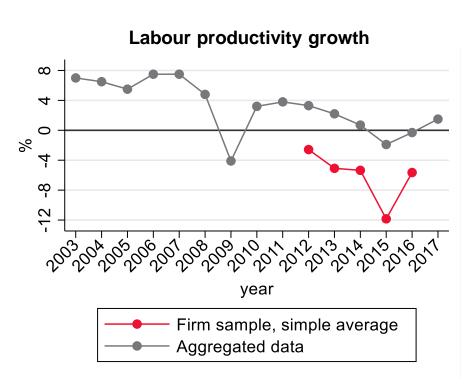


## PRODUCTIVITY TRENDS IN RUSSIAN INDUSTRIES: FIRM-LEVEL EVIDENCE

Research and forecasting department


The views expressed in this paper are solely those of the authors and do not necessarily reflect the official position of the Bank of Russia. The Bank of Russia assumes no responsibility for the contents of the paper

2019

# Productivity dispersion in Russian industries

- We analyze whether the decline in productivity growth is homogeneous
- And whether the productivity gap between leaders and other companies increases or decreases?

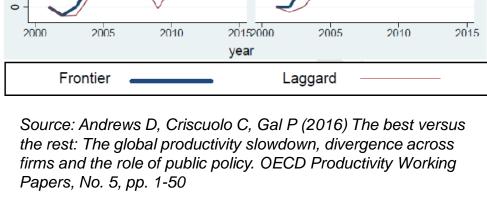
- We define labor productivity as a ratio of value added to labour input
- Rosstat uses hours worked as labour input (Rosstat's decree 28.04.2018 N 274)
- We use the number of employees of establishments
- We use multifactor productivity as alternative indicator to check or results



# Thanks to access to firm-level data we can analyze what stands behind the aggregate productivity trends

Ö

4


N

Establishment's productivity is highly heterogeneous even within narrowly defined industries (Hsieh and Klenow, 2009)

- Productivity growth is negatively correlated with initial level of productivity (Griffith, Redding, Simpson, 2009)
- Andrews et al. (2016) and Cette et al. (2018) confirm that for OECD countries and France
- However despite fast laggards' fast growth the gap between them and leaders is wide and keeps growing (Berlingieri, Blanchenay, Calligaris, Criscuolo, 2017)
- We confirm this results for Russia and find that the gap in Russia is even higher than in several countries
- We confirm divergence by means of SFA

Labour productivity: value added per worker (2001-2013)

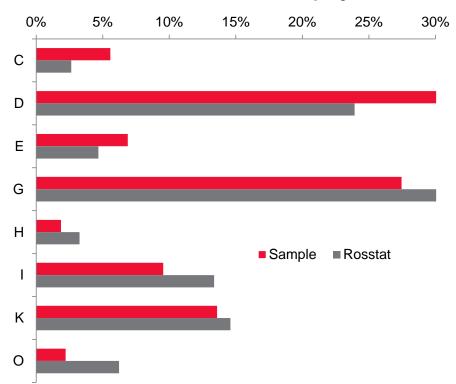
Manufacturing



Services

3

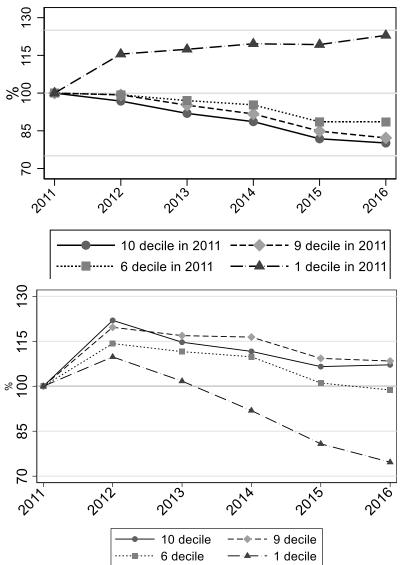
## Data on Russian establishments


- We use Ruslana database, which includes establishments' financials, data on labour
- 2011-2016 data includes: revenue, fixed assets, number of employees, cost of sales, labour cost, date of incorporation

| Value added = revenue $-\cos t$ of sales $+$ labour cost |                     |  |  |  |  |
|----------------------------------------------------------|---------------------|--|--|--|--|
|                                                          | Value added         |  |  |  |  |
| Labour productivity =                                    | Number of employees |  |  |  |  |

|                                                          |                                                                                                    | 2011   | 2012   | 2013   | 2014   | 2015   | 2016   |
|----------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------|--------|--------|--------|--------|--------|
| С                                                        | Mining and quarring                                                                                | 916    | 960    | 1 226  | 1 417  | 1 508  | 1 378  |
| D                                                        | Manufacturing                                                                                      | 9 327  | 9 530  | 12 707 | 14 668 | 15 579 | 16 376 |
| Е                                                        | Electricity, gas and water supply                                                                  | 2 154  | 2 136  | 2 829  | 3 253  | 3 543  | 3 680  |
| G                                                        | Wholesale and retail trade; repair of motor vehicles, motorcycles and personal and household goods | 8 930  | 10 755 | 17 417 | 22 544 | 24 207 | 25 633 |
| Н                                                        | Hotels and restaurants                                                                             | 973    | 978    | 1 479  | 1 706  | 1 875  | 1 873  |
| Ι                                                        | Transport, storage and communication                                                               | 3 172  | 3 384  | 4 635  | 5 405  | 5 820  | 6 109  |
| Κ                                                        | Real eatate, renting and busines activivties                                                       | 7 531  | 7 980  | 11 412 | 14 457 | 16 262 | 17 705 |
| O Other community, social and personal sevice activities |                                                                                                    | 1 606  | 1 556  | 2 407  | 2 671  | 2 671  | 2 707  |
|                                                          | Total                                                                                              | 34 609 | 37 279 | 54 112 | 66 121 | 71 465 | 75 461 |

### Data on Russian establishments


- We exclude firms with number of employees less than 10
- Unbalanced panel made up of between 34 609 in 2011 and 75 461 in 2016
- On average our sample includes 25% of employees in selected sectors
- Distribution of employees between sectors is very close to Rosstat's
- We divide our sample into 173 industries (at 3-4 four digit level of OKVED). Within each industry we find groups of productivity leaders and estimate SFA models



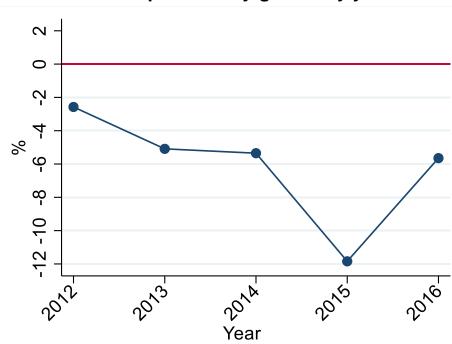
#### Sectors' shares in total employment

# Leader groups definition influences the conclusion about convergence

- Cette et al. (2018) show that depending on leaders definition one can make opposite conclusions
- It is also true for Russian establishments:
  - If groups of productivity leaders are fixed and they are defined according 2011 performance, then productivity of leaders decreases whereas productivity of laggards increases – argument for convergence
  - If groups are defined with a renewal (each year of the companies that define it), then the gap between leaders and laggards opens up
- In order to check the hypothesis about productivity divergence we estimate SFA models which define leaders as the most productive establishments during the whole period



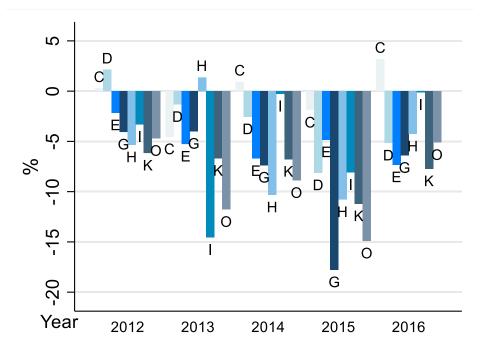
### Differences between $\beta$ - and $\sigma$ - convergence


2 types of convergence:

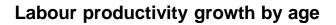
 $\beta$ -convergence is necessary but not sufficient condition for  $\sigma$ -convergence

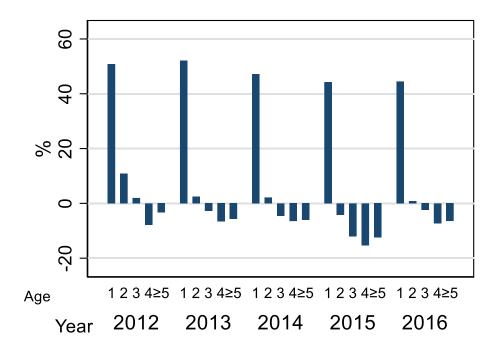
Fast growth of productivity of laggards doesn't mean that the gap is decreasing

|                                 | β convergence                                                                            | σ convergence                                    |
|---------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------|
| When<br>convergence is<br>found | Laggards' productivity grow<br>faster than leaders'<br>productivity                      | Dispersion of productivity decreases             |
| Sample                          | Only establishments present<br>in sample for two<br>consecutive years (survival<br>bias) | All establishments                               |
| Permutation sensitivity         | Permutation is regarded as convergence                                                   | Permutation is not<br>regarded as<br>convergence |


- The highest growth was in 2012
- 2015 was the worst in terms of productivity growth
- In 2016 productivity growth returned to average in 2013-2014

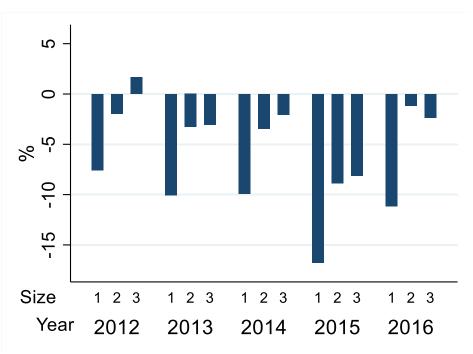



#### Labour productivity growth by years


- Productivity in Mining and quarrying (C) grew faster than in other sectors
- Productivity in Wholesale and retail trade (G) decreased faster than in other sectors

#### Labour productivity growth by sectors




- Productivity grows fast in newly founded establishments
- After a few years productivity growth slows down





- Productivity of large establishments declined less than productivity of other establishments
- Small establishments are on the contrary the most vulnerable

#### Labour productivity growth by size



Size 1: Workforce of less than 50 employees, Size 2: Workforce of 50 to 249 employees, Size 3: Workforce of 250 or more employees.

## β- convergence

### $\Delta l p_{it} = \beta_0 + \beta_1 gap_{it-1} + controls$

 $\Delta l p_{it}$  labour productivity growth

 $gap_{it-1}$  distance to frontier (frontier is defined as the average productivity among 10% the most productive firms in each of 173 industries)

Controls include dummies for years, sectors, size; as well as age and age squared

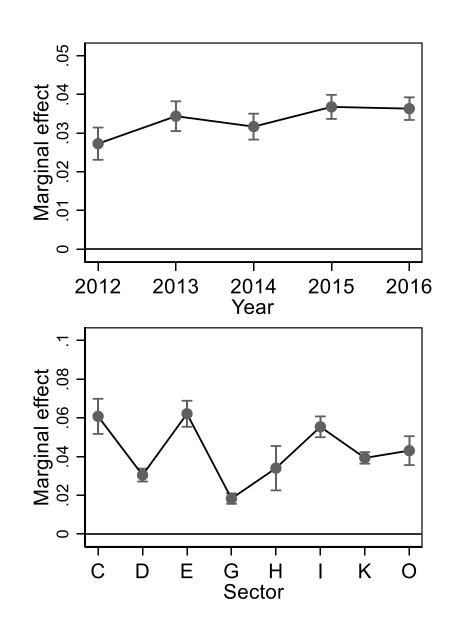
Productivity growth negatively correlated with the initial level of productivity.

This result is robust to different specification, including estimation of multifactor productivity instead of labour productivity

| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |         |
|-------------------------------------------------------|---------|
| year                                                  |         |
| •                                                     | 3 -0.02 |
| •                                                     | -0.02   |
|                                                       |         |
| 2014 -0.02*** 0.004 -0.03                             | -0.01   |
| 2015 -0.08*** 0.003 -0.08                             |         |
| 2016 -0.1*** 0.003 -0.02                              | -0.01   |
|                                                       |         |
| sector                                                |         |
| D -0.01 0.007 -0.02                                   | 0.00    |
| E -0.02*** 0.008 -0.04                                | -0.01   |
| G -0.07*** 0.007 -0.08                                | -0.05   |
| H -0.03*** 0.009 -0.05                                | -0.01   |
| l -0.02*** 0.007 -0.034                               | -0.005  |
| K -0.04*** 0.007 -0.06                                | -0.03   |
| O0.04*** 0.0080.06                                    | -0.02   |
|                                                       |         |
| size                                                  |         |
| 2 0.09*** 0.002 0.08                                  | 3 0.09  |
| 3 0.09*** 0.003 0.08                                  | 8 0.09  |
| <i>age</i> <u>-0.003***</u> <u>0.000</u> -0.003       | -0.003  |
| <i>age</i> <sup>2</sup> 0.00002*** 0.000 0.00001      | 0.00002 |
| <i>const</i> -0.10*** 0.008 -0.12                     | -0.09   |

Number of obs 201,920 Adj. R-squared 0.023 \*\*\* p<0.01, \*\* p<0.05, \* p<0.1

# $\beta$ - convergence by years and sectors


$$\Delta l p_{it} = \beta_0 + \beta_1 gap_{it-1} + controls + \sum_{l=2013}^{2016} \beta_l * Y_l \\ * gap_{it-1} + \sum_{m=2}^{8} \beta_m * S_m * gap_{it-1}$$

 $\Delta l p_{it}$  labour productivity growth

 $gap_{it-1}$  distance to frontier (frontier is defined as the average productivity among 10% the most productive firms in each of 173 industries)

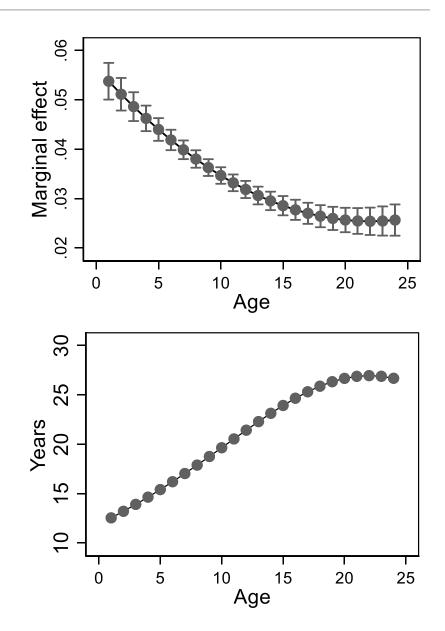
 $Y_l$  - dummy for year l

 $S_m$  - dummy for sector m



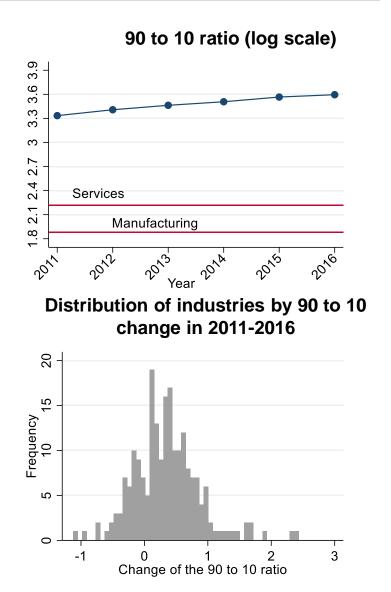
# $\beta$ - convergence by age

$$\Delta lp_{it} = \beta_0 + \beta_1 gap_{it-1} + \beta_2 age_{it} + \beta_3 age_{it}^2 + controls + \beta_4 age_{it} * gap_{it-1} + \beta_5 age_{it}^2 * gap_{it-1}$$


 $\Delta l p_{it}$  labour productivity growth

 $gap_{it-1}$  distance to frontier (frontier is defined as the average productivity among 10% the most productive firms in each of 173 industries)

 $Y_l$  - dummy for year l


 $S_m$  - dummy for sector m

Catching up impulse dies out soon.



### $\sigma$ - convergence

- Dispersion as σ convergence indicator is sensitive to outliers
- 90 to 10 ratio (ratio of 90<sup>th</sup> to 10<sup>th</sup> percentile of productivity distribution) is more robust to outliers
- According to 90 to 10 ratio the gap between leaders and laggards in Russia is bigger than in OECD countries (Berlingieri et al., 2017)
- In most industries the 90 to 10 ratio increases in 2011-2016 indicating divergence



Red lines correspond to estimations of Berlingieri et al. (2017) for several countries

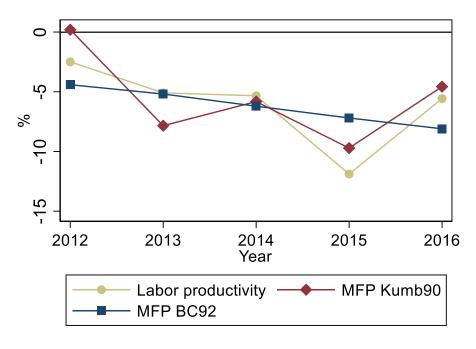
## Stochastic frontier model for convergence

#### Methodology:

- Not all establishments are technically efficient, some operates below the production frontier.
- For each industry we estimate the following production function  $y_{it} = \beta_0 + \beta_1 l_{it} + \beta_2 k_{it} + \beta_3 l_{it} k_{it} + \beta_4 t + \beta_5 l_{it} t + \beta_6 k_{it} t + \beta_7 l_{it}^2 + \beta_8 k_{it}^2 + \beta_9 t^2 + v_{it} - u_{it} = f(k, l, t) + v_{it} - u_{it}$

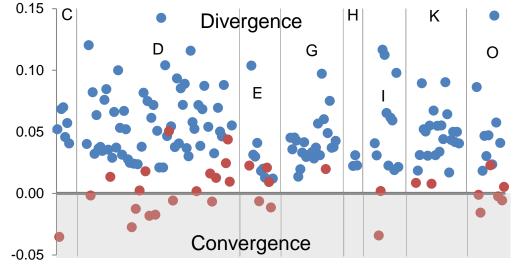
$$v_{it} \sim N(0, \sigma_v^2)$$
  
 $u_{it} \ge 0 - \text{ inefficiency term}$ 

Two specifications for inefficiency term


$$u_{it} = G(t)u_i, u_i \sim N^+(0, \sigma_u^2), G(t) = e^{\gamma(t-T)}$$
$$u_{it} = G(t)u_i, u_i \sim N^+(0, \sigma_u^2), G(t) = \left[1 + \exp(\sum_{p=2}^3 \beta_p * G_p + \sum_{j=2013}^{2016} \beta_j * Y_j)\right]^{-1}$$

- $\gamma$  convergence rate, if  $\gamma$ >0 establishments converge to the frontier
- t time
- T terminal period
- $G_p$  dummy for size
- $Y_j$  dummy for year *j*,  $\beta_j$  <0 means increasing gap since the first years

# Stochastic frontier models results


- Using stochastic frontier model we estimate the multifactor productivity (MFP) growth
- According to our both specifications MFP growth is close to labour productivity growth





# Stochastic frontier model results confirm divergence

- Leaders are defined according to their efficiency during the whole period
- According the first specification in 139 out of 173 industries establishments diverge from the frontier, in the rest of the industries the convergence rate is insignificant
- According to the second specification in 97 industries out of 171 the gap in 2016 was wider than in 2011, in 10 industries the gap in 2016 was narrower than in 2011



Significant parameter
Insignificant parameter

# Conclusions

- According to series of studies productivity is highly heterogeneous even within narrowly defined industries.
- Almost in all studies concerning productivity growth and productivity level βconvergence is found. It means that laggards grow faster than leaders. However the gap between these groups remains wide.
- In Russia we confirm these results and show that the catching up process is mostly driven by young firms starting their life. As firms age the catching up impulse dies out soon. In Russia the gap to the frontier is even higher than in other countries.
- As β and σ –convergence are sensitive to group of leaders/laggards definition, we check our results using stochastic frontier model. According to this model leaders are defined based on the establishment's performance during the whole period. The results confirm the conclusion that in most industries establishments diverge from the frontier.



## PRODUCTIVITY TRENDS IN RUSSIAN INDUSTRIES: FIRM-LEVEL EVIDENCE

Research and forecasting department

The views expressed in this paper are solely those of the authors and do not necessarily reflect the official position of the Bank of Russia. The Bank of Russia assumes no responsibility for the contents of the paper

2019