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I) Introduction: 

 

Recent years have witnessed an enlargement of the attributes analyzed in the studies of 

poverty in OECD countries and particularly so in the EU member-states. Poverty is 

interpreted not only as lack of income, but more generally as deprivation in various life 

domains. These include financial difficulties, basic needs, housing conditions, durables, 

health, social contacts, participation, and life satisfaction. 

On one hand, more detailed information on households has become available thanks to 

new datasets that allow adopting a wider concept of human well-being. On the other 

hand, social policy gained a key role in the EU political debate, and since the European 

Council of Lisbon (March 2000), it was placed at the center of the EU strategy to become 

“the most competitive and dynamic knowledge-based economy in the world capable of 

sustainable economic growth with better jobs and greater social cohesion”. To monitor 

social cohesion, multidimensional aspects of well-being were necessary. It was then 

acknowledged that “the number of people living below the poverty line and in social 

exclusion in the Union is unacceptable”.   

Various official reports were produced to extend the analysis of monetary poverty into a 

dynamic framework and to examine the interaction with non-monetary aspects of 

deprivation (Eurostat, 2000 and 2002). The present paper goes also in that direction. Its 

aim is a systematic examination of various multidimensional approaches to poverty 

measurement on the basis of the same data set by answering the following questions:   

a) To what extent are the same households identified as poor by the various 

approaches?  

b) Are there differences between the approaches in the determinants of household 

poverty?  

c) Which explanatory variables have the greatest marginal impact as determinants of 

poverty.  

We first review (Section II) the relevant theoretical literature on multidimensional 

poverty, describing three multidimensional approaches to poverty measurement: the 

“Fuzzy” approach, an approach derived from Information Theory and the more recent 
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axiomatic approaches to poverty measurement1.  Then we give (Section III) the 

informational basis of our analysis (the variables that were selected). In Section IV we 

check to what extent the different approaches identify the same households as poor while 

in Section V we analyze, on the basis of Logit regressions, the determinants of poverty. 

Finally, using the so-called Shapley decomposition procedure, we attempt to determine 

the marginal impact on poverty of the various categories of explanatory variables that 

were introduced in the Logit regressions (Section VI). Concluding comments are given at 

the end. 
 

II) Theoretical Background: 

 

A) The “Fuzzy Set” Approach to Poverty Analysis 
 

The theory of “Fuzzy Sets” was developed by Zadeh (1965) on the basis of the idea that 

certain classes of objects may not be defined by very precise criteria of membership. In 

other words there are cases where one is unable to determine which elements belong to a 

given set and which ones do not. Zadeh himself (1965) characterized a fuzzy set (class) 

as “a class with a continuum of grades of membership”. 

Let there be a set X and let x be any element of X. A fuzzy set or subset A of X is 

characterized by a membership function µA (x) that will link any point of X with a real 

number in the interval [0,1]. µA (x) is called the degree of membership of the element x to 

the set A. If A were a set in the sense in which this term is usually understood, the 

membership function which would be associated to this set would take only the values 0 

and 1. But if A is a fuzzy subset, we will say that µA (x) = 0 if the element x does not 

belong to A and that µA (x) = 1 if x completely belongs to A. But if 0< µA (x) < 1, x 

belongs only partially to A.  

These simple ideas may be easily applied to the concept of poverty. In some cases an 

individual is in such a state of deprivation that she certainly should be considered as poor 

while in others her level of welfare is such that she certainly should not be classified as 

poor. There are however also instances where it is not clear whether a given person is 
                                                           
1  In another paper, Deutsch and Silber (2003) have also used the so-called efficiency analysis approach, 
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poor or not. This is especially true when one takes a multidimensional approach to 

poverty measurement, because according to some criteria one would certainly define her 

as poor whereas according to others one should not regard her as poor. Such a fuzzy 

approach to the study of poverty has taken various forms in the literature2. 

 

1) The Totally Fuzzy Approach (TFA) 

 

Cerioli and Zani (1990) were the first to apply the concept of fuzzy sets to the 

measurement of poverty. Their approach is called the Totally Fuzzy Approach (TFA) and 

the idea is to take into account a whole series of variables that are supposed to measure 

each a particular aspect of poverty. They considered the case of dichotomous, 

polytomous and continuous variables but to illustrate their approach we consider only the 

case of continuous variables. 

Income or consumption expenditures are good examples of deprivation indicators that are 

continuous. Cerioli and Zani (1990) have proposed to define two threshold values xmin 

and xmax such that if the value x taken by the continuous indicator for a given individual 

is smaller than xmin this person would undoubtedly be defined as poor whereas if it is 

higher than xmax he certainly should be considered as not being poor. 

Let Xl be the subset of individuals (households) who are in an unfavorable situation with 

respect to the l-th variable with l= 1,...,kx.  Cerioli and Zani (1990) have then proposed to 

define the membership function µxl (i) for individual i as 

 

µxl (i) = 1 if 0 < xil < xl,min  

µxl (i) = ((xl,max - xil )/( xl,max - xl,min )) if xil ∈  [xl,min , xl,max ]  

µxl (i) = 0 if xil > xl,max (1) 

 

                                                                                                                                                                             
but we decided not to include it in this paper because of space constraints. 
2 In this section we discuss only the so-called Totally Fuzzy Absolute and Relative Approaches. Other 
“Fuzzy” approaches have been proposed such as that of Vero and Werquin (1997) but because of space 
constraints this approach will not be presented. Moreover in the empirical section we used only the TFR 
approach. 
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Some authors (Cheli et al., 1994, and Cheli and Lemmi, 1995) have proposed to modify 

Cerioli and Zani’s (1990) Totally Fuzzy Approach (TFA) and suggested what they have 

called the Totally Fuzzy and Relative Approach (TFR).   

 

2) The Totally Fuzzy and Relative Approach (TFR) 

 

As an illustration let ξj be the set of polytomous variables ξ1j ,..., ξnj which measure the 

state of deprivation of the various n individuals with respect to indicator j and let Fj be the 

cumulative distribution of this variable. Let ξj(m) with m=1 to s refer to the various values, 

ordered by increasing risk of poverty, which the variable ξj may take. Thus ξj(1) represents 

the lowest risk of poverty and ξj(s) the highest risk of poverty associated with the 

deprivation indicator j. The authors propose then to define the degree of poverty of 

individual (household) i as 

µΞj (i) = 0 if  ξij = ξj(1) 

and 

µΞj (i) = µΞj (ξj(m-1)) + ((Fj (ξj(m)) - Fj (ξj(m-1)) )/ (1 - Fj (ξj(1) )) 

 if ξij = ξj(m) , m> 1 

(2) 

 

This TFR approach has the double advantage of not requiring defining threshold values 

and of taking a relative approach to poverty, the one which is taken in most developed 

countries.  

The next step in the analysis is to decide how to aggregate the various deprivation 

indicators. Let µΞj (i) refer as before to the value taken by the membership function for 

indicator j and individual i, with j = 1 to k and i = 1 to n. Let wj represent the weight one 

wishes to give to indicator j. The overall (over all indicators j) membership function µP (i) 

for individual i is then be defined as 

 

µP (i) = ∑j=1 to k wj µΞj (i) (3) 
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For the choice of the weight wj, Cerioli and Zani (1990) as well as Cheli and Lemmi 

(1995) have proposed to define wj  as  

 

wj = ln (1/µbΞj )/ ∑j=1 to k ln (1/µbΞj ) = ln (µbΞj )/ ∑j=1 to k ln (µbΞj ) (4) 

 

where µbΞj = (1/n) ∑i=1 to n  µΞj (i) represents the fuzzy proportion of poor individuals 

(households) according to the deprivation indicator ξj . One may observe that the weight 

wj is an inverse function of the average degree of deprivation in the population according 

to the deprivation indicator ξj . Thus the lower the frequency of poverty according to a 

given deprivation indicator, the greater the weight this indicator will receive. The idea, 

for example, is that if owning a refrigerator is much more common than owning a dryer, a 

greater weight should be given to the former indicator so that if an individual does not 

own a refrigerator, this rare occurrence will be taken much more into account in 

computing the overall degree of poverty than if some individual does not own a dryer, a 

case which is assumed to be more frequent. 

Having computed for each individual i the value of his membership function µΞj (i), that 

is, his “degree of belonging to the set of poor”, the Totally Fuzzy and Relative Approach  

(TFR), following in fact Cerioli and Zani (1990), defines the average value P of the 

membership function as 

 

P = (1/n) ∑i=1 to n  µP (i) (5) 

 

B) The Information Theory Approach 

 

1) Basic concepts: 

 

Information theory was originally developed by engineers in the field of communications. 

Theil (1967) was probably the first one to apply this theory to economics. Here is a 

summary of the basic ideas. 

Let E be an experience whose result is xi with i = 1 to n. Let pi = Prob{x=xi } be the 

probability that the result of the experience will be xi with evidently 0≤ pi ≤ 1. When we 
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receive the information that a given event xi occurred, we will not be surprised if the a 

priori probability that such an event would occur was high. In other words in such a case 

the information included in the message is not very important. On the other hand if the a 

priori probability that an event xi will occur is very low, knowing that this event did 

occur, will indeed surprise us and such a message will contain a significant amount of 

information. 

The information included in a message should thus be an inverse function of the 

probability a priori p that the corresponding result will occur. Let h(p) be such an 

information  function. The most popular form taken by h(p) is   

 

H(p) = log (1/p) = - log (p) (6) 

 

Let us now define the concept of information expectancy. Since for each event xi whose a 

priori probability of occurrence is pi the information content of a message confirming the 

occurrence of such an event is h(pi ), the expected information H(p) will be 

 

H(p) = ∑i=1 to n pi h(pi ) (7) 

 

with p = (p1,…,pn ).  

Often the term entropy is used to refer to this expected information. Note that H(p) ≥ 0 

given the properties of the information function. Combining (18) and (19) we derive 

 

H(p) = ∑i=1 to n pi log(pi ) (8) 

 

where H(p) is often called Shannon’s entropy (cf., Shannon, 1948).  

Note (see, Maasoumi, 1993) that this entropy may be interpreted as a measure of the 

uncertainty, the disorder or the volatility associated with a given distribution. It will be 

minimal (and equal to 0) when a specific result xi is known to occur with certainty since 

in such a case a message informing us that the event xi did indeed occur will not provide 

us with any information. To derive the maximal value of entropy, we have to maximize 

H(p) subject to the constraint that ∑i=1 to n pi = 1. In such a case uncertainty will be 
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maximal because we have no idea a priori as to which event will occur. Imposing some 

restrictions on the function h(p), it turns out that entropy will be maximal when all the 

events have the same probability, that is when pi = (1/n) for all i=1 to n. We may then 

derive that 

 

0 ≤ H(p) ≤ log (n) (9) 

 

2) Measuring the distance or the divergence between distributions 

 

Assume we make a given experiment E which has n potential results x1 ,…, xn with 

corresponding a priori probabilities p1 ,…, pn. It may however happen that we receive 

some information that implies a modification of these a priori probabilities. In other 

words assume we have now received a message that transformed the a priori probabilities 

p1 ,…, pn into a posteriori probabilities q1 ,…, qn with ∑i=1 to n  qi  = 1. 

The supplement of information D(q,p) that is obtained when shifting from the distribution 

of a priori probabilities {p1 ,…, pn }to that of the a posteriori probabilities { q1 ,…, qn } 

will be expressed as 

 

D(q, p) = ∑i=1 to n  qi  log (qi / pi ) (10) 

 

D(q,p) represents actually the expected information of a message transforming the a 

priori probabilities {p1 ,…, pn }into the a posteriori probabilities { q1 ,…, qn }. Note that 

this supplement of information D(p,q) may also be considered as a measure of the 

divergence between the distributions {p1 ,…, pn }and { q1 ,…, qn } or as the difference 

between the entropy corresponding to the distribution {p1 ,…, pn }and that relative to the 

distribution {q1 ,…, qn }, assuming the weights to be chosen are those corresponding to 

the latter distribution. 

This measure of divergence D(p,q) is generally positive and will be equal to zero only in 

the very specific case where pi = qi for all i (i=1 to n), that is when the new message does 

not modify any of the a priori probabilities. 
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D(p,q) will be maximal when there is a result xi such that qi > pi  = 0 because in such a 

case the probability a priori that the event xi would occur was nil whereas now, after 

reception of the correcting message, the probability that it will occur is not nil any more 

and thus the degree of surprise may be considered as infinite. 

An interesting measure of divergence is the Kullback-Leibler-Jeffreys measure J(q,p) 

(see, Kullback and Leibler, 1951, and Jeffreys,1967) which is defined as 

 

J(q,p) = D(q,p) + D(p,q) = ∑i=1 to n (qI – pi ) [log (qi ) – log (pi )] (11) 

 

Maasoumi (1986) generalized this idea and proposed two additional classes of measures. 

The first one Dk (q,p) is defined as 

 

Dk (q,p) = (1/(k-1))[ ∑i=1 to n {[((qi )k )/((pi )k-1 )] – 1} (12) 

 

with k ≠ 1. Note that when k → 1, Dk (q,p) → D(q,p). 

The other class of generalized divergence measure mentioned by Maasoumi is Dγ (q,p) 

with 

 

Dγ (q,p) = [1/(γ(γ+1))] { ∑i=1 to n qi [((qi /pi )γ ) – 1} (13) 

 

with γ ≠ 0, -1. Note that as γ → 0, Dγ (q,p) → D(p,q). One may also observe that as  

γ → 0, Dγ (q,p) → D(p,q).                     

 

3) Information Theory and Multidimensional Measures of Inequality: 

 

The idea of using concepts borrowed from information theory to define multidimensional 

measures of welfare and inequality was originally proposed by Maasoumi (1986). He 

suggested proceeding in two steps. First a procedure would be defined that would allow 

aggregating the various indicators of welfare to be taken into account. Second an 

inequality index would be selected to estimate the degree of multidimensional inequality. 
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Assume n welfare indicators have been selected, whether they be of a quantitative or 

qualitative nature. Call xij the value taken by indicator j for individual (or household ) i, 

with i = 1 to n and j = 1 to m. The various elements xij may be represented by a matrix X 

= [xij ] where the ith line will give the welfare level of individual i according to the various 

m indicators, while the jth column the distribution among the n individuals of the welfare 

level corresponding to indicator j. 

Maasoumi’s idea is to replace the m pieces of information on the values of the different 

indicators for the various individuals by a composite index xc which will be a vector of n 

components, one for each individual. In other words the vector (xi1,…xim ) corresponding 

to individual i will be replaced by the scalar xci. This scalar may be considered either as 

representing the utility that individual i derives from the various indicators or as an 

estimate of the welfare of individual i, as an external social evaluator sees it.  

The question then is to select an “aggregation function” that would allow to derive such a 

composite welfare indicator xci. Maasoumi (1986) suggested finding a vector xc that 

would be closest to the various m vectors xij giving the welfare level the various 

individuals derive from these m indicators. To define such a “proximity” Maasoumi 

proposes a multivariate generalization of the generalized entropy index Dγ (q,p) that is 

expressed as 

 

Dγ (xc, X; α) = (1/( γ (γ + 1))) ∑j=1 to m  αj  {∑i=1 to n  xci [(xci / xij )γ - 1] } (14) 

 

with γ ≠ 0, -1 , and where αj  represents the weight to be given to indicator j. 

When γ → 0 or –1, one obtains the following indicators 

 

D0 (xc, X; α) = ∑j=1 to m  αj  [∑i=1 to n  xci log (xci / xij )] (15) 

 

and 

 

D -1 (xc, X; α) = ∑j=1 to m  αj  [∑i=1 to n  xij log (xij / xci )] (16) 
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The minimization of the “proximity” defines a composite index xci in each of the three 

cases corresponding to expressions (26) to (28). 

In the first case xci is defined as 

 

xci ∝  [∑j=1 to m  δj  (xij )-γ ]-(1/γ) (17) 

 

In the second case, when γ → 0, one gets 

 

Xci ∝  [Πj=1 to m  (xij )δj (18) 

 

Finally in the case where γ → -1, one obtains 

 

xci ∝  [∑j=1 to m  δj  (xij ) ] (19) 

 

In expressions (29) to (31)  δj  is defined as the normalized weight of indicator j, that is  δj  

=  αj / ∑j=1 to m  αj . 

Thus it turns out that the composite indicator xc is a weighted average of the different 

indicators. In the general case (29) it is an harmonic mean; in the case where γ→ 0, it is a 

geometric mean while in that where γ→ -1, it is an arithmetic mean. Moreover it is easy 

to interpret this composite welfare indicator as a utility function of the CES type with an 

elasticity of substitution σ= 1 / (1+ γ) when γ ≠ 0, -1 , as a Cobb-Douglas utility when γ 

→ 0, and as a linear utility function when γ → -1.                                                                                   

 Having derived a composite index xci for each individual i, one may measure inequality 

by applying generalized entropy inequality indices that were defined by Shorrocks (1980) 

and applied to the multidimensional case by Maasoumi (1986). 

 

4) Information Theory and a Multidimensional Approach to Poverty Measurement:  

 

Although Information Theory has been applied several times to the analysis of 

multidimensional inequality (see, the survey by Maasoumi, 1999), it seems to have been 
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used only rarely in the study of multidimensional poverty (see, however, Miceli, 1997). 

Miceli has suggested deriving the measurement of multidimensional poverty from the 

distribution of the composite index XC whose definition is given in expressions (29) to 

(31). Such a choice implies evidently that a decision has to be made concerning the 

selection of the weights δj to be given to the various indicators xij (the subindex i referring 

to the individual while the subindex j denotes the indicator) as well as to the parameter γ. 

We decided to give an equal weight (1/m) to all the indicators j (where m refers to the 

total number of indicators) and we assumed that the parameter γ was equal to –1 (the case 

of an arithmetic mean).  

Once the composite indicator XC is defined, one still has to define a procedure to identify 

the poor. Here again we will follow Miceli (1997) and adopt the so-called “relative 

approach” which is commonly used in the uni-dimensional analysis of poverty. In other 

words we will define the “poverty line” as being equal to some percentage of the median 

value of the composite indicator XC. More precisely we have chosen as cutting points a 

“poverty line” assumed to be equal to 70% the median value of the distribution of the 

composite index XC. In other words any household i for which the composite index XCi 

will be smaller than the “poverty line” will be identified as poor. 

 

C) Axiomatic Derivations of Multidimensional Poverty Indices 
 

Very few studies have attempted to derive axiomatically multidimensional indices of 

poverty. Tsui (2002) made recently such an attempt, following his earlier work on 

axiomatic derivations of multidimensional inequality indices (see, Tsui, 1995 and 1999) 

but it seems that Chakravarty, Mukherjee and Ranade (1998) were the first to publish an 

article on the axiomatic derivation of multidimensional poverty indices.  

The basic idea behind Chakravarty et al. (1998) as well as Tsui’s (2002) approach is as 

follows. Both studies view a multidimensional index of poverty as an aggregation of 

shortfalls of all the individuals where the shortfall with respect to a given need reflects 

the fact that the individual does not have even the minimum level of the basic need. Let z 

= (z1,…,zk ) be the k-vector of the minimum levels of the k basic needs and xi=(xi1,…,xik) 
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the vector of the k basic needs of the ith person. Let X be the matrix of the quantities xij  

which denote the amount of the jth attribute accruing to individual i.  

Chakravarty et al. (1998) defined then a certain number of desirable properties that a 

multidimensional poverty measure should have, on the basis of which they derived 

axiomatically two families of multidimensional poverty indices. 

The first family of indices may be expressed as 

 

P(X;z) = (1/n) ∑j=1 to k    ∑i ∈  Sj  aj [1 - (xij /zj )e ] (20) 

 

where sj is the set of poor people with respect to attribute j. 

This index is a multidimensional extension of the subgroup decomposable index 

suggested by Chakravarty (1983). 

When e=1 we get 

 

P(X;z) = (1/n) ∑j=1 to k    ∑i ∈  Sj  aj [(zj - xij )/zj ) ] = ∑j=1 to k   aj Hj  Ij (21) 

 

where Hj =(qj /n) and Ij are respectively the head-count ratio and the poverty-gap ratio for 

attribute j (Ij = ∑i ∈  Sj  [(zj - xij )/(qj  zj ) ] ). 

The second family of indices is expressed as 

 

Pα(X;z) = (1/n) ∑j=1 to k    ∑i ∈  Sj  aj [1 - (xij /zj ) ]α (22) 

 

This index is a multidimensional generalization of the Foster-Greer and Thorbecke 

(1984) subgroup decomposable index (known under the name of FGT index). 

In the empirical investigation that will be reported below we used this multidimensional 

generalization of the FGT index with the parameter α equal to 2. We assumed that for 

each indicator the “poverty line” was equal to half the mean value of the indicator. We 

also decided to give an equal weight was given to all the indicators. Finally an individual 

was considered as poor when the expression  

∑j=1 to k    aj [1 - (xij /zj ) ]2  was greater than the value of this expression for the 75th 

percentile (in other words we assumed that 25% of the individuals were poor). 
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III) The Information Basis for the Derivation of Multidimensional Poverty 
Indices  

 
The empirical analysis that will be presented below is based essentially on the third wave 

of the European Panel. The following 18 indicators have been taken into account to 

derive multidimensional measures of poverty: 

 
1) Indicators of Income: 

- total net household income 
 

2) Indicators of Financial Situation: 

- ability to make ends meet 

- can the household afford paying for a week’s annual holiday away from 

home 

- can the household afford buying new rather than second-hand clothes? 

- can the household afford eating meat, chicken or fish every second day, if 

wanted? 

- has the household been unable to pay scheduled rent for the 

accommodation for the past 12 months? 

- has the household been unable to pay scheduled mortgage payments 

during the past 12 months? 

- has the household been unable to pay scheduled utility bills, such as 

electricity, water or gas during the past 12 months? 

 

3) Indicators of quality of accommodation: 

- does the dwelling have a bath or shower? 

- does the dwelling have shortage of space? 

- does the accommodation have damp walls, floors, foundations, etc…? 

 

4) Indicators on ownership of durables: 

- possession of a car or a van for private use 

- possession of a color TV 

- possession of a telephone 
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5) Indicators of health: 

- how is the individual’s health in  general? 

- is the individual hampered in his/her daily activities by any physical or 

mental health problem, illness or disability? 

 
6) Indicators of social relations: 

- how often does the individual meet friends or relatives not living with 

him/her, whether at home or elsewhere? 

 

7) Indicators of satisfaction: 

            -    is the individual satisfied with his/her work or main activity? 

  

Multidimensional measures of poverty have been computed for the following countries: 

- Belgium 

- France  

- Germany  

- Italy  

- Spain  

 

IV) Do the Different Multidimensional Indices Identify the Same Households as 

Poor: 

 

To check the degree of overlapping between the various multidimensional poverty 

indices we have assumed that 25% of the individuals were poor, whatever the index that 

was selected. We then checked to which degree two indices identified the same 

households as poor. The results of this analysis are given in Table 1. 

It appears that, on average, when comparing two of the three approaches, only 80% 

(19.8% out of the 25%) of the households defined as poor are the same households. The 

highest common percentage (20.5% our of 25%) is observed when comparing, for the 
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five countries examined, the TFR with the Information Theory approaches. In the two 

other cases the common percentages are somehow lower (19.3% when comparing the 

TFR and FGT approaches and 19.5% when comparing the Information theory and FGT 

approaches). Note also that the common percentage is highest for Belgium (20.5% out of 

25%) and lowest for France (19.1 out of 25%)3. 

In the next section an attempt is made, for each of the three approaches, to determine the 

impact of the various explanatory variables on the probability that an individual is 

considered as poor. 

 

                                                           
3 Similar results were obtained when computing the correlation coefficients between two approaches. 
Because of the lack of space, these results are not reported here. 
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Table 1: Degree of overlapping between the various multidimensional poverty 

indices (Percentage of households defined as poor by two multidimensional indices, 

assuming 25% of the households are poor). 

 

 Belgium France Germany Italy Spain Average of 

binary 

comparisons 

TFR index 

and 

Information 

theory based 

index 

19.5 19.0 18.3 19.7 19.9 19.3 

TFR index 

and 

Generalization 

of FGT index 

21.6 19.4 21.7 19.8 19.8 20.5 

Information 

theory based 

index and 

Generalization 

of FGT index 

20.5 18.9 19.2 18.8 20.3 20.3 

Average of 

countries 

20.5 19.1 19.7 19.4 20.0 19.8 
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V) Results of the Logit regressions: 

 

The following exogenous variables have been taken into account: the size of the 

household and its square, the age of the individual and its square, the gender, the marital 

status (three dummy variables) and the status at work (two dummy variables) of the 

individual.  

 

Results of the Logit Regressions  

In each Logit regression the dependent variable is the probability that an individual is 

considered as poor (the variable is equal to 1 if he/she is poor, to 0 otherwise). The results 

of these estimations are given for Belgium, France, Germany, Italy and Spain in Tables 

2-A to 2-E, giving in each case the coefficients of the regression obtained on the basis of 

the three multidimensional approaches to poverty measurement: the Totally Fuzzy and 

Relative (TFR), the information theory and the axiomatic approach (generalization of the 

FGT index). 

To have an idea of the goodness of fit of the logit regressions we used a criterion that is 

similar to the R-square used in linear regressions. The idea is to compute the maximal 

value of the log-likelihood (ln L) and compare it with the log likelihood obtained when 

only a constant term is introduced (ln L0 ). The likelihood ratio LRI is then defined as 

LRI = 1 – (ln L/ln L0)                                                                                            (23) 

The bounds of this measure are 0 and 1 ((see, Greene, 1993, pages 651-653). 

The value of the likelihood ratio LRI is given in Tables 2-A to 2-E. 

These tables indicate that in most cases there is, ceteris paribus, a U-shaped relationship 

between the size of the household to which the individual belongs and the probability that 

he/she will be considered as poor. Such a link is observed for the five countries, 

whenever the generalized FGT approach is adopted. The TFR approach does not show 

such a relationship in the case of Belgium and France. The Information theory approach 

shows such a U-shaped relationship only in the cases of Germany and Italy. 

There seems also to be a U-shaped relationship between the age of the individual and the 

probability that he/she will be considered as poor. The FGT approach gives such a link 

for all the five countries examined. The TFR approach shows similar results in four of the 
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five cases, Germany being the only country for which such a relationship is not observed. 

The Information Theory approach however indicates such a U-shaped link only in the 

case Italy. Moreover for Germany it curiously gives an inverted-U relationship between 

the age of the individual and the probability that he/she is considered as poor. 

As far as the other explanatory variables are considered we have introduced interaction 

terms between the gender of the individual and his/her marital status so that we analyze 

here the joint impact of these variables on the probability that the individual is considered 

as poor. This impact varies actually from one country to the other and sometimes there 

are even differences between the approaches adopted. For Belgium (see, Table 2-A) the 

following observations may be made, assuming the vector of the coefficients of these 

variables and their interaction is significantly different from zero. First only the 

generalized FGT approach shows really a higher probability of being poor among single 

males than among single females. This probability is also higher among married females 

according to the FGT and information theory approach but the result is the opposite for 

the FGT approach. The three approaches indicate a higher probability of being poor 

among divorced men than among divorced women, the same being true when comparing 

widower and widows. Finally the probability of being considered as poor is the lowest for 

married individuals and the highest for singles. 

For France (see, Table 2-B) the probability of being poor seems to be higher among 

single males than among single females. The same differences between the genders are 

observed when comparing married men and married women. For divorced individuals, 

poverty is higher among women according to the TFR and Information Theory approach 

but the contrary is true according to the FGT approach. Finally it seems that the 

probability of being considered as poor is higher among widowers than among widows. It 

appears also that in France poverty is highest among divorced individuals, whatever their 

gender, and lowest among married people.  

When we look at the results for Germany (see, Table 2-C) we see that for those who are 

single the probability of being poor is highest among males. This gender difference is 

also observed when comparing married men and women as well as widowers and 

widows. Among divorced individuals the TFR and Information theory approach show a 

higher degree of poverty among females but the contrary is true when using the FGT 



 20 

approach. In Germany the probability of being poor is the lowest among married and the 

highest among divorced individuals. 

The results for Italy (see, Table 2-D) indicate that the probability of being poor is higher 

among single men than among single women. The contrary is observed among married 

individuals, whatever the approach that is used. Among divorced individuals the 

probability of being considered as poor is higher among males, this being also the case 

when comparing widowers with widows. No clear conclusions however may be drawn as 

far as the impact of the marital status on the probability of being poor is concerned, the 

gender playing here an important role. 

Finally when looking at the Spanish data (see, Table 2-E) we observe that only the FGT 

approach seems to show a higher probability of being poor among single males than 

among single females. All three approaches show however a higher probability of being 

considered as poor among married males than among married females. Among divorced 

individuals this probability is higher among females according to the TFR and 

Information theory approach but the opposite is true when using the FGT approach. 

Among widowers and widows the impact of the gender depends also on the approach 

adopted: the probability of being poor is higher among widows according to the TFR 

approach but the opposite is true when adopting the Information theory or FGT approach. 

As far as the impact of the marital status is concerned the probability of being poor is 

highest among divorced and lowest among married individuals. 

Concerning the effect of the work status we observe in all countries that the probability of 

being poor is highest, as expected, among unemployed individuals (the category of 

reference in the regressions). It is lowest (in most cases) among self-employed. 

To better analyze the impact of the explanatory variables on the probability of being poor 

we apply in the next section the so-called Shapley decomposition procedure, a technique 

that will allow us determining the exact marginal impact on the probability of being poor 

of each of the five categories of explanatory variables: household size, age, gender, 

marital status and work status.  
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Table 2-A: Results of the Logit Regressions for Belgium 

 

Explanatory 

variables 

TFR:   

coef. 

TFR:  

t-values 

Inf.Th.: 

coef. 

Inf.Th. 

t-val. 

F.G.T.: 

coef. 

F.G.T.: 

t-values 

constant            2.05309    2.39     0.77765    0.69     3.87636    6.13 
Household size    -0.12100   -0.64    -0.22763   -0.97    -0.34960   -2.33 

Square of 

household size 

    0.04211    1.71     0.05259    1.76     0.05866    2.87 

Age    -0.10416   -3.48    -0.07112   -1.83    -0.15955   -7.36 

Square of age     0.00073    2.63     0.00047    1.32     0.00150    7.14 

Male              0.08752    0.33    -0.00280   -0.01     0.60513    2.81 
Married          -0.58326   -0.73    -0.01044   -0.01    -0.29108   -0.58 
Divorced          0.30657    0.27    -1.45477   -0.66    -0.96248   -1.10 
Widower          -0.34303   -0.40    -1.33642   -1.08    -0.86668   -1.44 
Interaction 
Married/ Male  

   -0.23089   -0.34    -0.69015   -0.63    -0.29181   -0.70 

Interaction 
Divorced/ Male 

    0.37116    0.57     1.40434    1.22     1.00108    1.83 

Interaction 
Widower/ Male  

    0.49156    1.02     1.29518    1.94     0.79772    2.22 

Salaried 
Worker      

   -1.80857   -3.70    -3.22800   -4.35    -0.81437   -2.43 

Self-employed        -2.52832   -2.80    -4.75431   -2.95    -1.11522   -1.86 
Interaction: 
Salaried/ Male 

    0.01264    0.04     0.66678    1.46    -0.22716   -0.97 

Interaction: 
Self-employed/  
Male 

    0.79855    1.19     1.92892    1.96     0.14192    0.29 

Likelihood 
Ratio LRI 

    0.13390      0.20304      0.15808  

Number of 
Observations 

2395  2395  2395  
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Table 2-B: Results of the Logit Regressions for France 

 

Explanatory 

variables 

TFR:   

coef. 

TFR:  

t-values 

Inf.Th.: 

coef. 

Inf.Th. 

t-val. 

F.G.T.: 

coef. 

F.G.T.: 

t-values 

constant           -0.29848   -0.70    -2.81969   -5.33     1.08906    3.22 
Household size    -0.00055   -0.01     0.26864    2.67    -0.35365   -3.70 

Square of 

household size 

    0.03323    2.53     0.00565    0.52     0.07375    5.72 

Age    -0.04876   -3.09     0.00086    0.05    -0.07042   -5.80 

Square of age     0.00039    2.61     0.00004    0.21     0.00066    5.75 

Male              0.10311    0.72     0.31901    1.87     0.51112    4.47 
Married          -1.75107   -2.80    -1.24785   -1.48    -0.80734   -1.51 
Divorced          1.86307    2.61     1.80340    1.97     0.63829    0.97 
Widower           0.50634    1.12     0.28871    0.53     0.59320    1.64 
Interaction 
Married/ Male  

    0.82957    1.43     0.37081    0.47     0.15497    0.31 

Interaction 
Divorced/ Male 

   -0.66499   -1.37    -0.86732   -1.37     0.02641    0.06 

Interaction 
Widower/ Male  

   -0.07635   -0.28     0.20379    0.64    -0.09370   -0.42 

Salaried 
Worker      

   -1.41815   -5.00    -1.65631   -4.53    -1.22752   -5.74 

Self-employed        -1.82291   -2.50    -2.06412   -2.12    -1.94644   -3.64 
Interaction: 
Salaried/ Male 

    0.23432    1.18     0.07176    0.28    -0.04473   -0.30 

Interaction: 
Self-employed/  
Male 

    0.71900    1.19     0.53647    0.66     0.78749    1.74 

Likelihood 
Ratio LRI 

    0.08293      0.10842      0.14247   

Number of 
Observations 

6284  6284  6284  
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Table 2-C: Results of the Logit Regressions for Germany 

 

Explanatory 

variables 

TFR:   

coef. 

TFR:  

t-values 

Inf.Th.: 

coef. 

Inf.Th. 

t-val. 

F.G.T.: 

coef. 

F.G.T.: 

t-values 

constant           -0.55457   -0.73    -5.52145   -4.58     1.81527    3.67 
Household size    -0.32875   -1.99    -0.72504   -3.10    -0.62671   -4.60 

Square of 

household size 

    0.07735    3.48     0.13747    4.51     0.10922    5.48 

Age     0.00627    0.19     0.19490    4.04    -0.11097   -5.46 

Square of age    -0.00036   -1.06    -0.00221   -4.54     0.00111    5.23 

Male              0.16318    0.74     0.45502    1.41     1.19530    7.44 
Married          -0.35122   -0.70     0.54989    0.71     0.50780    1.68 
Divorced          0.68598    0.69     1.82271    1.31    -0.48413   -0.66 
Widower           0.52661    0.80     1.25362    1.40     0.41231    0.89 
Interaction 
Married/ Male  

   -0.69558   -2.10    -1.28033   -2.55    -0.96564   -5.04 

Interaction 
Divorced/ Male 

   -0.39932   -0.66    -1.22406   -1.37     0.46450    1.01 

Interaction 
Widower/ Male  

   -0.11565   -0.31    -0.49800   -1.00     0.04267    0.16 

Salaried 
Worker      

   -1.85829   -4.64    -3.06154   -4.92    -0.32709   -1.34 

Self-employed        -2.49428   -2.76    -2.86997   -3.94    -0.69513   -1.26 
Interaction: 
Salaried/ Male 

    0.24471    0.97     0.61487    1.59    -0.50270   -3.16 

Interaction: 
Self-employed/  
Male 

    0.95473    1.58    -1.28033   -2.55    -0.33825   -0.82 

Likelihood 
Ratio LRI 

    0.11926      0.17594      0.16212  

Number of 
Observations 

4396  4396  4396  



 24 

Table 2-D: Results of the Logit Regressions for Italy 

 

Explanatory 

variables 

TFR:   

coef. 

TFR:  

t-values 

Inf.Th.: 

coef. 

Inf.Th. 

t-val. 

F.G.T.: 

coef. 

F.G.T.: 

t-values 

constant            0.78306    1.53    -1.15255   -1.85     2.06227    5.28 
Household size    -0.55139   -5.00    -0.36531   -3.28    -0.77544   -8.52 

Square of 

household size 

    0.08990    6.34     0.06668    4.75     0.10476    8.52 

Age    -0.07341   -4.42    -0.04762   -2.48    -0.08481   -6.79 

Square of age     0.00065    4.41     0.00053    3.23     0.00080    7.16 

Male              0.17322    1.11     0.45808    2.62     0.41638    3.38 
Married          -0.21050   -0.57     0.48566    1.13     0.38341    1.41 
Divorced          0.05216    0.06     1.48376    1.72    -0.07586   -0.12 
Widower          -1.13976   -0.72     0.26080    0.16    -0.61068   -0.60 
Interaction 
Married/ Male  

   -0.20808   -0.81    -0.71432   -2.33    -0.51747   -2.76 

Interaction 
Divorced/ Male 

    0.34086    0.69    -0.43221   -0.81     0.25481    0.63 

Interaction 
Widower/ Male  

    0.58028    0.65    -0.29014   -0.30     0.24933    0.42 

Salaried 
Worker      

   -0.31695   -0.94    -0.76584   -1.84    -0.21291   -0.93 

Self-employed        -0.82192   -1.74    -1.20771   -2.01    -0.30616   -0.81 
Interaction: 
Salaried/ Male 

   -0.46297   -1.76    -0.35997   -1.09    -0.46250   -2.63 

Interaction: 
Self-employed/  
Male 

    0.03371    0.09     0.03428    0.07    -0.59514   -1.82 

Likelihood 
Ratio LRI 

    0.06820      0.10906      0.10172  

Number of 
Observations 

7063  7063  7063  
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Table 2-E: Results of the Logit Regressions for Spain 

 

Explanatory 

variables 

TFR:   

coef. 

TFR:  

t-values 

Inf.Th.: 

coef. 

Inf.Th. 

t-val. 

F.G.T.: 

coef. 

F.G.T.: 

t-values 

constant           -0.09133   -0.19    -1.86868   -3.14     1.82823    5.09 
Household size    -0.17296   -1.64    -0.09067   -0.78    -0.24172   -3.00 

Square of 

household size 

    0.03539    2.97     0.02381    1.88     0.02903    2.98 

Age    -0.04396   -2.64     0.00188    0.10    -0.07669   -6.23 

Square of age     0.00039    2.49     0.00003    0.17     0.00075    6.29 

Male             -0.03969   -0.26    -0.01316   -0.08     0.30671    2.56 
Married          -1.12560   -3.12    -1.13306   -2.73    -0.67259   -2.60 
Divorced          0.99732    1.35     1.69096    2.08     0.58653    0.94 
Widower           0.13689    0.11    -1.07070   -0.68     0.21249    0.24 
Interaction 
Married/ Male  

    0.68228    2.46     0.77730    2.52     0.38947    1.96 

Interaction 
Divorced/ Male 

   -0.19864   -0.44    -0.61016   -1.20     0.02060    0.05 

Interaction 
Widower/ Male  

   -0.08729   -0.12     0.79087    0.91    -0.21452   -0.41 

Salaried 
Worker      

   -0.83704   -2.53    -1.41602   -3.57    -1.16326   -5.48 

Self-employed        -1.47648   -3.17    -2.18810   -3.68    -1.85094   -5.78 
Interaction: 
Salaried/ Male 

   -0.36464   -1.43    -0.08100   -0.27    -0.17017   -1.08 

Interaction: 
Self-employed/  
Male 

    0.31376    0.89     0.54786    1.27     0.36380    1.49 

Likelihood 
Ratio LRI 

    0.07360      0.09108      0.14178  

Number of 
Observations 

6004  6004  6004  
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VI) The Shapley Approach to Index Decomposition and its Implications for 

Multidimensional Poverty Analysis: 

 
a) The Concept of Shapley Decomposition: 

Let an index I be a function of n variables and let ITOT be the value of I when all the n 

variables are used to compute I. I could for example be the R-square of a regression using 

n explanatory variables, any inequality index depending on n income sources or on n 

population subgroups. 

 

Let now I/k
k (i) be the value of the index I when k variables have been dropped so that 

there are only (n-k) explanatory variables and k is also the rank of variable i among the n 

possible ranks that variable i may have in the n! sequences corresponding to the n! 

possible ways of ordering n numbers. We will call I/(k-1)
k (i) the value of the index when 

only (k-1) variables have been dropped and k is the rank of the variable (i). 

 

Thus I/1
1 (i) gives the value of the index I when this variable is the first one to be dropped. 

Obviously there are (n-1)! possibilities corresponding to such a case. I/0
1 (i) gives then the 

value of the index I, when the variable i has the first rank and no variable has been 

dropped. This is clearly the case when all the variables are included in the computation of 

the index I.   

Similarly I/2
2 (i) corresponds to the (n-1)! cases where the variable i is the second one to 

be dropped and two variables as a whole have been dropped. Clearly I/2
2 (i) can also take 

(n-1)! possible values. I/1
2 (i) gives then the value of the index I when only one variable 

has been dropped and the variable i has the second rank. Here also there are (n-1)! 

possible cases. 

Obviously I/(n-1)
n (i) corresponds to the (n-1)! cases where the variable i is dropped last 

and is the only one to be taken into account. If I is an inequality index, it will evidently be 

equal to zero in such a case. But if it is for example the R-square of a regression it would 

give us the R-square when there is only one explanatory variable, the variable i. 

Obviously I/n
n (i) gives the value of the index I when variable i has rank n and n variables 
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have been dropped, a case where I will always be equal to zero by definition since no 

variable is left. 

 

Let us now compute the contribution Cj(i) of variable i to the index I, assuming this 

variable i is dropped when it has rank j. Using the previous notations we define Cj(i) as    

 

Cj(i) = (1/n!) ∑h=1 to (n-1)! [I/(j-1)
j (i) - I/j

j (i)]h                                                                   (24) 
 

where the superscript h referes to one of the (n-1)! cases where the variable i has rank j.  

The overall contribution of variable i to the index I may then be defined as 

 

C(i) = (1/n!) ∑k=1 to n Ck(i)                                                                                      (25) 

 

It is then easy to prove that 

 

I = (1/n!) ∑i=1 to n C(i)                                                                                             (26) 

  
b) Determining the Marginal Impact of the Different (Categories of) Explanatory 

Variables in the Logit Regression: 

The Shapley decomposition previously described has been applied to the various Logit 

regressions that were estimated. To simplify the computations, we did not compute the 

marginal impact of each variable but the marginal impact of each category of 

explanatory variables: household size, age, gender, marital status and work status. 

As indicated before, the likelihood ratio LRI that was defined previously will serve as 

indicator of the goodness of fit of the logit regressions. The marginal impact of each 

category of variables that was estimated using the Shapley decomposition procedure will 

then give their (marginal) contribution to this Likelihood Ratio and the sums of these 

contributions will be equal, as was just mentioned, to the Likelihood Ratio itself. 
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c) The empirical investigation:  

 

Table 3 reports for each country and approach the marginal impact of each of the five 

categories of explanatory variables on the Likelihood Ratio LRI that was defined 

previously. This marginal impact is given both in absolute value and in percentage terms. 

As far as the Likelihood Ratio is concerned we may observe that the best results are 

obtained for Belgium and Germany with the Information Theory and Generalized FGT 

approaches. The greatest marginal impacts are those of the work status and of the marital 

status, the impact of the former category of variables being generally higher than that of 

the latter. This is not too surprising given that one expects a very important effect of 

unemployment (one of the dummy variables of the status at work) on poverty. The 

impact of the marital status is not surprising either, because it is well-known that married 

individuals have generally a higher level of welfare than singles, divorced or widowers 

(widows). The relative importance of the other three categories of explanatory variables 

depends both on the country examined and the approach adopted. Among these three 

categories of variables, the impact of the gender is generally the weakest and that of the 

size of the household the strongest but there are many exceptions.  

In fact there is one variable, the level of education, that we had planned to introduce as 

explanatory variable but could not for two reasons. First education is generally measured 

differently from one country to the other. Second when a common definition was adopted 

there were too many missing observations so that finally we had to drop this variable. It 

is in fact very likely that education has an important impact on poverty (see, Deutsch and 

Silber, 2003). Moreover it is quite possible that its introduction in the Logit regressions 

would have modified the impact of the gender on poverty. We suspect that, had we been 

able to introduce this variable, there would have been less cases where the probability of 

being poor is, ceteris paribus, higher among males. One should not forget that today in 

many Western countries the average level of education is higher among females.
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Table 3: Shapley Decompositions for the Logit Regressions. 
Marginal Impact4 of the Five Categories of Explanatory Variables 

on the Likelihood Ratio LRI 
 
 
Country Multi- 

dimensional 
Poverty 
Index 

Marg. 
Impact of 
the Size of 
Household 

Marg. 
Impact 
of the 
Age 

Marg. 
Impact 
of the 

Gender 

Marg. 
Impact of 

the 
Marital 
Status 

Marg. 
Impact 
of the 

Status at 
Work 

Likeli- 
hood 
Ratio 
LRI 

Belgium TFR  1.1  1.7  1.7  3.7  5.3 13.4 
  (8.2) (12.6) (12.6) (27.4) (39.3) (100) 
Belgium Inf. Th.  1.3  1.2  3.8  5.1  8.9 20.3 
  (6.4) (5.9) (18.7) (25.1) (43.8) (100) 
Belgium FGT  1.9  3.5  3.2  3.4  3.8 15.8 
  (12.0) (22.2) (20.3) (21.5) (24.1) (100) 
France TFR  1.3  0.7  0.9  2.9  2.5  8.3 
  (15.7) (8.4) (10.8) (34.9) (30.1) (100) 
France Inf. Th.  1.2  1.0  1.3  2.4  4.9 10.8 
  (11.1) (9.3) (12.0) (22.2) (45.4) (100) 
France FGT  2.4  2.1  2.1  2.9  4.7 14.2 
  (16.9) (14.8) (14.8) (20.4) (33.1) (100) 
Germany TFR  2.0  1.2  1.0  4.4  3.3 11.9 
  (16.8) (10.1) (8.4) (37.0) (27.7) (100) 
Germany Inf. Th.  3.8  1.4  1.2  4.2  7.0 17.6 
  (21.6) (8.0) (6.8) (23.9) (39.8) (100) 
Germany FGT  2.9  2.3  2.9  4.5  3.6 16.2 
  (17.9) (14.2) (17.9) (27.8) (22.2) (100) 
Italy TFR  1.9  1.1  0.6  1.3  1.9  6.8 
  (27.9) (16.2) (8.8) (19.1) (27.9) (100) 
Italy Inf. Th.  1.6  2.7  0.9  1.7  4.0  
  (14.7) (24.8) (8.3) (15.6) (36.7)  
Italy FGT  2.5  2.3  0.8  1.6  2.9  
  (24.8) (22.8) (7.9) (15.8) (28.7)  
Spain TFR  0.9  0.9  0.4  1.0  4.1  
  (12.3) (12.3) (5.5) (13.7) (56.2)  
Spain Inf. Th.  0.8  1.2  0.6  0.9  5.6  
  (8.8) (13.2) (6.6) (9.9) (61.5)  
Spain FGT  1.6  3.1  1.2  1.3  7.0  
  (11.3) (21.8) (8.5) (9.2) (49.3)  
 

                                                           
4  The numbers in parenthesis on the separate lines give the marginal impact in relative terms. 
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VII) Concluding comments 

 

This paper had three goals. First we wanted to compare three multidimensional 

approaches to poverty and check to what extent they identified the same households as 

poor. Second we planned to better understand the determinants of poverty by estimating 

Logit regressions with five categories of explanatory variables: size of the household, age 

of the head of the household, his/her gender, marital status and status at work. Third we 

wished to introduce a decomposition procedure introduced recently in the literature, the 

so-called Shapley decomposition, in order to determine the exact marginal impact of each 

of the categories of explanatory variables. Our empirical analysis was based on data made 

available by the European panel. We used its third wave and selected five countries: 

Belgium, France, Germany, Italy and Spain. 

The following conclusions may be drawn. First the three multidimensional approaches 

adopted (the Totally Fuzzy and Relative Approach, that based on Information Theory and 

the axiomatically derived approach using the generalized FGT index) indicate that, on 

average, 80% of the households defined as poor by two approaches are identical. 

Second the impact of the explanatory variables introduced in the Logit regressions may 

be summarized as follows. There seems generally to be a U-shaped relationship between 

poverty and the size of the household as well as between poverty and the age of the 

individual. Unemployed individuals have a much higher probability, ceteris paribus, of 

being poor while the probability of being poor seems to be lower among self-employed 

than among salaried workers. Finally, ceteris paribus, married individuals, whatever their 

gender, have a lower probability of being poor than singles, divorced or widowers 

(widows). Differences between the three other categories of marital status seem to 

depend both on the country examined and on the approach adopted.   

Finally the Shapley decomposition procedure indicates clearly that the work and marital 

status have the greatest marginal impact on poverty, this being true generally for all the 

five countries and for the three approaches examined. 

In future work we plan to increase the number of indicators used in measuring 

multidimensional poverty, adopting thus recent recommendations of the European Union. 

We also plan to include additional approaches in our analysis and take a closer look at the 
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marginal impact of each category of indicators on the value taken by the 

multidimensional indices of poverty. 
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