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Abstract 
 

 

Following the line of research originated from Henderson at al. (2012), this paper focuses on how 

‘observations from the above’, in the form of night-lights satellite data, might contribute in mapping at 

very fine geographical level (ideally, one square km), two core macroeconomic indicators used 

extensively in the Sustainable Development Goals monitoring and reporting framework: Gross Domestic 

Product, GDP, and Purchasing Power Parities, PPPs. The analyses are carried out on a panel of 17 Eastern 

Europe and CIS countries for the period 2000-2013 and use indicators constructed from satellite images 

in the form of night lights, as processed by the US Department of Defense, and its Defense Meteorological 

Satellite Program’s Operational Linescan System. Estimations of GDP in current US dollars and PPP 

terms are carried out at both national and sub-national level, testing for the existence of a modifiable areal 

unit problem, and comparing results with the official available information. Maps for GDP and PPP at 

the sub-national levels are obtained as a final product of the research. 

 

 

1. Introduction 

The adoption of the Sustainable Development Goals in September 2015 by the United 

Nations General Assembly is calling National Statistics Offices (NSOs) worldwide to 

underpin a data revolution, as they are asked to extend both the scope and disaggregation 

of the data traditionally produced, and measure new economic, social and environmental 

phenomena, leaving none behind. 

There is a growing consensus in the digital era that Big Data, particularly satellite images 

captured from the above, might strengthen the capacity of traditional data sources and 

official statistics to help in monitoring sustainable well-being, thus facing the increasing 

request for more spatially disaggregated data.  

Following the line of research originated from the paper by Henderson at al. (2012), this 

paper focuses on how ‘observations from the above’, in the form of night-lights satellite 

data, might contribute in mapping at very fine geographical level (ideally, one square 

km), two core macroeconomic indicators used extensively in the SDG monitoring and 

reporting framework: GDP and PPPs.  

Nowadays, the use of night-light as proxy of GDP has becomes a standard in empirical 

economics (see, e.g., Donaldson and Storeygard (2016)). The obvious advantage in using 
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night-lights is that they generally show a good correlation with GDP, they are available 

for free and for a long time span, and they are objectively measured.  

This research uses extensively the set of information coming from satellite images, as 

processed by the US Department of Defense, and its Defense Meteorological Satellite 

Program’s Operational Linescan System (DMSP-OLS). Scientists at the National 

Geophysical Data Center (NGDC) process these raw data and distribute the final set to 

the public, thus making freely available 34 annual products from six satellites spanning 

22 years, from 1992 to 2013. However, given the proximity of the first data available for 

satellites with the dissolution of the Soviet Union and the length of the transition period 

in the economies of the region, the sample analysed in this paper goes from 2000 to 2013.  

The stable night lights are those used in this research to proxy GDP in nominal and PPP 

terms for 17 CIS and Eastern Europe countries: Azerbaijan, Armenia, Belarus, Bulgaria, 

Czechia, Hungary, Kazakhstan, Kyrgyzstan, Poland, Republic of Moldova, Romania, 

Russian Federation, Slovakia, Tajikistan, Turkmenistan, Ukraine and Uzbekistan. 

Henderson at al. (2012) were the first to use night-lights in a complete statistics and 

econometric framework to estimate, in a panel of world time series, real economic 

growth. Following their examples, the relation between lights and GDP at sub-national 

administrative levels have been deeply investigated for North Korea, Kenya, Rwanda, 

Sweden, Nigeria, India and China.  

More recently, while some papers have confirmed the ideas underlying the lights-to-GDP 

hypothesis at the country level (see, e.g., Elvidge at al. (2014)), the approach used by 

Henderson et al. (2012) have been criticized due to the implicit assumption of stable 

elasticity made in obtaining sub and/or supra-national estimates (Bickenbach et al. 

(2016), Addison and Stewart (2015)), which is hardly met under common situations 

where a modifiable area unit problem (MAUP) exists. Particularly, it has been stressed 

that the elasticity of GDP-to-lights should be statistically significant and positive, as well 

as temporally and spatially stable.  

For CIS and Eastern Europe countries, the literature on lights and GDP is practically 

non-existent, the only indirect reference being a global exercise carried out by Elvidge 

et al. (2014) on the correlation (in levels) between GDP, night-lights and population at 

national level during 1992-2012. Furthermore, to the best of our knowledge, no study 

has been so far carried out on the direct or indirect relation between lights and PPPs.  

Our paper innovates with respect to the preceding literature in at least three respects. 

First, it analyses in a systematic way the relationship between DMSP-OLS night-lights 

and GDP in CIS and Eastern Europe countries at the finer extent possible, looking at 

conditions under which lights can be used to obtain estimates of GDP and PPPs at 

detailed geographical level.  

Second, the research uses both a time and spatial approach in the analysis, particularly 

through the use of balanced panel regressions models, and tests the conditions of 

spatially and time stability of GDP-to-light elasticity.  

Third, use is made of the available national and sub-national data produced by NSOs of 

the region. After testing for the existence of temporally and spatially stable elasticity of 

GDP both in real and PPP terms with respect to lights, the estimated coefficients are used 

to map economic activity and parities at very fine geographical level, thus offering two 

sets of information that are mostly needed for SDGs monitoring and reporting.  
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We are fully aware that the estimations provided in this paper cannot replace primary 

statistics produce by NSOs of the region. However, we hope these estimates will be of 

some use for policy makers and researchers for their policy intervention, analyses and 

discussion, and contribute in partially answering the increasing demand for more 

spatially disaggregated macroeconomic data to further advance the sustainable 

development agenda. 

The scheme of the paper is as follows. The next section describes the main characteristics 

of the DMSP system and the satellite information obtained in terms of night lights. 

Section 3 details on the indices considered in empirical analyses, the transformation 

carried out on night lights information and the population data used. Section 4 follows 

with the results of the empirical applications. The last Section of the paper summarizes 

main results and concludes. 

 

2. Night-lights Data from Satellite Images 

Earth observation have been used in many respects to shed light on specific aspects of 

human development, such as economic output, population, urbanization, land, water and 

natural resources use, weather conditions and climate change, and pollution monitoring.  

In parallel, there has been a growing use of night-lights, one of the most important by-

products of satellite remote sensing, as proxy for measuring economic, social and 

environmental phenomena. 

This paper makes an extensive use of the set of information coming from satellite images, 

as processed by the US Department of Defense, and its Defense Meteorological Satellite 

Program’s Operational Linescan System (DMSP-OLS), see Croft (1979) and Doll (2008) 

on technical aspects of the programme and, for a survey on use of such images, Huang 

et al. (2014). 

A characteristic of DMSP-OLS data that has attracted most attention of researcher in the 

last years is their availability at a very fine geographical level (1 square km), thus making 

it possible to estimate through them a number of statistics at sub-national level, 

particularly those related to the level and growth of economic activity, thus providing an 

answer to chronicle lack of official statistics at the level of disaggregation requested 

within the framework of the sustainable development agenda.  

The Defence Meteorological Satellite Program (DMSP) is a Department of Defence 

program of the US Air Force Space and Missile Systems Center, which started to capture 

imagery in the early 1970s through the Operational Linescan System (OLS) sensor. One 

of the primary objectives of the OLS sensors was to collect worldwide cloud cover 

observations twice per day.  

In 1992 the National Oceanic and Atmospheric Administration (NOAA) was established 

and it processed and archived the DMSP nighttime light satellite imagery for 22 years. 

The DMSP programme has been repeatedly upgraded over time, with the latest series in 

its Version 4 spanning data for the years 1992-2013 and actually publicly available from 

NOAA from its website (http://www.ngdc.noaa.gov/dmsp/ 

downloadV4composites.html). Satellites from DMSP-OLS measure light emissions in 

the evening hours between 8:30 and 10:00 pm local time around the globe every day.  

The OLS sensor has two broadband sensors, in the visible/near-infrared (VNIR, 0.4 −
1.1𝜇𝑚) and thermal infrared (10.5 − 12.6𝜇𝑚) wavebands. The OLS is an oscillating scan 

radiometer with a broad field of view (~ 3,000 km swath) and captures images at a 
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nominal resolution of 0.56 km, which is smoothed on-board into 5x5 pixel blocks to 2.8 

km.  

Scientists at the National Oceanic and Atmospheric Administration’s (NOAA) National 

Geophysical Data Center (NGDC) process these raw data and distribute the final data to 

the public, following an undertaking of monumental difficulty. Original data are from 

the centre half of the 3000 km wide OLS swaths.  

NGDC recently reprocessing of the DMSP time series have produced 34 annual products 

from six individual sensors on satellites, called F, spanning 22 years: F10 (1992-1994), 

F12 (1994-1999), F14 (1997-2003), F15 (2000-2008), F16 (2004-2009), and F18 (2010-

2013). This is referred to as the v.4 DMSP stable lights time series, the ones used here 

for GDP and PPP analysis. 

Lights in the centre half have better geo-location, are smaller, and have more consistent 

radiometry. In processing the raw data, a number of filters are applied before releasing 

final results. Sunlit data are excluded based on the solar elevation angle. Glare is also 

excluded based on solar elevation angle. Moonlit data are omitted based on a calculation 

of lunar luminance (Croft 1979, Elvidge 2013).  

The recorded daily data are pre-processed, by removing observations of cloudy days and 

sources of lights which are not man-made, such as auroral lights or forest fires.  

Data from all orbits of a given satellite in a given year are then averaged over all valid 

nights to produce a satellite-year dataset. These are the datasets that are distributed to the 

public. As a result, each satellite-year dataset reports annual light intensities for every 

pixel around the globe at a resolution of 30 by 30 arc seconds (approximately 0.86 square 

km at the equator) between 65 degrees S and 75 degrees N latitude.  

Data are released in three different versions: raw, stable lights and the calibrated versions. 

The stable lights version removes ephemeral events such as fires and background noise. 

The calibrated version is currently available only for 2006 and has the advantage of not 

being saturated (top-coded).  

Our analyses are based on the stable lights version. Data made available to the public by 

the NOOA have been geo-referenced at national and regional levels by digital number 

(DN) using the administrative areas and boundaries (level 0 and 1, respectively) provided 

in the form of shape-files by GADM, Version 3.6, available at https://www.gadm.org. A 

geolocation algorithm was used to map the data onto the 1km grid developed for the 

NASA-USGS Global 1km AVHRR project (Eidenshink and Faundeen, 1994), that limit 

error in geolocation in the project process.  

The light intensity values of the stable lights product are recorded in a fixed range of 

digital numbers (DN) from 0 (missing or completely dark) to 63 (bright). Sensor 

saturation implies that the satellites are not able to capture a light intensity higher than 

63 DN. A small fraction of pixels, generally in rich and dense city areas, have DN values 

equal to 63.  

The saturation and blooming issues in DMSP/OLS NTL images are the main limiting 

factors in their use. Imagery from the DMSP-OLS satellite has a tendency to 

overestimate NTL imagery, an effect generally referred to as “blooming” in the literature. 

Blooming occurs when cells producing NTL cause lit pixels to extend beyond the 

source’s true illuminated area. This phenomenon can be acute in OLS imagery and it is 

more pervasive over water and snow areas, as these reflect close lights more than dark 

ground. Blooming should be of particular concern when examining coastal metropolises, 

https://www.gadm.org/
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since changes in brightness tend to be bigger in area than associated land cover changes  

(Small and Elvidge, 2013). Typically, blooming is proportional to the SOL emitted by a 

light source, such as an urban area. 

Sensor settings vary over time across satellites and with the age of a satellite, so that 

comparisons of raw DN over years can be problematic. This explains why satellites, in 

the very last years, are replaced by new ones, accompanying them for their last few years 

of life. That happened for all satellites but the last, F16, substituted by the last orbiting 

F18 without an overlapping period. A map of night lights for Europe, including Eastern 

Europe and CIS countries, is represented in Figure 1 below. 

 

 

Figure 1 Plot of night lights of Europe (including Eastern Europe and CIS countries)  

 

There are several studies aimed at radiance calibration of DN over time across satellites 

(e.g., Li and Zhou 2017, and the literature cited therein). Their goal is to make data 

comparable across time, creating a consistent time series of satellite observation that 

eliminates abrupt jumps in the series, when passing from observations of one satellite to 

another. DMSP light data collected in different years (and satellites) may have variations 

in gain settings, sensor degradation, and change in atmospheric condition.  

We did not perform such calibration on the original data, but we control for such issues, 

whenever appropriate, by using panel regression estimations with fixed effects for time 

and satellites. Such estimations are able to take into considerations the differences in the 

capacity of satellites to identify lights intensity due to obsolescence.   

For years with two satellite observations, the arithmetic average of the two outcomes is 

considered in the empirical applications. 
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The DN is not exactly proportional to the physical amount of light received (called true 

radiance) for several reasons. The first is sensor saturation, which is analogous to top-

coding. Further, the scaling factor (“gain”) applied to the sensor in converting it into a 

digital number varies for reasons that are not explained, possibly to allow Air Force 

analysts to get clearer information on cloud cover.  

Unfortunately, the level of gain applied to the sensor is not recorded in the data. The 

DMSP night-time lights provide the longest continuous time series of global urban 

remote sensing products, now spanning 22 years. The flagship product is the stable lights, 

an annual cloud-free composite of average digital brightness value for the detected lights, 

filtered to remove ephemeral lights and background noise.  

The follow on to DMSP for global low-light imaging of the earth at night is the Visible 

Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB), flown jointly by 

the same NASA-NOAA Suomi National Polar Partnership launched in 2011. These data 

are available for a shorter time period (data are indeed available on a monthly basis only 

from 2012 onwards, annually only for 2015-2016), but they are of greater precision than 

DMSP images and made available to public in a very timely way, after some few days 

from the end of each month. They offer substantial improvements in spatial resolution, 

radiometric calibration and usable dynamic range when compared to the DMSP low light 

imaging data. 

VIIRS DNB key improvements over DMSP-OLS data include a vast reduction in the 

pixel footprint (15 arc-second, about 500 m), uniform ground instantaneous field of view 

from nadir to edge of scan, lower detection limits, wider dynamic range, finer 

quantization, in-flight calibration and no saturation (Elvidge et al. 2013). Prior to 

averaging, the DNB data is filtered to exclude data impacted by stray light, lightning, 

lunar illumination, and cloud-cover. Cloud-cover is determined using the VIIRS Cloud 

Mask product.  

 

3. GDP, PPPs and Explanatory Variables 

The data on GDP are obtained from the World Bank, World Development Indicators 

database, which contains data by country on different measures of national accounts. 

Those used in this paper include current local currency unit data, current US dollars data, 

and data in PPPs (current international US dollars). PPPs time series can be obtained 

implicitly by dividing current data in local currency by the corresponding data expressed 

in PPP, in current international US dollars.  

An alternative indicator often used as proxy for GDP is electricity consumption. We 

consider here an electric power consumption (kWh per capita) indicator obtained from 

the World Development Indicators database. 

Night lights data have been used to derive a number of indicators for our empirical 

analyses, as follows. Let us indicate with 𝑉𝑗 the 𝐷𝑁 value, ranging from 0.51 to 63, and 

with 𝑁𝑗 the number of pixels with a 𝐷𝑁 value equal to 𝑉𝑗. The sum (𝑆𝐿), mean (𝑀𝐿), and 

standard deviation (𝑆𝐷𝐿) of lights are defined as: 

                                                           
1 Non-integer values may occur in years where two satellites are available (the final image value 𝐷𝑁 is 

equal to the average of the two values captured by the satellites orbiting during the same calendar year).  
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𝑆𝐿𝑖 = ∑ 𝑉𝑗 × 𝑁𝑗        

𝐾

𝑗=1

𝑀𝐿𝑖 =
𝑆𝐿𝑖

∑ 𝑁𝑗
𝐾
𝑗=1

         𝑆𝐷𝐿𝑖 = √
1

∑ 𝑁𝑗
𝐾
𝑗=1

∑(𝑉𝑗 − 𝑀𝐿𝑖)
2

𝐾

𝑗=1

 𝑁𝑗          𝑖

= 1, 2, … , 17      

 

where K may range from 63 (one satellite) to 126 (two satellites).  

Among the indicators constructed using night lights information, we considered a Gini 

night-light index. The index measures the extent to which the distribution of light 

intensities (in terms of DN) among pixels (the Lorenz curve of the traditional Gini index), 

deviates from a perfectly equal distribution. The Gini index measures the area between 

the Lorenz curve and this hypothetical line of absolute equality, expressed as a 

percentage of the maximum area under the line. Thus, a Gini index of 0 represents perfect 

equality, while an index of 1 implies perfect inequality. 

The data set used in analyses includes also population data, which are extracted from the 

World Bank national and sub-national population total estimates of the de facto mid-year 

population at national and first level administrative division.  

We construct the Gini coefficient using only information from nightlight as per the 

formulas below, where it is assumed that the 𝑉𝑗’s represent values of lights, and the 𝑁𝑗’s 

the pixels pertaining to those values. 

The Gini index (Gini 1914) is defined as follows: 

 

𝐺𝑁𝑖 =
∑ ∑ |𝑉𝑙 − 𝑉𝑗|𝑁𝑙𝑁𝑗

𝐾𝑖
𝑗=1

𝐾𝑖
𝑙=1

2 ∙ 𝐾𝑖 ∙ ∑ 𝑁𝑙
𝐾𝑖
𝑙=1

       𝑖 = 1, 2, … , 20;   𝐾𝑖  = ∑ 𝑁𝑖,𝑗

𝐾

𝑗=1

 

 

As an alternative to the Gini, we also consider as concentration measure the Bonferroni 

inequality index (Bonferroni 1930), which is based on the comparison of the partial 

means and the general mean of the light distribution:  

 

𝐵𝐹𝑖 =
1

𝐾 − 1
∑

(𝑀𝐿𝑖 − 𝑀𝐿𝑗)

𝑀𝐿𝑖
 = 1 −   

1

𝐾 − 1
∑

𝑀𝐿𝑗

𝑀𝐿𝑖
 

𝐾−1

𝑗=1

  

𝐾−1

𝑗=1

;    𝑀𝐿𝑗 =
1

𝐾
∑ 𝑉𝑗

𝐾

𝑗=1

    

 

Compared to the Gini, the Bonferroni index has a number of advantages, see e. g. 

Tarsitano (1989), most notably it is more sensitive at the lower tail of the income (light) 

distribution, where indeed night lights are concentrated in our sample: this is a common 

feature of most countries around the world, see Henderson et al. (2012). The Gini and 

Bonferroni indices are defined over the interval [0,1], with lower and upper limits 

reached in case of perfectly equal and concentrated distributions of lights in the extremes 

of the definition interval. The indices are supposed to have positive correlation with GDP 

measures, and 𝐵𝐹 ≥ 𝐺𝑁.  
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Other less used measures of concentration considered in this paper are the Mean Log 

Deviation, 𝑀𝐿𝐷, and the first, second and third quartiles of the lights distribution, as 

well as the inter-quartile difference, 𝐼𝑄𝐷, which have straightforward definitions. 

We also follow other authors in considering, as possible explanatory variables, indices 

aimed at measuring the extent of urbanization in the countries analysed. In this respect, 

it is quite common to use a threshold of 𝐷𝑁 = 7 or 𝐷𝑁 = 10, e. g. Imhoff et al. (1997), 

as the values to discriminate between urban and non-urban areas. The first index, the 

Urban Light Index, 𝑈𝐿𝐼, has been proposed by Yi et al. (2014): 

  

𝑈𝐿𝐼𝑖 = 100 × ∑
𝑉𝑗

𝑚𝑎𝑥(𝑉𝑗)
×

𝑐𝑗

∑ 𝑐
 

𝑚𝑎𝑥𝑉𝑗

𝑗=7 𝑜𝑟 10

   

 

where 𝑐𝑗 and ∑ 𝑐 are the count of 𝐷𝑁 and the number of lit pixels, respectively. Here, 
𝑉𝑗

𝑚𝑎𝑥(𝑉𝑗) 
 indicates the brightness, which reflects the light intensity of each area, while 

𝑐𝑗

∑ 𝑐
 

reflects the weight of 𝐷𝑁. 

Finally, as an alternative indicator of urbanization, we consider in our analyses the Night 

Light Index, 𝑁𝐿𝐼, and its two subcomponents, the Mean Light Intensity Index, 𝑀𝐿𝐼𝐼, 

characterizing light intensity, and the Light Area Index, 𝐿𝐴𝐼, characterizing the light 

spatial distribution of each area. This is an index originally proposed by Yang et al. 

(2009), and it is supposed to accommodate for three main factors affecting the degree of 

urbanization: urban population, industrial structure, and build-up area distribution. The 

index and the components are defined as follows: 

 

𝑁𝐿𝐼𝑖 ≡ 𝑀𝐿𝐼𝐼 × 𝐿𝐴𝐼 =
∑ (𝑉𝑗 × 𝑁𝑗)𝐾

𝑗=1

63 × ∑ 𝑁𝑗
𝐾
𝑗=1

×
∑ 𝑁𝑗

𝐾
𝑗=1

∑ 𝑁𝑗
𝐾+1
𝑗=1

   

 

In computing the 𝐿𝐴𝐼 index, the sum of pixels at the denominator includes also those 

with DN = 0. 𝑀𝐿𝐼𝐼 is the ratio of the actual lights compared to its maximum value (the 

value obtainable if all pixel were saturated): it represents a measure for light intensity. 

𝐿𝐴𝐼 is the percentage of lit pixels over total area (lit and unlit) of the country.  

A sense of our data-set is provided by the statistics for GDP and some derived night-

lights indicators for the 17 Eastern Europe and CIS countries considered, as reported in 

Table 1.  

In ‘Stan’ countries, a high fraction of pixels, generally above 90%, is unlit. This is a 

characteristic in common with Russia, where the unlit area is a 92.5% of the entire 

territory. The lit area is predominant in most Eastern Europe countries, notably Czechia 

(5.0%), Poland (17.3%), Slovakia (28.5%), Hungary (36.8%), Bulgaria (46.0%) and 

Romania (47.0%). Czechia, Poland and Slovakia show a relatively high degree of 

urbanization and, in general, percentages of lit pixels - in the frequencies over 10 𝐷𝑁 - 

larger than 35%. Top-coded areas are virtually non-existent in Kazakhstan, Moldova, 

Kyrgyzstan and Tajikistan. With the exception of Moldova, these countries show the 

lowest levels of population densities in the whole region. 
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Overall, higher values of mean lights tend to be associated with higher variability among 

frequencies. Higher mean values of 𝐷𝑁 are found in richer realities having top GDP per 

capita values in terms of PPPs, Czechia, Poland, Slovakia, Hungary and Russia, showing 

a clearly positive correlation between lights and GDP, which seems at odds with Martinez 

(2019) findings of a negative relation between GDP and night-time lights. In this respect, 

electricity consumption growth rates data seem less correlated with GDP changes than 

satellite information on light average growths, and give misleading indications over the 

whole period i.e. in Azerbaijan, Moldova, Tajikistan and Uzbekistan.   

Among the poorest and relatively sparsely populated countries of CIS, like Kyrgyzstan 

and Tajikistan, a great percentage of pixels are unlit, the average intensity of lights is 

low (below 8.0), the degree of urbanization shows the minimum values in the region, and 

top-coded areas are practically absent.  

While richer countries tend to have higher average digital numbers, geography and 

population density also play strong roles. The mean 𝐷𝑁 reaches its peak in richer 

realities, notably Eastern Europe countries, which show the highest levels of GDP 

indicators among the countries in the sample. For these two countries, the indicators in 

Table 1 display a quite similar pattern: low percentages of unlit area, relatively strong 

urbanization levels and higher values of light concentration, average percentage of top-

coded areas, and relatively high population density.  

 

TABLE 1 HERE 

 

Cross-section and panel comparisons usually perform better among countries with 

similar culture in terms of use of lights (i.e. energy-saving policies), geographical 

characteristics, population density, and top-coding magnitude.  

As clearly evidenced from the descriptive analyses above and the indications emerging 

from Table 1, this is not completely the case in our sample of countries, which however 

show, in their distinct trajectories and patterns, especially those of Eastern Europe and 

CIS countries, some sub-regional commonalities and trends.  

In the empirical part of this work, we will also explore whether changes in dispersion 

measures (like the Gini and the Bonferroni indices, the inter-quintile as well as the 

standard deviation of lights), the degree of urbanization, the fraction of unlit and top-

coded area, contribute additionally in modelling and forecasting GDP growth and PPPs 

measures and map them at sub-national levels.  

 

4. Model and Empirical Results 

The analytical approach used here is similar to the one proposed in Henderson et al. 

(2012), who in their pioneering work used a panel model with country and year effects 

to predict GDP at the international level through night lights, and where country effects 

controlled for factors like lighting technology and investment in outdoor lighting, 

whereas year effects monitored differences in light sensitivity across the satellites and 

changes in global external conditions, like technology and economic conditions.  

In our applications, we estimate a panel model where the dependent variable,  𝑦𝑖,𝑡, 

represents GDP, and the 𝑥𝑖,𝑡 are the explanatory variables, defined through different 

night-lights metrics, population and energy consumption data.  
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The measures of GDP considered are those that permit, based on model fitted data, to 

estimate PPP measures, which are not directly supposed to be in relation with measures 

of night lights. These are GDP in current US dollars and in PPP. 

Concretely, the various steps followed in the analyses are as follows:  

(a) Identification of the best performing series in each group of night-light-based 

indicators (standard measures, dispersion indices, measures of urbanization, other 

series, including population and energy consumption) using pooling regressions;  

(b) Estimation of panel data models for both GDP in current US dollars and PPP 

(current international US dollars) with national data for the 17 countries; 

(c) Conversion of the estimated values of the model for GDP in current US dollar to 

local currency; 

(d) Derivation of implicit PPP estimates from the two models and comparison with 

World Bank PPP time series estimates; 

(e) Application of the coefficients obtained with the estimation of the national model 

for GDP in current US dollars to sub-national night-lights indicators available at 

NUTS 1 level; 

(f) Comparison of the data estimated in step (e) with the official regional available 

data published by countries to verify the existence of a MAU problem; and 

(g) Use of the estimated coefficient to obtain further space disaggregation of the 

interest series, namely GDP and PPP. 

Let us analyse, step by step, how the procedure above was carried out for our data-set. 

Preliminary analyses on our two GDP series, 𝑦𝑖,𝑡, suggest that - based on Pesaran (2007) 

CIPS tests -, the panel should be estimated in first differences. The preliminary analyses 

made using pooled regressions on the rate of growth against standard measures of lights 

(sum and mean in log terms, and the corresponding per-capita values), dispersion 

measures (the Gini and the Bonferroni indices, the mean log deviation, the inter-quintile 

difference as well as the standard deviation of lights), different measures of urbanization 

(the night light intensity index, 𝑁𝐿𝐼, and its two components, the urban light index, 𝑈𝐿𝐼, 

with lower threshold at 7 or 10 𝐷𝑁), population density, as well as energy consumption, 

shows that the series performing better are the sum of light per-capita, the ratio of 

standard deviation to mean of lights, the Gini concentration index, and the urban light 

index, with 𝐷𝑁 = 10. Given the upwards trend characterizing lights and GDP data, both 

series are expressed in log-difference in our panels, while other series, for their bounded 

characteristic, are considered in level form. 

A flavour of our data-set, composed by 221 observations when expressed in growth rates, 

is provided in the conditioning plots reported in Figures 2 and 3. Bars at top indicates 

the corresponding graphs (by years) from left to right, starting from the bottom. Further 

insights on the heterogeneity across years and countries are provided in Figure 4, where 

it emerges a certain degree of country and time-heterogeneity along the reference period. 
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Figure 2 Conditioning plots of GDP in PPP (current international US dollars), by years, 

2001-2013 

  

Figure 3 Conditioning plots of GDP in PPP (current international US dollars), by country, 

2001-2013 
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Figure 4 Heterogeneity across years and countries of GDP in PPP (current international 

US dollars), 2001-2013 

 

The results obtained from the estimations of pooled linear regression, random and fixed 

effects models, reported in Table 2, show a strong significance of the exogenous variables 

identified above for both GDP series.  

The Hausman tests statistics of 6.827 and 7.160 respectively for GDP in PPP (current 

international US dollars) and GDP at current US dollars, with their associated p-values 

of 0.145 and 0.128, lead to accept the null of random effects against a fixed effects model, 

while Breusch-Pagan Lagrange Multiplier tests for random effects uniformly reject the 

null that variances across entities are zero in all models considered. 

  

TABLE 2 HERE 

 

After conversion of the estimated values of the model for GDP in current US dollar to 

local currency using official exchange rates available in the World Bank data-base, 

implicit PPP estimates are obtained from the two models using the coefficients reported 

in Table 2, and comparisons are made with World Bank PPP time series estimates, after 

reporting estimates of growth rates to level variables for the two measures of GDP. The 

correlation of the two series with official PPPs is strong, equal over the whole 2000-2013 

sample and for all data obtained for the 17 countries, to 0.981. Similar results are 

obtained for GDP measures used in the analyses.  

When the estimated coefficients are applied to subnational lights indicators at the level-

1 administrative official boundaries, and the results compared with the available data on 

GDP at current US dollars, the correlation between the official and estimated level data 

show values close to those obtained for PPPs (step (f) of our procedure), thus making it 

feasible to proceed to step (g). Mapping of GDP and PPP data are not reported here, but 

will be included, in the form of summary choropleth maps, in an extended and completed 

version of this paper.  

 

5. Conclusions 

Spatially disaggregated maps of GDP and PPP, especially if updated on an annual basis 

or at higher frequency, would be extremely beneficial for tracking the effectiveness of 

policy efforts in specific areas or, for example, evaluating the consequences of natural 
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disasters, conflicts or other general policy purposes. Satellite images in the form of night 

lights could help in better understanding those economic phenomena and their space-

temporal dynamics. 

The sub-national analyses carried out in this paper had a twofold objective. First, to 

examine the feasibility of applying the country level approach to the sub-national level 

on a country-by-country basis, and second to explore the opportunity of using 

global/regional models for countries where sub-national data on GDP are either missing 

or deemed to be unreliable. Furthermore, attempts to estimate sub-national PPPs data, 

although important to identify space price dynamics and measuring, amongst others, 

poverty lines at sub-national level, so far have provided quite unsatisfactory results, 

whilst the way to obtain information through traditional approaches is practically 

unfeasible for costs reasons. 

The analyses and outcomes of this research rest on the assumption that coefficients 

describing GDP at the national level continue being of use at the finer disaggregated 

geographical level.  

MAUP is a well-known problem in geography and spatial analysis. However, there is 

scarce research on MAUP’s impact in studies that make extensive use of satellite images, 

particularly those obtained from DMSP images, see e. g. Chen and Nordhaus (2019). 

Indeed, the majority of literature on socio-economic spatial disaggregation through night 

lights rests on the assumption of negligible MAUP. This is indeed a line for future 

research on the GDP-PPP-nightime images relation, possibly with use of sensitivity 

analysis. 

While the OLS is remarkable for its detection of dim lighting over a long time span, the 

quality of its mapping products could be improved in a number of ways. The main 

shortcomings of the OLS data include the following, in part resolved by the introduction 

of the new VIIRS products: (a) granular spatial resolution; (b) lack of on-board 

calibration; (c) limited dynamic range; (d) signal saturation in urban populated centres; 

(e) limited data recording and download capabilities; and (f) lack of multiple spectral 

bands for discriminating lighting types. The use of VIIRS data could clearly improve on 

the results presented in this paper, permitting estimations and updating of maps at higher 

frequencies, but longer time series of data would be necessary to obtain sufficient 

information for use in a panel framework. 

The research could also expand by analysing images captured by other non-US satellites. 

European data on earth observations are another incredible source of statistics 

information, with Copernicus being perhaps the most ambitious earth observation 

programme to date. This initiative, headed by the European Commission in partnership 

with the European Space Agency, is actually providing accurate, timely and easily 

accessible information.  

The information provided by this incredible source of information for Sustainable 

Development Goals monitoring and reporting is in its preliminary phase, but there is an 

enormous amount of information awaiting for investigation to help shape the future of 

our planet for the benefit of all, leaving none behind.  
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Table 1 Main statistics of night lights and GDP, averages over the available years, 2000-2013 

Statistics Armenia Azerbaijan Bulgaria Belarus Czechia Hungary Kazakhstan Kyrgyzstan Moldova 

% Area unlit (𝐷𝑁 = 0) 78.4% 70.2% 46.0% 70.8% 5.0% 36.8% 95.0% 91.7% 57.5% 

% Urban area        

(10 ≤ 𝐷𝑁 ≤ 63) *  

22.3% 18.3% 14.5% 19.9% 43.6% 28.9% 20.3% 19.5% 9.8% 

‰ Top-coded area 

(𝐷𝑁 = 63) * 

0.95‰ 0.46‰ 0.42‰ 0.49‰ 1.36‰ 1.27‰ 0.11‰ 0.04‰ 0.02‰ 

Mean (𝐷𝑁) 8.79 8.00 6.97 8.19 12.47 10.21 8.54 7.81 5.92 

St. Dev. (𝐷𝑁) 9.73 9.26 7.13 8.80 10.23 9.94 10.03 7.68 6.16 

Second quartile (𝐷𝑁) 5.6 5.0 4.9 5.6 8.9 6.6 5.2 5.3 4.5 

Gini (𝐷𝑁) 0.436 0.446 0.382 0.429 0.378 0.419 0.470 0.393 0.363 

Bonferroni (𝐷𝑁) 0.521 0.523 0.462 0.507 0.473 0.507 0.546 0.477 0.431 

Population density 

(population/pixel) 

65.3 65.7 54.6 18.8 73.0 63.3 3.3 17.1 61.9 

GDP per capita, PPP 

(constant 2011 

international $) 

5 730 11 057 12 791 13 136 26 147 21 740 17 071 2 555 4 145 

% growth rate, GDP 

(constant 2010 US$) 

7.3 11.7 6.3 3.7 2.4 1.7 7.8 4.4 5.0 

% growth rate, Mean 

Lights (𝐷𝑁) 

4.0 3.9 3.9 3.9 0.8 2.9 3.2 2.9 3.5 

% growth rate, Electric 

power consumption 

(kWh per capita) 

3.1 0.2 1.5 1.8 0.7 1.3 4.1 0.8 -1.5 

Statistics are calculated averaging data over the period 2000-2013 

Rates of growth are calculated with the compound interest formula over the period 2013-2000 

* Percentages calculated on total lit area  

 

 



17 

 

Table 1 (continue) Main statistics of night lights and GDP, averages over the available years, 2000-2013 

Statistics Poland Romania Russia Slovakia Tajikistan Turkmenistan Ukraine Uzbekistan 

% Area unlit (𝐷𝑁 = 0) 17.3% 47.0% 92.5% 28.5% 89.9% 91.9% 58.4% 82.7% 

% Urban area (10 ≤ 𝐷𝑁 ≤
63) * 

36.2% 16.7% 25.7% 35.2% 17.0% 24.6% 15.0% 29.2% 

‰ Top-coded area (𝐷𝑁 =
63) * 

1.64‰ 0.44‰ 0.19‰ 0.37‰ 0.00‰ 0.18‰ 0.18‰ 0.38‰ 

Mean (𝐷𝑁) 11.36 7.58 9.75 10.66 7.29 9.16 7.08 9.66 

St. Dev. (𝐷𝑁) 10.19 7.77 10.65 9.04 7.04 10.32 7.61 9.72 

Second quartile 7.9 5.6 5.9 7.7 5.2 5.3 4.8 6.4 

Gini (𝐷𝑁) 0.401 0.385 0.461 0.380 0.379 0.473 0.406 0.430 

Bonferroni (𝐷𝑁) 0.496 0.467 0.549 0.474 0.462 0.562 0.483 0.525 

Population density 

(population/pixel) 

64.6 52.8 3.5 62.3 33.3 6.6 44.1 38.8 

GDP per capita, PPP 

(constant 2011 

international $) 

18 931 15 469 20 498 21 725 1 839 8 133 7 261 3 546 

% growth rate, GDP, 

(constant 2010 US$) 

3.6 3.8 4.5 4.2 8.0 8.7 3.7 7.2 

% growth rate, Mean 

Lights (𝐷𝑁) 

3.1 3.5 3.1 1.6 2.9 3.9 3.4 1.9 

% growth rate, Electric 

power consumption (kWh 

per capita) 

1.5 1.8 1.8 0.4 -1.9 3.2 2.0 -0.6 

Statistics are calculated averaging data over the period 2000-2013 

Rates of growth are calculated with the compound interest formula over the period 2013-2000 

* Percentages calculated on total lit area  
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Table 2 Main results of the pooled regressions and panel fixed and random effect models , 2001-2013 

 𝐺𝐷𝑃, PPP (current international $) 𝐺𝐷𝑃 (current US$) 

 Pooled Fixed Effect Random Effect Pooled Fixed Effect Random Effect 

  Constant -0.1167** 

(0.0421) 

 

- -0.1834** 

(0.0574) 

-0.2395* 

(0.0954) 

 

- -0.3065** 

(0.1158) 

𝑙𝑛(𝑆𝐿 𝑃𝑂𝑃⁄ ) 0.0542***   

(0.0158) 

 

0.0565***     

(0.0149) 

 

0.0548*** 

(0.0150) 

0.1652***   

(0.0360) 

 

0.1668***          

(0.0348) 

 

0.1646*** 

(0.0349) 

𝑆𝐷𝐿 𝑀𝐿⁄  0.1722*** 

 (0.0376) 

0.1579*** 

 (0.0360) 

0.1684*** 
 (0.0359) 

0.6659*** 

 (0.0851) 

0.6162*** 

 (0.0839) 

0.6533*** 
 (0.0833) 

𝐺𝑁 0.3375*** 

 (0.0694) 

0.3273*** 

 (0.0713) 

0.3312*** 
 (0.0695) 

0.9406*** 

 (0.1572) 

1.0367*** 

 (0.1661) 

0.9797*** 
 (0.1590) 

𝑈𝐿𝐼 (𝐷𝑁 ≥ 10) 0.0017  

(0.0015) 

 

0.0088**  

(0.0027) 

 

0.0038 

(0.0019)* 

-0.0003  

(0.0035) 

 

0.0122  

(0.0063) 

 

0.0013 

(0.0040) 

Nr. of obs. 221 221 221 221 221 221 

𝑅2 0.297 0.324 0.303 0.425 0.460 0.434 

𝐹 22.855*** 24.012*** 23.474*** 39.946*** 42.529*** 41.496*** 

𝑅2 not corrected. *** 𝑝 < .001; ** 𝑝 < .01; * 𝑝 < .05. Country (excluding the pooled models) and  

time dummies are included in the estimated models.  

 

 

 

 

 

 

 


