9.6

France 42.4 10.7 −170.9 10.1

Germany 46.0 10.9 −168.6 10.4

Greece 41.2 11.1 −172.3 10.5

Israel 39.4 11.7 −174.0 11.4

Italy 39.7 11.1 −173.3 10.3

The Netherlands 45.5 10.4 −169.3 9.7

Spain 37.4 10.5 −174.4 9.6

Sweden 44.9 10.0 −170.0 9.3

Switzerland 44.3 9.5 −169.4 8.5

Females

Austria 28.9 7.8 51.5 7.6

Belgium 26.2 7.1 49.4 6.7

Denmark 26.9 7.3 49.5 6.8

France 25.5 7.0 49.0 6.7

Germany 28.3 7.8 50.9 7.5

Greece 24.9 6.9 47.9 6.7

Israel 23.4 7.5 46.4 7.3

Italy 23.3 7.2 46.7 7.1

The Netherlands 27.7 7.6 49.9 7.1

Spain 22.3 7.6 46.3 7.3

Sweden 26.4 7.3 49.0 6.9

Switzerland 27.2 7.2 50.4 6.8
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These definitions also mimick the ones in LISREL (Jöreskog & Sörbom, 1993, pp. 26–27).

If y∗
i

is a continuous observed variable and there are no observed explanatory variables x in its

equation, then R2(y∗
i
) is its reliability. Correspondingly, the reliability of the health index η̂ is the

squared correlation between η̂ and η, as derived from the model estimates.

D Scaled likelihood ratio test

With maximum likelihood estimation, nested models are usually tested against one another by

means of the likelihood ratio (LR) test. The test statistic is TLR = 2(L̂
u
− L̂

r
), where L̂

u
is the

maximum of the loglikelihood function for the “unrestricted” (i.e., less restricted) model, and L̂
r

is the maximum of the loglikelihood function for the (more) restricted model. Under the null

hypothesis, TLR has an asymptotic chi-square distribution with degrees of freedom equal to the

number of (effective) restrictions ν that the restricted model imposes on the unrestricted model.

Typically, ν is the difference in number of free parameters.

When sampling weights are applied, the maximum values of the log-pseudolikelihood function

are inserted in the expression for TLR. But in this case, TLR does not have an asymptotic chi-square

distribution. It is asymptotically distributed as a weighted sum of independent chi-square

variates with one degree of freedom. The weights can be estimated and quantiles and p-values

corresponding to the resulting distribution can be estimated in principle. However, a convenient

alternative that tends to work well in practice is to multiply TLR by a scale factor such that the mean

of its asymptotic distribution equals ν, i.e., the mean of the chi-square distribution with ν degrees

of freedom, and then compare the test statistic with the quantiles of this chi-square distribution.

Thus, the Scaled LR test statistic is TSLR = cTLR, where

c =
ν

tr(V̂
u
Ĥ

u
) − tr(V̂

r
Ĥ

r
)
,

in which V̂
u

is the estimated asymptotic covariance matrix of the estimator of the parameter vector

for the unrestricted model, Ĥ
u

is the Hessian of the log-pseudolikelihood function in the optimum

for the unrestricted model, and V̂
r

and Ĥ
r

are defined correspondingly for the restricted model.

Note that for a proper (unweighted) loglikelihood function, V̂
u
Ĥ

u
and V̂

r
Ĥ

r
are identity matrices

of different dimensions, the dimensions being equal to the number of parameters estimated in

these models. Thus, the Scaled LR test reduces to the usual LR test. See Asparouhov and Muthén

(2005) for more details and derivations.
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