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Abstract 

 

In this paper we propose two measures of income segregation, the rank-order information theory 

index (HR), and the rank-order variation ratio index (HR).  We propose spatially-explicit versions of these 

indices as well.  These indices have several appealing features that remedy flaws in existing measures.  

First, they are relatively easy to compute, since they require simply computing a series of pairwise 

segregation values using existing measures of segregation, fitting a polynomial regression line using 

WLS, and then computing a linear combination of the estimated parameters.  Second, the measures 

are easily adapted to account for spatial proximity, following the approach of Reardon and 

O’Sullivan (2004).  Third, the measures are largely insensitive to the set of income thresholds that 

define the categories in which income is reported, so long as the thresholds span most of the range 

of income percentiles.  As a result, they do not require us to make assumptions about the shape of 

income distributions.  Fourth, the measures are insensitive to rank-preserving changes in income, 

since the measures are based on the ranks of incomes rather than their numerical values.  Finally, the 

indices can be interpreted in a variety of equivalent ways that illustrate their correspondence with 

standard notions of segregation.
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Introduction 

 In any city in the world, even a cursory inspection—by any non-sociologist, non-economist, 

or non-geographer—of residential patterns would indicate the presences of some degree of 

residential segregation by income and wealth—there are some neighborhoods populated primarily 

by families with above-average income and wealth, and other neighborhoods populated primarily by 

families with below average income and wealth.  For the sociologist or economist, however, it is not 

enough to merely note the presence of such residential sorting; we desire as well to quantify it.  

Virtually any interesting question regarding the causes, patterns, and consequences of such 

residential segregation requires that we measure it—and measure it in a way that makes comparisons 

across places and times meaningful. 

 Surprisingly, the set of tools available to scholars for measuring spatial economic segregation 

is relatively limited.  Our goal in this paper is to develop an approach to measuring spatial economic 

segregation that is intuitively meaningful, easy to compute, and allows for comparisons across place 

and time.  To achieve this, we develop several measures of segregation along an ordinal dimension 

(since income data and other socioeconomic data such as educational attainment and occupational 

status are often reported using ordered categories).  Although we initially develop ‘aspatial’ versions 

of these measures, we show how they can be easily adapted to take into account the spatial or social 

proximity of individuals by using the approach outlined by Reardon and O’Sullivan (2004).  Our 

initial ordinal segregation measures, however, are sensitive to changes in the overall distribution of 

the quantity to be measured as well as to changes in how the ordered categories are defined, both of 

which make comparisons difficult.  To remedy this, we propose a method of adjusting the measures 

so that they are invariant to such changes and allow meaningful comparisons across places.  We then 

illustrate our method using data on residential segregation by household income in a set of 

metropolitan areas in the United States. 
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 The paper proceeds as follows.  Section 1 reviews existing methods of measuring economic 

segregation.  Section 2 develops two simple measures of ordinal segregation that can be used to 

measure economic segregation, and notes that both are flawed.  Section 3 describes an approach that 

remedies flaws in these two measures.  In section 4, we apply our measures to describe residential 

segregation by household income in a set of metropolitan areas in the United States in 2000.  Section 

5 concludes. 

 

1. Existing Measures of Economic Segregation 

Prior research on economic segregation has relied on several general approaches for 

characterizing the extent to which individuals of different socioeconomic characteristics are 

unevenly distributed throughout a region.  Most of this research has been concerned with income 

segregation, rather than segregation by wealth, largely because income data are far more readily 

available.  This research comes primarily from three different disciplinary perspectives—sociology, 

economics, and geography—each of which faces the same set of measurement issues. 

In general, income data are reported categorically, as counts within each organizational unit 

(e.g., census tract) of households, families, or individuals falling in each of a set of mutually exclusive 

and exhaustive ordered income categories.  Each of these income categories is defined by a pair of 

upper and lower income bounds (except for the two extreme categories, which are each unbounded 

on one side)1.  For example, in the 2000 U.S. census, household income is categorized by 16 annual 

income categories, ranging from “less than $10,000,” “$10,000-$14,999”, $15,000-$19,000, etc., 

through “$150,000-$199,999”, and finally “$200,000 or more.”  As a result, the measurement of 

income segregation is hampered by the fact that we generally do not know individuals’ exact 

incomes (and so we lack full information on the income distribution overall or in any one 

                                                 
1 Since negative income is possible, the lowest income category is not bounded by 0. 
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organizational unit).  Moreover, although the income thresholds that define the ordered income 

categories are designed to span most of the range of incomes, they are nonetheless relatively 

arbitrary and change over time, so that any segregation measure that relies on them should be 

insensitive to the definition of the thresholds if the measure is to be useful for comparative 

purposes. 

 

Category-Based Measures of Economic Segregation  

By far the most common method of measuring income segregation used in existing research 

has been to divide the population into two categories, based on some chosen income threshold (a 

wide range of thresholds are used in extant research).  Segregation between these two groups (those 

above and those below the chosen threshold) is computed using any conventional two-group 

segregation measure, such as the dissimilarity index.  Examples of this approach are found in the 

literature in sociology (Fong, 2000; Massey, 1996; Massey & Eggers, 1993; Massey & Fisher, 2003), 

urban planning (Coulton, Chow, Wang, & Su, 1996; Pendall & Carruthers, 2003), and economics 

(Jenkins, Micklewright, & Schnepf, 2006; Waitzman & Smith, 1998).   

Although the primary advantage of this approach is its simplicity, its shortcomings are 

several and obvious.  First, dichotomizing the income distribution discards an enormous amount of 

information.  Even if we don’t know individuals’ exact incomes, the 16 income categories reported 

in the U.S. census, for example, contain far more information than any dichotomized version.  

Second, the results of such an approach may depend on the choice of a threshold—segregation 

between the very poor and everyone else may not be the same (and generally is not the same) as 

segregation between the very rich and everyone else.   

Several variants of this approach have been used.  Massey and Fischer (2003), for example, 

compute segregation between poor and affluent households (ignoring the middle-class) to better 
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capture the separation of the extremes of the income distribution.  A second variant of the 

categorical approach to measuring income segregation is to compute the two-group segregation for 

many or all possible pairs of income categories, and then to construct some average or summary 

measure of these multiple pairwise indices (Farley, 1977; Massey & Eggers, 1990; Telles, 1995).  

Third, rather than dichotomize the income distribution, Fong and Shibuya (2000) and Telles (1995) 

compute segregation among multiple income category groups using the Theil information theory 

index of segregation (Theil, 1972).  This approach, however, uses an index designed to measure 

segregation among a set of unordered groups (such as racial groups) to measure segregation among a 

set of ordered groups (income groups), and so is insensitive to the inherently ordinal nature of 

income segregation.  Finally, Meng, Hall, and Roberts (2006) measure the segregation among 

multiple ordered income groups using an approach that explicitly accounts for the ordered nature of 

the categories by weighting the segregation between different groups by some measure of the ‘social 

distance’ between the groups.  While many of these variants have some advantage over simply 

dichotomizing the income distribution, each shares with all categorical income segregation 

approaches the fundamental flaw that they are sensitive to the number and location of the 

thresholds used to define income categories, confounding the possibility of making meaningful 

comparisons across places and times. 

 

Variation-Ratio Measures of Economic Segregation  

A second approach to measuring income segregation defines segregation as a ratio of the 

between-neighborhood variation in mean income or wealth to the total population variation in 

income or wealth.  Some measures derived from this approach use the variance of incomes as the 

measure of income variation (Davidoff, 2005; Wheeler, 2006; Wheeler & La Jeunesse, 2006).  Such 

measures have an interpretation analogous to the R2 statistic from a regression of individual incomes 
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on a set of neighborhood dummy variables.  Other such measures use a measure of variation other 

than the variance as the chosen measure of variation.  Jargowsky (1996; , 1997) for example, defines 

income segregation as the ratio of the between-unit (e.g., between-tract) standard deviation of 

income to the overall regional income standard deviation.  Ioannides (2004) uses the ratio of the 

variance of log incomes; Hardman & Ioannides (2004) use the ratio of within-neighborhood to 

overall coefficients of variation of income; Ioannides and Seslen (2002) use the ratio of 

Bourguignon’s population-weighted decomposable inequality index to measure both income and 

wealth segregation.  The relative merits and flaws of the choice of inequality or variation measure 

used to construct the various ratio-based indices have not been fully investigated. 

In principle, measures based on this approach use full information on the income 

distribution at each location, but since exact income distribution data are generally not available, they 

generally must rely in part on the estimation of parameters describing the overall income distribution 

(see, e.g., Jargowsky, 1996; Wheeler & La Jeunesse, 2006).  This estimation, in turn, may be very 

sensitive to assumptions about the income levels of individuals in the top income category.  To the 

extent that the required parameters (e.g., variance) of the income distribution can be estimated well 

from the reported counts by income category, however, variation ratio approaches have 

considerably more appeal than existing approaches rely on computing pairwise segregation between 

groups defined by one or more income thresholds.  They use (in theory) complete information on 

the income distribution; they do not rely on arbitrary threshold choices; and at least some such 

measures are invariant to certain types of changes in the income distribution (e.g., Jargowsky’s NSI 

measure is invariant under shape-preserving changes in the income distribution). 

One interesting variant of the variation ratio approach is developed by Watson (2006), who 

measures income segregation using the Centile Gap Index (CGI), which is defined as one minus the 

ratio of a measure of the within-neighborhood variation in income percentile ranks to the overall 
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variation in income percentile ranks.  Specifically, the CGI measures within-neighborhood variation 

in percentile ranks as the mean absolute deviation of households’ income percentile from the 

percentile rank of their neighborhood median. The CGI, because it is based on variation in 

percentile ranks rather than income levels, is insensitive to any rank-preserving changes in the 

income distribution, a feature that all ratio measures lack.2   

 

Spatial Autocorrelation Measures of Economic Segregation 

In general, most proposed measures of income segregation are aspatial—that is, do not 

account for the spatial proximity of individuals/households, except insofar as spatial proximity is 

accounted for by census or administrative area boundaries.  Jargowsky and Kim (2005), however, 

describe a spatial version of Jargowsky’s income segregation measure, but theirs is an exception.   

 A third approach to measuring income segregation derives from the geographical notion of 

spatial autocorrelation.  In this approach, which explicitly accounts for the spatial patterning of 

households, segregation is conceived as the extent to which households near one another have more 

similar incomes than those that are farther from one another.  Although several such measures have 

been suggested (Chakravorty, 1996; Dawkins, forthcoming), this approach to measuring income 

segregation is the least well-developed. 

 

 In sum, while a wide range of measures have been used to describe income segregation, 

several key flaws plague existing measures.  Measures based on computing categorical segregation 

indices among income categories, while widely used because of their ease of computation, are 
                                                 
2 While Watson’s CGI has some appeal because of its insensitivity to rank-preserving changes in income, it has a subtle 
flaw.  It is insensitive to redistributions of individuals among neighborhoods that do not affect the median income in 
each neighborhood.  As a result, if we have a region consisting of two neighborhoods with identical income distributions 
(so that CGI=0), and we rearrange households so that one neighborhood consists of the households in the first and 
third quartiles of each prior neighborhood and the other consists of the households in the second and fourth quartiles of 
each prior neighborhood, the CGI will be unchanged (CGI=0), despite the fact that we have created an uneven 
distribution of households among neighborhoods, such that the two neighborhoods now have different mean incomes. 
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inherently sensitive to the definition of income thresholds used to define income categories.  As a 

result, changes in either the choice of thresholds (as occurs between censuses in the U.S.) or 

differences in income distributions (either regional or temporal) may affect measured segregation, 

even in the absence of any change in the location and relative income levels of households.  If a 

measure of income segregation is to be based on discrete income categories, we would like it to be 

insensitive to the choice of thresholds, a feature which no existing categorical income segregation 

measure possesses. 

 Measures based on ratios of income variation within and among locations, in contrast, do 

not depend on the definition of income categories, at least in principle.  In practice, however, the 

distributional parameters used in such measures must be estimated from the categorical income data 

generally reported, and so may be sensitive not only to the definition of categories, but also to 

assumptions about the shape of the income distribution, particularly for the highest-earning 

category, which has no upper bound.   Moreover, it is not clear how sensitive the measurement of 

income segregation is to the choice of a measure of income spread (variance, standard deviation, 

variance of log income, coefficient of variation, Bourguignon inequality, etc.); nor is it clear on what 

basis one should choose among these.  The standard deviation or variance ratio measures (as used, 

for example, by Jargowsky, 1996, 1997; Wheeler, 2006; Wheeler & La Jeunesse, 2006) are insensitive 

to shape-preserving changes in the income distribution (changes that shift the mean and/or multiply 

all incomes by a constant), but measures based on other parameters, such as the variance of logged 

incomes are not (e.g., the variance of logged income is insensitive to constant multiplicative changes 

in incomes, but is sensitive to changes that add a constant to all incomes). 

 Measures based on spatial autocorrelation are the least well-developed set of measures of 

income segregation.  Although they have the advantage of being explicitly spatial, they generally rely 

on areal unit boundary definitions, and so are subject to the modifiable areal unit problem (MAUP) 
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(Openshaw, 1984).  Moreover, even in the absence of MAUP issues, the measurement properties of 

spatial autocorrelation measures of income segregation are not well understood.   

 An ideal income segregation measure would have several key features.  First, it would be 

threshold invariant.  Second, it would be invariant under specified distributional changes, although 

the specific type of distributional invariance desired may depend on the application.  At a minimum, 

we might wish the measure to be scale invariant with respect to the income distribution.  Such a 

property ensures, for example, that doubling each household’s income does not affect measured 

segregation.  We might also wish the measure to be invariant under a change in the mean income—

as would occur if each household income increased by a constant amount.  A stronger invariance 

property is invariance under rank-preserving changes in income.  This property implies the other 

two, but also requires that segregation not change when incomes change in a way that does not 

affect the rank-ordering of households in the income distribution.  Watson (2006), for example, 

notes the advantage of measures with this property when examining income sorting processes.  A 

third key feature of a segregation measure is that it account for the spatial patterning of households, 

preferably in a manner that renders it insensitive to MAUP issues.  In the remainder of this paper, 

we develop measures of income segregation that meet these three criteria—the measures are 

threshold-invariant, invariant under rank-preserving changes in income, and MAUP-free. 

 

2. Measuring Segregation by an Ordinal Category 

Because income data are generally reported as counts by ordered income category, we begin 

by describing an approach to measuring segregation among groups defined by ordinal categories.  

Reardon and Firebaugh (2002) and Watson (2006) suggest that one way of constructing a 

segregation measure is to think of it as a form of variance decomposition, where segregation is the 

proportion of the total variation in a population that is due to differences in population composition 
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of different organizational units (e.g., schools or census tracts).  This approach is akin to the 

variation-ratio segregation measures described above.  For an unordered categorical variable (such as 

race), population variation is measured by diversity or entropy, but for an ordered (ordinal or 

continuous) variable, variation is typically measured using some index of the spread of the 

distribution (e.g., variance, in the case of an interval-scaled variable).  Following Reardon and 

Firebaugh (2002, Eq. 9, p. 45), if we have a suitable measure of variation v, we can define S(v)—a 

segregation measure based on the variation measure v—as follows: 
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where j indexes organizational units tj and vj are the population count and variation in unit j, jv  is the 

weighted average within-unit variation over the region, and T is the total population of the region.  

Note that if v is the variance of a continuous variable x, then S(v) is equivalent to η2
 (or the R2 from a 

regression of x on a set dummy variables for organizational units).   

One way to construct a measure of ordinal segregation, then, is to define a suitable measure 

of ordinal variation (we define what we mean by ‘suitable’ below), and then use it to construct a 

segregation measure as above. 

 

Ordinal variation 

Measuring the variation in a population of a quantity measured with an ordinal variable 

requires us to define what we mean by variation.  For an ordinal variable x that can take on any of K 

ordered categories 1, 2, …, K, we define variation as having a maximum (which we can normalize to 

equal 1) when half the population has x=1 and half has x=K.  Variation is at a minimum (defined as 
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0) when all observations have x=k for some k∈1, 2,…, K.  Measuring ordinal variation then 

amounts to measuring how close the distribution of x is to these minimum and maximum variation 

states. 

 It is useful to express the distribution of values of x in a sample as a [K-1]-tuple of 

cumulative proportions, C=(c1, c2,…, cK-1), where ck is the cumulative proportion of the sample with 

values of X in category k or below (note that cK=1 by definition, so is not needed to characterize the 

distribution of x).  Note that a distribution of x has maximum variation at C0=(½, ½, ½,…, ½), 

corresponding to the case where half the population has the lowest possible value and half has the 

highest possible value of x.  Moreover, note that there are K possible distributions of x such that 

there is no variation in x, corresponding to the K cases of the pattern C=(0,0,…0,0,1,1,…1,1) (where 

all observations have the same value of x=k, so that cj=0 for j<k and cj=1 for all j≥k). 

 Blair and Lacy (1996) suggest that it is helpful to think of C as a point in [K-1]-space, which 

leads to the insight that variation can be measured as an inverse function of the distance from C to 

C0, the point of maximum variation (it is easier to define variation in terms of the distance from the 

single point of maximum variation rather than from one of the K points of zero variation).  

Alternately, we can think of C as describing a cumulative density function of an ordinal variable, 

where variation is measured as an inverse function of the average distance of C from the line y=½.  

This suggests a general form of a variation measure as: 
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where f(c) is maximized at f(½)=1 and minimized on the interval [0,1] at f(0)=f(1)=0.  Three such 

possible functions f are given by (where we define 0log2(1/0)=0): 
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Here we consider two3 specific measures of ordinal variation, EO and IO, defined as follows, 

where ck is the cumulative proportion of observations in categories 1 through k: 
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The first of these, EO, is an index we call the index of ordinal entropy; the second, IO, is the index of 

ordinal variation (Kvålseth, 1995b).4  These indices can be seen as measures of the average deviation 

of c1 c2,… cK-1 from their values in a state of no variation (when the ck each equal zero or one), where 

‘deviation’ is measured by a metric defined by f. 

 Both EO and IO equal their maximum value, 1, if and only if the distribution of x is such that 

x=1 for half the observations and x=K for the other half (corresponding to the cumulative 

proportion vector C=(½, ½, ½,…, ½, 1)), and both equal their minimum value of 0 if and only if all 

observations have the same value of x (corresponding to a cumulative proportion vector 

C=(0,0,…0,0,1,1,…,1,1)).  Note that, in the special case where K=2, EO and IO are identical to the 

 
3 We do not consider a measure of ordinal variation based on the third function, f(c)=1-|2c-1|, because it does not yield 
a satisfactory index of ordinal segregation.  In fact, substituting f(c)=1-|2c-1| into Equation (2) and the substituting the 
resulting equation into (1) yields Watson’s CGI, which, as we note above, is flawed. 
4 Several alternate, but equivalent, definitions of the index of ordinal variation have been described (Berry & Mielke, 
1992a, 1992b; Blair & Lacy, 1996; Kvålseth, 1995a); here we follow Kvålseth’s revised formulation (Kvålseth, 1995b). 
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entropy (Theil, 1972) and the interaction index (Reardon & Firebaugh, 2002), measures of diversity 

used in constructing the two-group information theory (H) and variance ratio segregation indices 

(James & Taeuber, 1985; Reardon & Firebaugh, 2002). 

 

Two measures of ordinal segregation 

Given the measures of ordinal variation, EO and IO, we define two measures of ordinal 

segregation from Equation (1) above: 
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where j indexes organizational units, tj and T are the unit j and total population counts, respectively, 

and EOj and IOj are the ordinal entropy and ordinal variation in unit j.  The first of these we name the 

ordinal information theory index, since it is an ordinal generalization of the categorical information theory 

index H (Theil, 1972), and is identical to H when K=2.  The second we name the ordinal variation ratio 

index, since it is an ordinal generalization of the categorical variance ratio index (which goes by many 

names in the literature—see, e.g., James & Taeuber, 1985; Reardon & Firebaugh, 2002), and is 

identical to that index when K=2.  Each of these indices is interpreted as the average difference in 

within-unit to overall ordinal variation, expressed as a ratio of the overall ordinal variation of the 
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population.  They differ in that HO measures ordinal variation using the ordinal entropy EO, while RO 

uses the ordinal variation IO. 

 Because both EO and IO are continuous, twice-differentiable, concave-down functions of the 

ck in the domain ck∈[0,1],5 both HO and RO range from a minimum of 0, obtained only when each 

unit j has the same distribution of x as the overall population (i.e., no segregation), to a maximum of 

1, obtained only when there is no variation in x in any unit j, so that all the variation in x in the 

population lies between units (i.e., complete segregation) (Reardon & Firebaugh, 2002). 

 

Ordinal segregation as an average of pairwise segregation 

 As derived above, HO and RO are similar to the variation ratio income segregation measures 

described in Section 1, though they rely only on the categorical counts to measure variation, and so 

do not require the estimation of the parameters of the income distribution.  It is easy to show (see 

Appendix), however, that both HO and RO can be written as weighted averages of a set of K-1 

pairwise segregation indices: 
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where the subscript k indicates variation or segregation computed between the two groups defined 

by the kth threshold (i.e., Hk and Rk are segregation levels measured between a group consisting of all 

those with incomes in category k or below and a group consisting of all those in category k+1 or 

above).  Since the ordinal measures EO, IO, HO, and RO are identical to their nominal counterparts 

when K=2, we drop the subscript “O” on these pairwise measures.  These expressions indicate that 

the ordinal segregation measures can be seen as weighted averages of the binary segregation 

measures computed at each of the thresholds.  We will return to a discussion of the interpretation of 

the weight terms later. 

 The fact that the two ordinal segregation indices can be written as weighted averages of a set 

of pairwise segregation indices enables us to better visualize what the indices measure (Figures 1 and 

2).  Figure 1 shows cumulative household income percentile density curves for each of the 176 

census tracts in San Francisco County, CA (whose boundaries are identical to those of the city of 

San Francisco) in 2000.6  Figure 2 shows the corresponding curves for the 613 tracts in Wayne 

County, MI (which includes Detroit).  In both figures, the x-axis indicates both the local (i.e., San 

Francisco or Wayne County) income percentiles and the 15 income thresholds used in the 2000 

census.  Note that the income distribution in San Francisco is generally higher than in Wayne 

County—25% of households in San Francisco reported incomes greater than $100,000, compared to 

12% of Wayne County households.  If there were no income segregation in either county, each 

tract’s cumulative household income percentile density curve would fall exactly on the 45-degree line 

(the heavy black line in each figure).  If there were complete income segregation, each tract’s curve 

would be a vertical line at some income level, indicating that within each tract all households have 

the same income.  Thus, income segregation can be measured by the average deviation of the tract 

cumulative household income percentile density curves from their regional average (which is, by 
                                                 
6 Data are obtained from Table P52 in SF3 from the 2000 Census.  Although household income data are available at the 
block level, we aggregate to the tract level for these examples to reduce the number of curves shown in each figure. 
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definition, the 45-degree line).  By this measure, Wayne County appears more segregated by income 

than San Francisco, since the variation of the tract cumulative density curves around the 45-degree 

line is greater in Wayne County. 

 

 Figures 1 and 2 here 

 

 The ordinal segregation indices HO and RO, when applied to income data, can be seen as 

measures of the variation of the tract cumulative household income percentile curves around the 45-

degree line.  At each income threshold reported in the Census (indicated by the vertical dashed lines 

in Figures 1 and 2), we know the value of each tract’s cumulative household income density curve—

that is, we know the percentage of households with incomes above and below each threshold.  

These data are used to compute the pairwise segregation between households with incomes above 

and below that threshold.  These are then weighted (by E or I) and averaged across the thresholds to 

compute HO and RO. 

 Figures 3 and 4 show the pairwise household income segregation levels computed at each of 

the 15 Census 2000 thresholds for San Francisco and Wayne County, respectively.  In addition, each 

figure illustrates the relative weight (dashed lines) that the pairwise segregation computed at each 

threshold is given in the calculation of the ordinal segregation measures (which are shown by the 

thin horizontal lines in each figure).  First, note that segregation, as measured by either H or R, is 

relatively flat across most of the middle of the income percentile distribution in both places, but 

increases or decreases sharply at the extremes of the distribution, depending on which measure is 

used.  Second, note that, as expected, measured segregation at each income percentile is generally 

higher in Wayne County than in San Francisco, regardless of which measure is used.  

Correspondingly, both ordinal segregation measures rank Wayne County as 16-17% more segregated 
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than San Francisco: HO=0.096 in San Francisco and HO=0.113 in Wayne County; RO=0.110 in San 

Francisco and RO=0.128 in Wayne County.  Finally, the shapes of the segregation curves differ 

slightly between San Francisco and Wayne County: in San Francisco, for example, segregation 

between those with income above and below the 25th percentile is higher than segregation between 

those with incomes above and below the 75th percentile, while the opposite is true in Wayne County.    

 

 Figures 3 and 4 here 

 

 The ordinal segregation measures for San Francisco and Wayne County shown in Figures 3 

and 4 are not exactly comparable to one another.  Because of the differences in the overall income 

distributions in the two counties, the Census-defined income thresholds do not fall at the same 

percentiles of the distributions.  Thus, in San Francisco, the ordinal H and R are based more heavily 

on information about the segregation at thresholds in the 10th-50th percentile range (where 9 of 15 

thresholds fall) than in the 50th-90th percentile range (where only 5 of 15 thresholds fall).  In Wayne 

County, in contrast, three of the thresholds fall in the 95th-99th percentile range, and fewer at the low 

end.  As a result, the ordinal segregation measured in San Francisco is not exactly comparable to that 

measured in Wayne County, because of differences in the underlying income distributions.  

Moreover, the measures clearly depend on the choice of thresholds—a different set of income 

thresholds would yield different measured levels of segregation.  And finally, the measures are also 

clearly not invariant under changes in income that preserve the shape of the income distribution—a 

doubling of each household’s income would have the effect of moving the thresholds to the left on 

the figure, while leaving the segregation curve (relative to income percentiles) unchanged, meaning 

that the computed ordinal segregation would depend much more on segregation levels at the low 

end of the percentile distribution. 
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 The weights Ek and Ik in Equations (8) and (9) have substantively meaningful interpretations.  

The interpretation of Ek comes from information theory, which leads us to interpret Ek as the 

expected information content contained in Hk about a randomly-drawn individual from the 

population, where information is defined as ln(1/pk), where pk is the proportion of the population at 

or below the kth threshold (Pielou, 1977; Theil, 1972).  If pk is near 0 or 1, then Hk contains little 

information about the segregation experienced by an individual, since it distinguishes among 

individuals only at one extreme of the income distribution. Conversely, if pk is near 0.5, then Hk 

contains maximal information, since it distinguishes at the median of the distribution. 

 The weight Ik likewise has an appealing interpretation.  For a given threshold k, the 

probability that two randomly-selected individuals from the population will have incomes on 

opposite sides of threshold k is 2pk(1- pk), which is proportional to Ik.  Since the segregation level 

describes the extent of segregation between individuals on either side of the income threshold k, we 

can interpret Equation (9) as a weighted average of the segregation across each threshold, where 

there value at each threshold is weighted by how informative segregation measured at that threshold 

is for a randomly chosen pair of individuals.   

 Because both Ek and Ik have their maximum at pk=0.5, and their minima at pk=0 and pk=1, 

HO and RO weight segregation between groups defined by the median of the income distribution 

most heavily, and segregation between the extreme income groups and the remainder least.  

Intuitively, this makes sense, since a segregation level computed between those above and below the 

99th percentile, for example, tells us very little about the segregation between two randomly chosen 

individuals, while segregation between those above and below the median income tells us more 

about overall income segregation. 

 One implication of the above is that the segregation measures HO and RO can be seen both 

as variation ratio income segregation measures (since they are defined that way in Equations [6] and 
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[7]) and as categorical segregation measures (as defined in Equations [8] and [9]).  Unfortunately, 

they share the flaws of the categorical measures, since Equations (8) and (9) make clear that they 

depend explicitly on the values of the K-1 income thresholds used to define the income categories 

(except in the special case where Hk and Rk are constant across all possible income thresholds, an 

unlikely scenario).  Moreover, they share the flaws of the variation ratio measures, since the 

measures of ordinal variation on which they are based are not invariant under changes in the income 

distribution (unless the thresholds change as well so that they represent the same percentiles of the 

income distribution). 

 

3. Rank-Order Measures of Income Segregation 

 The foregoing discussion illustrates that the ordinal segregation measures do not avoid the 

flaws of many existing approaches to measuring income segregation.  They may improve on existing 

categorical measures, however, to the extent that they rely on multiple, relatively evenly-spaced 

thresholds, and because they weight the segregation at different thresholds more appropriately.  

Moreover, they may be useful measures when measuring segregation by some truly ordinal variable, 

where the thresholds have some substantive meaning (rather than a variable that is inherently 

continuous, but measured ordinally, like income).  More importantly for our purposes, however, 

they provide the intuition for a related set of segregation measures that is free of their flaws. 

Returning to the discussion of Figures 3 and 4, suppose we knew the value of the pairwise 

segregation computed at each point in the income distribution—that is, suppose we knew the shape 

of the function H(p) or R(p), where H(p) and R(p) are the pairwise segregation computed between 

those with incomes at or below the 100×pth income percentile and those above the 100×pth 
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percentile.7  Then we can compute the weighted average of the H(p) and R(p) over the interval (0,1) 

by extension from Equations (8) and (9).  We define the rank-order information theory index (HR): 
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and the rank-order variation ratio index (R R): 
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Intuitively, HR and RR are extensions of the ordinal segregation indices defined in Equations (6) and 

(7) to the case where we have an arbitrarily large number of categories—as many categories as 

individuals—in which case each individual’s ranking operates as a distinct category. 

 

Computing the Rank-Order Income Segregation Measures 

 To compute HR and RR, we must evaluate equations (10) and (11).  The formulas for E(p) 

and I(p) are known by definition (Equations [4] and [5], where K=2).  Thus, if we knew the functions 

                                                 
7 We assume for simplicity that there are no ties on x—that is, no two observations have the same value of x.  This 
ensures that the rank-ordering of x is unique and so segregation based on any given c is well-defined.  In practice, 
however, this matters little when computing income segregation. 
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H(p) or R(p) on the interval (0,1), we could compute HR and RR without relying on an arbitrary set of 

thresholds.  Of course, we do not know these functions, in general, but we may be able to estimate 

them from the Hk and Rk that we can measure. 

We adopt the following strategy to estimate H(p) or R(p) on the interval (0,1).  For each 

threshold k=1,2,…,K-1, we compute Hk or Rk and then plot them against the corresponding pk, the 

cumulative proportions of the population with incomes equal to or below the threshold k (as in 

Figures 3 and 4)  We then fit a polynomial of some order m to the observed points, using weighted 

least squares (WLS) regression and weighting each point by Ek
2 or Ik

2 (depending on whether we are 

fitting polynomial H(p) or R(p), respectively).  Weighting by the square of the weight ensures that the 

fitted polynomial will fit best for pk near 0.5, where Hk or Rk is weighted most, and that the weighted 

square root of the error variance is constant across p.   

Suppose H(p) and R(p) are approximated by polynomial functions of order m:  
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Substituting these into Equations (10) and (11), respectively, and evaluating the integrals, we get (see 

Appendix for derivations): 
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and 
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Thus, if we can estimate the parameters of polynomials approximating H(p) and R(p), we can easily 

estimate HR and RR as linear combinations of the coefficients of these polynomials.   Moreover, to 

the extent that we can estimate H(p) and R(p) well on the interval (0,1) from the observed points, 

our estimate of segregation will not be biased by the choice of thresholds we have available.  In 

general, we will not have information on the shape of H(p) and R(p) at the extreme ends of the 

income distribution (at points below and above the bottom and top thresholds), except via 

extrapolation.  We can, however, assess the sensitivity of our estimates of HR and RR to alternative 

assumptions about the shape of H(p) and R(p) simply by assuming a range of possible shapes of the 

functional form.  In general, the estimates of HR and RR will be relatively insensitive to assumptions 

about the shape of H(p) and R(p) at the ends of the income percentile distribution, since very little 

weight is given to H(p) and R(p) when p is near 0 or 1.8   

 

Interpretation of the rank-order income segregation measures 

 We have defined two new income segregation indices, the rank-order information theory index 

(HR) and the rank-order variation ratio index (RR).  These can each be interpreted in several ways.  First, 

given an income-ranked population of N individuals (with no rank ties), we can define N-1 

thresholds that each dichotomize the population into those with ranks above and below the given 

threshold.  Now, the rank-order information theory index (HR) is the weighted average of the N-1 
                                                 
8 When weighting by E, the bottom and top deciles together carry only 7.5% of the total weight, for example; when 
weighting by I, the bottom and top deciles together carry only 5.6%  of the total weight, so even if our estimates of H(p) 
and R(p)were off by a large amount in the tails of the income percentile distribution, this error would contribute little 
error to the estimates of HR and RR. 
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values of the information theory index H obtained by computing the segregation between each of 

the pairs of groups defined by the thresholds, where the weight given to each value is proportional 

to the entropy corresponding to the percentile rank.  Likewise, the rank-order variation ratio index 

(RR) is the weighted average of the N-1 values of the variance ratio index R obtained by computing 

the segregation between each of the pairs of groups defined by the thresholds, where the weight 

given to each value is proportional to the probability that two randomly chosen individuals have 

ranks on either side of the corresponding threshold. 

 Second, the rank-order segregation indices can be interpreted as measures of the extent to 

which the cumulative income percentile density curves vary around their mean (the 45-degree line).  

The rank-order information theory index, for example, can be written as  
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where cjp is the cumulative proportion of those in neighborhood j with incomes at or below 

percentile 100×p.  The term inside the brackets is akin to the Theil inequality measure, a measure of 

the deviation of cjp from its mean (p).  Summed over all neighborhoods j, this yields (inside the 

braces) a measure of the variation of the cumulative income percentile density functions at p.  HR is 

therefore a measure of the average variation of the neighborhood cumulative percentile density 

functions across percentiles. 

  Likewise, the rank-order relative diversity index can be written as 
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Since the average of the cjp across neighborhoods equals p, the term in the brackets is simply the 

variance of the cjp’s at the point on the income distribution given by p.  Thus, Equation (17) indicates 

that RR can be interpreted as a measure of the average variance of the neighborhood cumulative 

percentile density functions across percentiles. 

 Third, the rank-order income segregation measures can be interpreted as variation ratios.  

Let ER and IR be the rank-order entropy and rank-order variation, respectively, when x is categorized 

into an arbitrarily large number of equal-sized categories (such as ranks).  In the limit, as K gets 

arbitrarily large, we have ER=1/(2ln2) and IR=2/3.  Let ER and IR be the rank-order entropy and 

variation in neighborhood j, where the ranks are defined by the entire population.  Thus we have 
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From Equations (10) and (18), we can then derive 
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Likewise, from Equations (11) and (19), we can derive 
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Equations (20) and (21) show that the rank-order income segregation indices can be interpreted as 

variation ratio measures of segregation of the form given in Equation (1).  The rank-order 

information theory index is interpreted as a measure of the difference between the average within-

neighborhood rank-order entropy and that of the total population, expressed as a fraction of the 

rank-order entropy of the total population.  Likewise, the rank-order variation ratio index is a 

measure of the ratio of within-neighborhood to overall rank-order variation.  In other  words, both 

indices measure how much less rank-order variation there is within neighborhoods than in the 

overall population. 

 

Incorporating spatial proximity into measures of income segregation 

 The income segregation measures developed above do not take into account the spatial 

patterning of the organizational units (e.g. census tracts) in which income data are collected and 

reported.  Moreover, they are inherently subject to the MAUP, since a different set of definitions of 

organizational boundaries may yield different computed levels of income segregation.  However, 

because Equations (8) and (9) show that HR and RR are weighted averages of H and R computed 

across income percentiles, we can define explicitly spatial versions of HR and RR simply by 

substituting spatial versions of the pairwise H and R in Equations (8) and (9).  Specifically, we define 

the spatial rank-order information theory index ( ): RH~
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and the spatial rank-order variation ratio index ( RR~ ): 

 

 ( ) ( )∫=
1
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~
2
3~ dppRpIRR , (23) 

 

where ( )pH~  and ( )pR~  are the pairwise spatial information theory index and the pairwise spatial 

relative diversity index (both defined in Reardon & O'Sullivan, 2004), respectively, computed 

between households with incomes above percentile 100×p and those with incomes at or below 

percentile 100×p.  In practice, of course, the functions ( )pH~  and ( )pR~  can be estimated from the 

values of  and  computed at each of the K-1 income thresholds used to define income 

categories, just as we propose in the aspatial case above.  Thus, the spatial versions of the rank-order 

segregation indices introduce no additional complexity to the measures, other than the additional 

computational burden of computing spatial versions of  and . 

kH~ kR~

kH~ kR~

 Both of the rank-order income segregation measures satisfy the three general criteria we 

desire.  First, because they are based on the rank ordering of the income distribution, rather than 

actual values of income, they are insensitive to a rank-order preserving changes in incomes.  Second, 

even if income data are reported in categories, the measures can be estimated with considerable 

precision, so long as sufficient income categories are reported.  Thus, even though the reported 

income categories may change from Census to Census, or may vary from country to country, the 

rank-order measures are unaffected by these changes, both in principle, and in practice.  Third, the 

rank-order segregation measures are easily adapted to incorporate a flexible spatial proximity 

function, since the two-group segregation measures from which they are computed can be made to 

incorporate spatial proximity (Reardon et al., 2006; Reardon & O'Sullivan, 2004). 
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 The rank-order income segregation measures HR and RR (and their spatial counterparts) 

share a number of properties, which is not surprising, given that both are derived from similar 

approaches, and differ only in the variation functions they use.  In addition to satisfying our three 

general criteria, both also inherit many of the properties of the pairwise categorical segregation 

indices from which they are derived (see James & Taeuber, 1985; Reardon & Firebaugh, 2002; 

Reardon & O'Sullivan, 2004).  Both, for example, are additively spatially decomposable.  Neither 

satisfies the composition invariance criterion advocated by James and Taueber (1985), however, but 

it is not clear that this criterion has any meaning in the case of rank-order income segregation.9  The 

spatial pairwise information theory index, however, satisfies a stronger form of the exchange 

criterion than does the corresponding relative diversity index (Reardon & O'Sullivan, 2004).  Other 

than this criterion, we find little to recommend one index over the other, and, in fact, we shall see 

that they yield substantively very similar results. 

 

4. Empirical Examples 

 We illustrate the properties of the two rank-order segregation measures using household 

income data from several metropolitan areas in the U.S. in 2000—Atlanta, Denver, Minneapolis, 

New York, Pittsburgh, and San Jose—chosen to illustrate a diverse range of metropolitan areas.10  In 

the empirical illustrations that follow, we demonstrate several features of the proposed measures.  

First, we show that the polynomial approximations to HR and RR yield very precise estimates of 

these quantities.  Second, we show how a display of the income segregation threshold at different 

                                                 
9 The usual composition invariance criterion states that if the number of members of one group is multiplied by a 
constant in each neighborhood, segregation is unchanged.  In the case of rank order segregation, it is, in general, 
mathematically impossible to change neighborhood compositions in a way that meets the composition invariance 
criterion. 
10 The results reported here rely on counts of households in each of 16 income categories by census block group (the 
smallest level of aggregation for which household income data are reported in the 2000 Census), obtained from 
Summary File 3, Table 52, of the 2000 U.S. Census.  Metropolitan area boundaries are based on definitions published by 
OMB in 2003. 
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spatial scales can reveal considerable insight regarding the spatial patterning of household income in 

a region.  In the results that follow, we illustrate patterns of income segregation as measured by HR, 

since there are slight reasons to prefer HR over RR (discussed above), though we show 

corresponding results for RR in additional tables.  None of the substantive results change if we use 

RR rather than HR. 

 Table 1 reports estimated household income segregation levels for the 6 metropolitan areas.  

The first column in each panel of the table reports the ordinal income segregation measures HO and 

RO, while the subsequent columns report the rank-order income segregation measures estimated 

based on polynomial approximations of orders M=2 through M=10.  First, note that the rank-order 

measures are remarkably stable, regardless of the order of polynomial used.  This is largely because 

the functions H(p) and R(p) are relatively smooth functions, well-approximated by low-order 

polynomials, so the higher-order terms add little to the fit of the curves.  The estimated income 

segregation levels vary the most with the order of the polynomial in the case of the New York 

metropolitan area, where the values of HR vary from a high of 0.1478 (when M=2) to a low of 

0.1462 (when M=3)—a difference of slightly more than one percent.  Figure 5 illustrates the values 

of Hk at each of the 15 thresholds for the New York metropolitan area, as well as the fitted 

polynomials of order M=2, 3,…, 10.  Note that for polynomials of order 4 or higher, the curves fit 

the points extremely well through most of the range.  At the extremes of the income distribution, 

where there is no information to fit the curves, polynomials of different orders produce substantially 

different curves, but this variation has almost no effect on the estimates of HR, since H(p) is 

weighted very little in these regions.   

 

Table 1 about here 

Figure 5 about here 
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 Second, Table 1 indicates that the ordinal measures HO and RO are often a reasonably good 

estimate of the rank-order measures HR and RR, though not in all cases.  In San Jose, for example, 

RO is 10 percent lower than the values of RR.  In Pittsburgh, in contrast, HO is 3% larger than the 

values of HR.  Moreover, Atlanta appears more segregated than Minneapolis on the basis of HO, but 

less segregated on the basis of HR (when estimated with any order polynomial greater than 2).  

Given that the error in the rank order measures due to the polynomial approximation is generally 

less than one percent of the true value, the error in the ordinal measures (due to uneven spacing of 

the thresholds) can be considerable.11  

 We next illustrate the evidence provided by the spatial rank order information theory index 

( RH~ ).  Following the example of Reardon and colleagues (Lee et al., 2006; Reardon et al., 2006; 

Reardon & O'Sullivan, 2004), we compute RH~  using a biweight kernel proximity function with 

varying radii ranging from 500m (the scale of a pedestrian neighborhood) to 4000m (a radius that 

encompasses most regular activities, such as shopping, attending high school, or attending religious 

services; see, e.g., Sastry, Pebley, & Zonta, 2002).12  We can interpret RH~  at a 500m radius, for 

example, as indicating how much less household income variation there is in the 500m-radius local 

environment of the average household than there is in the metropolitan region as a whole.  Like 

Reardon and colleagues, we also compute a measure of the granularity, or scale, of residential 

income segregation by computing the ratio of RH~  at a 4000m radius to RH~  at a 500m radius.  This 

                                                 
11 In additional analyses (not shown), we examined the stability of the estimates of HR and RR over polynomials of order 
2 to 10 for the 100 largest metropolitan areas in 2000.  In general, we found that the rank order segregation indices 
changed very little as we increased the order of the polynomial.  Above order M=6, increasing the order of the 
approximating polynomial yielded an average absolute change of ±0.0002 in HR, for example (a change of less than two-
tenths of a percent in H), while changes in RR were consistently smaller.  Consequently, in the remainder of our 
empirical examples, we estimate HR and RR using eighth-order polynomial approximations to H(p) and R(p), though we 
get substantively indistinguishable results using polynomials of any order M≥2. 
12 The spatial segregation measures reported here—including estimation of the population densities and computation of 
segregation levels—are computed using a macro we have written in Visual Basic for Applications (VBA) and run within 
ArcGIS 9.1 software (Environmental Systems Research Institute, 2005). 
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ratio measure indicates the extent to which the segregation of micro (500m radius) environments is 

due to larger scale macro-segregation (Lee et al., 2006; Reardon et al., 2006). 

 

Table 2 about here 

 

 Table 2 reports values, for each of the 6 metropolitan areas, of the spatial rank order 

information theory index and the spatial relative diversity index, each computed at radii of 500m, 

1000m, 2000m, and 4000m.  In addition, we include the corresponding aspatial measures, computed 

using block groups as neighborhood units.  Finally, the last column indicates the granularity ratio for 

each metropolitan area.  Several facts are notable in the table.  First, income segregation declines 

with scale, though at different rates across metropolitan areas.  In Atlanta, income segregation 

computed using 4000m-radius local environments is two-thirds (HR ratio=0.65; RR ratio=0.66) of 

segregation computed using 500m-radius environments; in San Jose, however, the corresponding 

ratios are HR=0.42 or RR=0.43.  Likewise, while Denver reveals more income segregation than 

Atlanta at a 500m radius, it is less segregated than Atlanta at 2000m or 4000m radius, an illustration 

of the scale-sensitive nature of segregation (Reardon et al., 2006).   

Second, segregation computed among block groups is generally lower than segregation at a 

500m radius—since block groups, on average, are larger than a 500m radius environment.  In New 

York, however, block group segregation is higher than 500m-radius spatial segregation, a result of 

the high population density and small census block groups in the New York region.  We note 

further that, relying on block group segregation measures would lead us to conclude that New York 

ranks second in income segregation among the 6 metropolitan areas here, while the spatial measures 

would rank it fourth of 6.  Finally, we note that substantive patterns and comparisons in Table 2 are 

virtually identical regardless of whether we base them on HR or RR. 
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 The results in Table 2 provide summary measures of spatial income segregation.  However, 

we can examine the patterns of income segregation in more detail for each of the metropolitan areas 

in Figures 6-11.  In each figure, we plot the function ( )pH~ —the pairwise spatial information theory 

index computed at the threshold defined by income percentile p—estimated at the four radii (solid 

lines).  In addition, we plot the corresponding function H(p) based on census block groups (dashed 

line).  Finally, we plot the granularity ratio as a function of p (dotted line), in order to examine how 

the granularity of segregation varies across the range of income percentiles.  We include figures for 

each of the 6 metropolitan areas, though we do not discuss each in detail. 

 Figure 6 illustrates income segregation patterns in the Atlanta metropolitan area.  First, note 

that segregation between the highest-earning households and others is higher than segregation 

between the lowest-earning households and other.  At a 500m radius, for example, segregation 

between the top decile of households and all others is about 0.20, while segregation between the 

bottom decile and others is about 0.14.13  Second, note that the granularity ratio is quite high, and 

very stable across the range of income percentiles.  This indicates that the majority of income 

segregation in the Atlanta metropolitan area, regardless of what income threshold we use, is due to 

macro-segregation patterns—large-scale differences in the spatial distribution of households by 

income across the region. 

 Figure 9 (New York) illustrates some similar patterns as evident in Atlanta.  The segregation 

gradient at the high end of the income distribution, however, is quite steep, however (see also 

Pittsburgh, Figure 10), indicating that the highest-income households are substantially more 

segregated from other households than are the lowest-income households.  Likewise, in the San Jose 

                                                 
13 Note that we can only validly compare segregation at percentile p to segregation at percentile 100-p, since a valid 
comparison between other thresholds (say, between segregation at p=10 and at p=50) requires a measure of segregation 
that is “composition invariant” in some meaningful sense.  The usual definitions of composition invariance (Coleman, 
Hoffer, & Kilgore, 1982; James & Taeuber, 1985; Reardon & O'Sullivan, 2004), however, do not apply to the rank order 
income segregation measures.  A fuller discussion of this issue is beyond the  scope of this paper; in the absence of such 
a discussion, we limit our discussion here to comparisons that are meaningful in the absence of composition invariance. 
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metropolitan area (which includes much of Silicon Valley), for example (Figure 11), although overall 

segregation levels are lower than in New York, segregation of higher-income households from 

others is considerably higher than segregation of lower-income households from others.  San Jose 

also demonstrates much more variation in the granularity of segregation across the range of 

incomes—segregation of high-income households is largely accounted for by macro-scale 

segregation (meaning there are large spatial regions, in places like Palo Alto, where high-income 

households are concentrated), while segregation of lower-income households is much more 

localized (largely in the city of San Jose). 

 

5. Conclusion 

 In this paper we have proposed two measures of income segregation, the rank-order 

information theory index (HR), and the rank-order variation ratio index (HR), as well as their spatially-explicit 

counterparts.  These indices have several appealing features.  First, they are relatively easy to 

compute, since they require (in the aspatial case) simply computing a series of pairwise segregation 

values using existing measures of segregation (H and R), fitting a polynomial regression line using 

WLS, and then computing a linear combination of the estimated parameters.  Second, the measures 

are easily adapted to account for spatial proximity, following the approach of Reardon and 

O’Sullivan (2004).  In the spatial case, the computational steps are the same, but the pairwise 

segregation indices must be computed using some spatially-sensitive method.  Third, the measures 

are largely insensitive to the set of income thresholds that define the categories in which income is 

reported, so long as the thresholds span most of the range of income percentiles.  As a result, they 

do not require us to make assumptions about the shape of income distributions.  Finally, the 

measures are insensitive to rank-preserving changes in income, since the measures are based on the 

ranks of incomes rather than their numerical values. 
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Appendix 
 
Derivation of Equations (8) and (9) 

Let Ek indicate the entropy of a population that is divided into two groups, where one group 

consists of all those in income category k or below, and the other groups consists of all those in 

categories k+1 or above: 

 

 ( ) ( ) ( )kkkkk ccccE −−−−= 1log1log 22 . 

 

Likewise, let Hk denote the information theory index (Theil, 1972) computed between these two 

groups.  Then we can rewrite Equation (6) as: 
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Note that Equation (4) implies that 
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so the above shows that HO can be expressed as a weighted average of the K-1 pairwise Hk’s.  An 

identical derivation, with Ik and Rk substituted for Ek and Hk, yields Equation (9). 
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Derivation of Equation (14) 

Substituting Equation (12) into (10), rearranging terms, and integrating, yields 
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Derivation of Equation (15) 

Substituting Equation (13) into (11), rearranging terms, and integrating, yields 
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So, for values of M, we have: 
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Figure 3 
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Figure 5 
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Figure 6 
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Figure 8 
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Figure 10 

Figure 11 
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Table 1: Estimated Household Income Segregation Levels, Selected Metropolitan Areas, 2000 
 
 
Panel A: Rank-Order Information Theory Index 

HO HR  HR  HR  HR  HR  HR  HR  HR  HR  Metropolitan 
Area  (M=2) (M=3) (M=4) (M=5) (M=6) (M=7) (M=8) (M=9) (M=10) 
Atlanta           0.1360 0.1365 0.1362 0.1362 0.1362 0.1364 0.1364 0.1364 0.1364 0.1365
Denver           

           
           
           

          

0.1652 0.1670 0.1664 0.1662 0.1662 0.1664 0.1664 0.1664 0.1664 0.1666
Minneapolis 0.1385 0.1366 0.1360 0.1357 0.1357 0.1360 0.1360 0.1360 0.1360 0.1360
New York 0.1475 0.1478 0.1462 0.1472 0.1465 0.1476 0.1475 0.1466 0.1467 0.1469
Pittsburgh

 
0.1088 0.1062 0.1053 0.1055 0.1049 0.1055 0.1054 0.1051 0.1052 0.1052

San Jose 0.0974 0.1020 0.1020 0.1028 0.1028 0.1031 0.1030 0.1029 0.1029 0.1029
 
 
Panel B: Rank-Order Relative Diversity Index 

RO RR  RR  RR  RR  RR  RR  RR  RR  RR  Metropolitan 
Area  (M=2) (M=3) (M=4) (M=5) (M=6) (M=7) (M=8) (M=9) (M=10) 
Atlanta           0.1472 0.1523 0.1528 0.1529 0.1529 0.1528 0.1528 0.1528 0.1528 0.1528
Denver           

           
           
           

          

0.1764 0.1846 0.1849 0.1849 0.1849 0.1848 0.1848 0.1848 0.1848 0.1849
Minneapolis 0.1465 0.1504 0.1503 0.1504 0.1504 0.1503 0.1503 0.1503 0.1503 0.1503
New York 0.1620 0.1613 0.1613 0.1611 0.1612 0.1609 0.1610 0.1608 0.1609 0.1609
Pittsburgh

 
0.1161 0.1159 0.1159 0.1158 0.1160 0.1159 0.1160 0.1160 0.1160 0.1160

San Jose 0.1029 0.1141 0.1143 0.1140 0.1140 0.1141 0.1141 0.1140 0.1140 0.1138
 
 

 



Table 2: Estimated Household Spatial Income Segregation Levels, by Spatial Scale,  
Selected Metropolitan Areas, 2000 
 
 
Panel A: Rank-Order Information Theory Index 

Aspatial HR Spatial HR  Granularity RatioMetropolitan 
Area (Block groups) (500m) (1000m) (2000m) (4000m) HR(4000m)/ HR(500m) 
Atlanta 0.1364 0.1457 0.1355 0.1177 0.0951 0.6528 
Denver 0.1664 0.1685 0.1435 0.1143 0.0905 0.5368 
Minneapolis 0.1360 0.1422 0.1229 0.0980 0.0733 0.5157 
New York 0.1466 0.1236 0.1076 0.0906 0.0698 0.5646 
Pittsburgh 0.1051 0.1098 0.0939 0.0726 0.0517 0.4704 
San Jose 0.1029 0.1020 0.0821 0.0605 0.0431 0.4226 
 
 
Panel B: Rank-Order Relative Diversity Index 

Aspatial RR Spatial RR Granularity RatioMetropolitan  
Area (Block groups) (500m) (1000m) (2000m) (4000m)  RR(4000m)/ RR(500m) 
Atlanta 0.1528 0.1630 0.1524 0.1332 0.1082 0.6639 
Denver 0.1848 0.1878 0.1614 0.1296 0.1034 0.5508 
Minneapolis 0.1503 0.1577 0.1375 0.1106 0.0835 0.5296 
New York 0.1608 0.1378 0.1206 0.1017 0.0782 0.5678 
Pittsburgh 0.1160 0.1215 0.1046 0.0814 0.0583 0.4800 
San Jose 0.1140 0.1140 0.0928 0.0688 0.0490 0.4299 
Note: All values of HR and RR are estimated using an 8th-order fitted polynomial approximation.  Spatial indices are 
computed using a biweight kernel proximity function with bandwidths 500m, 1000m, 2000m, and 4000m. 
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