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Abstract

Well-being indices such as the Gallup-Healthways Well-Being Index, the Kids Count Index,
the Opportunity Index, the Healthy Planet Index, and the Human Development Index combine
large amounts of data about geographic areas into a single number in order to compare economic
and social well-being across time and space. The computation of these types of indices is all
too often left without scrutiny. Are the proper variables being used? And what is the best
way to determine the right variables? Even if the correct variables are used, what should be
their relative importance? Many indices attempt to avoid these questions by weighting all
variables equally, using the variables from a related index, or basing the calculations solely
on availability of public data. This paper uses the example of the annual Annie E. Casey
Foundation's Kid Count Index. The purpose of the Kids Count Index is to provide an objective
and consistent third-party measurement of child welfare in every U.S. state. This paper suggests
using a methodology based on Knippenberg (2014) that weights the variables into orthogonal
dimensions. Variables are not the same thing as dimensions, so while most indices weight
variables equally, this study recommends orthogonalization of the data so that dimensions are
weighted equally. This minimizes the e�ect of correlation between variables. This procedure
ensures that all underlying dimensions are equally represented in the �nal index calculation.
This study recommends that well-being indices be constructed with special attention paid to
the system of weighting between variables.
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1 Introduction

In the widely popular book Freakonomics, authors Steven Levitt and Stephen Dubner ponder how

to measure the e�ect of parenting on children. In one passage they write:

�Still, the question of how much parents matter is a good one. It is also terribly com-
plicated. In determining a parent's in�uence, which dimension of the child are we mea-
suring: his personality? His school grades? His moral behavior? His creative abilities?
His salary as an adult? And what weight should we assign each of the many inputs

that a�ect a child's outcome: genes, family environment, socioeconomic level, schooling,
discrimination, luck, illness, and so on?� [emphasis added] (Levitt and Dubner 2005, pg
141).

The authors posed this question under the assumption that it is unanswerable. In essence, it is

the same question that the Gallup-Healthways Health Index and the Annie E. Casey Foundation's

Kids Count Index attempt to answer. The idea of what variables or dimensions to include and what

weights to assign those variables is a complicated issue. Most researchers are so unsure as to the

correct weights that they either give arbitrary, equal weights to all the data involved, or they do

not even attempt to discuss it. Many researchers are not even aware that when creating an index,

they think that they are avoiding the issue by choosing to use an obscure statistical distance metric,

but every known distance metric makes the implicit assumption that each variable included has an

equal weight.

On the other hand, those researchers sho do decide to give di�erent weights to variables are

opening themselves to a great deal of criticism. A recent article in The Economist, �How to lie with

indices� (2014a) lampooned creators of indices, particularly those of international country rankings.

The point of the article was to reveal to the casual reader that very few people know how to create

weights in index numbers, and thus also in ranking systems that are simply observations ordered

by the value of their index number. The methodology, the author claims, is aimed to:

�Get the presentation right. Leaving your methodology unpublished looks dodgy. In-
stead, bury a brief but ba�ing description in an obscure corner of your website, and
reserve the home page for celebrity endorsements. Get headlines by hamming up small
di�erences; minor year-on-year moves in the rankings may be statistical noise, but they
make great copy.� (The Economist 2014a)

The author goes on to o�er a sardonic observation about indices for good causes being used too

casually:

�From human su�ering to perceptions of corruption, from freedom to children's happi-
ness, nowadays no social problem or public policy lacks one.� (The Economist 2014a)

In this paper I will posit two answers to the question of index weighting, the �rst of which uses

a unique algorithm based on the Law of Cosines, and the second of which uses the well-known

statistical procedure of principal components. Both of these methods use statistical techniques to
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decide the dimensions of the data included as well as the weights assigned to each dimension. The

principal components method is for comparison. The way that the well-being index is computed

in this paper is very general and can be applied to any number of index numbers or to compute

ordinal rankings based on index numbers.

The importance of including particular variables in wellness indicators is a hot topic. In partic-

ular, Decancq and Neumann (2014) compare �ve measures of well-being and point out that, while

there are many similarities, the choice of an index and its ultimate use as a policy tool can have

major implications based on the index used. Furthermore, the choice of an index has no �right�

answer.

As the Economist author above notes, well-being indices have recently become popular. The

Gallup HealthWays Well-Being Index is one such example. This index is an attempt to gather data

from and rank all of the countries in the world on dimensions of well-being. Another popular well-

being index, targeted speci�cally at children in the United States, is the Kids Count Index from the

Annie E. Casey Foundation. The Kids Count Index uses 16 indicators to rank all of the U.S. states

according to the well-being of children, with the goal that resources will be allocated according to

need and that practices in successful states can be identi�ed and replicated elsewhere.

The recent interest in summary indices, especially ones comparing geographic regions, has ignited

a unique line of methodological literature looking at how these types of indices are created, what

variables they contain, and how the result does or does not re�ect reality.

Ordinal rankings pose a special challenge when creating index numbers because no distance

function can be naturally de�ned. Sonne-Schmidt, Tarp and Østerdal (2015) suggest the solution

is to use of a measurement of median outcomes. Madden (2009) �nds that the exact choice of

how ordinal data are incorporated into an index number is not particularly important. Though

Knippenberg (2014) suggests that the importance of computation method depends entirely on how

many variable dimensions are included in the index. The study by Bossert, Chakravarty and

D'Ambrosio (2013) combines country-level statistical data with weights derived from a public survey

on what factors survey respondents consider to be important when discussing poverty and material

deprivation. This is a novel and commendable approach, but, again, the weights from the survey

responses are likely to be highly correlated. Indeed, this is the idea behind weighting of intensity of

survey responses in compositional data analysis. For example, see Vives-Mestres, Martin-Fernandez

and Kenett (2016) on one way to control for both within-response (individual-level) correlation and

between-response (variable-level) spurious correlation.

2 The Kids Count Index

Every year, the Annie E. Casey Foundation publishes an update to its Kids Count Index. The

index transforms 16 variables in four categories into a single index number for each state. These

categories and variables are listed in Table 1. Those index numbers are then compared against each

other to create a ranking of U.S. states. Topping the list tend to be the New England states of

2



Vermont, Hew Hampshire, and Massachusetts. At the bottom of the list are typically Mississippi,

New Mexico, and Nevada. The rankings for the 2013 Kids Count Index are listed along with the

results at the end of this paper in Table 3.

Table 1: Kids Count Indicators

Economic Well-Being Indicators 1. Children in poverty
2. Children whose parents lack secure employment
3. Children living in households with a high housing cost burden
4. Teens not in school and not working

Education 5. Children not attending preschool
6. Fourth graders not pro�cient in reading
7. Eighth graders not pro�cient in math
8. High school students not graduating on time

Health 9. Low-birthweight babies
10. Children without health insurance
11. Child and teen deaths per 100,000
12. Teens who abuse drugs or alcohol

Family and Community 13. Children in single-parent families
14. Children in families where the household head lacks a high school diploma
15. Children living in high-poverty areas
16. Teen births per 1,000

The calculation of the state rankings takes the following steps: �rst, the mean value from each of

these 16 variables is calculated. Then the distribution of mean values from each variable is assumed

to follow a normal distribution. Each indicator's value from each state is normalized by converting it

to a z-score (subtracting the simple, national mean and dividing by the standard deviation for each

indicator). Each indicator is a negative measure, in that higher values indicate a worse situation

and contribute more to a worse score. For example, a higher percentage of children living in poverty

is a bad thing, so that the badness increases positively with the index. Because these variables

all �point� in the same direction, no further normalizing is necessary: The z-scores are now simply

added together, which creates a single index number for each state. This index number represents

the sum of the number of standard deviations that the state falls away from the mean. These index

numbers are then ordered so that the one with the largest negative value is the best-performing

state, and the one with the largest positive value is the worst-performing state.

While I highly applaud the e�orts of the researchers involved, I believe that the index can

be made better and more re�ective of reality, compared to the current methods being used. For

example, the variables �The percent of children living in poverty,� and �The percent of children living

in high-poverty areas,� are very similar. These two variables are not identical, because a child could

be living in poverty in an area that is not impoverished, but for the most part, they go together

the vast majority of the time. The same is true for many of the variables included in the study.

The problem I see with the study is that the all of the variables are implicitly given equal weights.

Though how can one justify equal weights to two variables that are nearly identical? One possible

explanation is that the identical variables indicate dimensions that are more important than the non-

identical ones: what could be more important to a child welfare index than measuring the percent of
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children in poverty? Here is an answer: children in single-parent households. This variable has been

identi�ed in numerous studies, such as Downey (1994), Carlson and Corcoran (2001) and Thomson,

Hanson and McLanahan (1994), as one of the most important factors determining future poverty.

The percentage is also included as a variable, but only as one variable, despite the fact that it may

contribute more towards poor future and current well-being than simply living in poverty. Until I

see a de�nitive study using turning-point analysis to give weights to these variables, I believe the

best method is an orthogonal weighting process.

3 Methodology

3.1 Index Weighting

The simplest way to compute in index number is to use shares as weights. A �ne example of this

is the consumer price index produced by the U.S. Bureau of Labor Statistics. Price index numbers

of this type have one primary drawback: Which weights should the practitioner use? The weights

from the previous period, as in a Laspreyes Index, or use the weights from the future period, as in

the Paasche Index? Most would agree that, while the these two methods are intuitively appealing, a

combination of the two is the most accurate. To that end, most modern price indices use a geometric

mean of weights between the previous and current period.

When weights are not known, as in an index not of the expenditure type, an index should be

weighted using a system that best re�ects the objectives of the �nal measurement. If the �nal

objective is well-de�ned, as in what causes an event A, then it's possible to work backwards to

�nd the factors that cause A. However, for large studies where the causal relationships are only

partially known, and the measure of the outcome variable is continuous with an arbitrary cut-o�,

then a researcher's best bet may be to use orthogonal, or unrelated factors. To that end, there are

several possible types of index numbers, using various statistical methods.

One method, used for predictive modelling, is illustrated by the economic indicators comprising

the Conference Board's Leading Economic Index (Levanon et. al. 2011). These indicators are

selected based on their ability to predict a recession in a probit model, and the weights are set

by each one's relative predictive performance, thereby giving the Leading Economic Index the best

predictive power based on past relationships. For well-being indices, prediction is typically not the

objective, since well-being and economic indicators are likely to be co-determined.

There are several papers in this literature. For an early review of socioeconomic indices, see

Atkinson and Bourguignon (1982) who explore the problems of multidimensional measures of well-

being. Bourguignon and Chakravarty (2003) take a novel approach in that they de�ne a poverty

line for each dimension of poverty, and any household that falls below that line in any dimension

is considered to be in poverty which is a unique approach in that it altogether circumvents the

problem of determining indicator weights. Another method, explored in Caruso, Sosa-Escudero and

Svarc (2014), can be seen as converse from others. Their method uses a clustering approach to �rst

identify a group of low socioeconomic-status families, and then they �nd the variables that most
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contribute to them being in that state of low socioeconomic status.

But some index numbers are created using principal components to determine factor loadings.

Among the many studies promoting this method is Vyas and Kumaranayake (2006) which reviews

the construction and validity of principal components analysis-based indices. Similarly, Gasparini

et al (2011), Ferro Luzzi et al (2008), and Otoiua, Titan and Dumitrescu (2014) use principal

components and factor analysis to determine the most important variables in determining poverty.

The idea behind using principal components is that the weights are based on orthogonal factors.

Orthogonal factors are those factors that are not correlated with one another. One main di�erence

between the approach proposed below and those of predecessor studies is that dimension reduction

is not an important objective. Rather, the Law of Cosines approach makes use of all of the available

variables. Furthermore, data are needed at the household level to produce the previous studies,

whereas this approach can make use of aggregate data, which is often much easier for a researcher

to obtain.

The problem with using principal components is that the variables can include compositional

(or ratio) data, in which correlation is spurious, as discussed in Pearson (1897), Aitchison (1986)

and Pawlowsky-Glahn, Egozcue, Tolosana-Delgado (2007). Principal components analysis is not

applicable when correlation is spurious (Aitchison, Barceló-Vidal and Pawlowsky-Glahn). Because

of this, if an orthogonal weighting scheme is desired, then a di�erent orthogonalization method is

needed, which is proposed in Knippenberg (2014), and outlined in the following section. The Law

of Cosines distance metric applies in all cases, even when the subject is not compositional data.

3.2 Orthogonal Weighting Using the Law of Cosines

In this section I propose methodology for adjusting the Kids Count Index, motivated by a desire

to use orthogonal indicators in keeping with the knowledge of compositional data analysis from

Aitchison (1986) and Knippenberg (2014).

Knippenberg (2014) derived an orthogonal weighting procedure for index numbers. This or-

thogonal weighting procedure is a two-step process. First the similarities between the variables

are calculated to �nd the orthogonal dimensions, then the magnitudes are rotated onto orthogonal

dimensions and a distance metric is applied to �nd the di�erence between the previous and current

periods. This procedure has successfully been applied to international trade data where it was

shown that patterns found in the composition of international trade simultaneously support multi-

ple, opposing theories. An outline of the methodology is discussed below. This orthogonalization

method gives equal weights to the latent, orthogonal dimensions.

Index numbers are a combination of indicator variables, each of which is paired with a weight.

The weights must sum up to an arbitrary constant number, called the �closure� of the sample space.

This is most typically scaled to equal 1 or 100. The closure ensures that any assignment of weights

must occur on the n-simplex. For each variable xi, i = 1, ...n, let the associated weight be denoted

by wi where
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n∑
i=1

wi = 1 (1)

Given this notation, an index number can be expressed for each observation yj , j = 1, ..., k as

yi =
n∑

i=1

xi,wi (2)

In well-being indices like the Kids Count Index or the Opportunity Index, the closure of the

sample space is not explicitly de�ned. However, it is discernable from the calculation that every

factor has an equal weight. The problem is that some variables included in the index may be highly

correlated, indicating that they are likely quantifying di�erent measurements of the same factor

dimension. This could lead to some factor dimensions to have a higher or lower weight than desired.

Is this acceptable in a normative sense? That is up to the researcher to determine, but by no means

should it be ignored.

The process has two major steps. The �rst is step is to measure the similarity between the well-

being indicators. This could be accomplished in a number of di�erent ways, and is not necessarily

a contribution of this paper. However, the second step is to use the similarity data to create a

measure of distance on orthogonal dimensions, which is the real methodological contribution of the

paper.

The �rst step in the orthogonalization procedure is to measure similarity between the indicators

used. While two indicators like, �the percent of children living in poverty,� and �the percent of

children living in high-poverty areas,� are not identical, most would agree that there is a high

degree of overlap between them because a child who lives in poverty is likely also living in a high-

poverty area. So the �rst task is to measure what is known as revealed comparative advantage in

international trade; that is, to measure which states su�er from a higher level of each indicator, and

which do not, compared to overall national average. Here the national average is the simple mean

of each indicator, and where each state is equally weighted:

RCAc,i =
xc,i/Xc

xw,i/Xw
≥ 1. (3)

Where each i = 1, ..., 16 denotes each of the 16 indicators, s = 1, ..., 50 denotes each U.S. state,

and w = 1 denotes the national average. As such, RCAc,i equals 1 if the inequality is satis�ed,

meaning that state c has a welfare indicator at least as large as that of the national average, and 0

otherwise.

Next, using the above-calculated binary outcomes of the revealed comparative advantage calcu-

lations, compute the similarity between indicators i and j, denoted φi,j :

φi,j = min {Prob(RCAc,i|RCAc,j), P rob(RCAc,j |RCAc,i)} (4)

In words, the above expression is asking for every instance in which indicator j is above average,
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how often is indicator i above average, and vice versa? The similarity between i and j is then

the minimum of those conditional probabilities. Because indicators are not necessarily normally

distributed, some are more or less likely to be above average than are others, and the minimum

function is used to account for this relative prevalence.

Next, put all of these pair-wise values into a similarity matrix and denote it by Φ. This matrix

represents a measure of the pair-wise similarity among all of the included welfare indicators. How-

ever, this could just as easily be a correlation measure or some other similarity measure. Again, the

above methodology is not the focus or innovation of this study.

The entries in the similarity matrix Φ are displayed in Table 2. The last row is a summation

that indicates the overall level of similarity between that indicator and �fteen others included in

the calculations. The smallest value is 7.00 for �Teens who abuse drugs or alcohol�, showing that

this indicator is least like the others, while the highest value is 10.73 for �Children living in high

poverty areas�, showing that this indicator is most like the others.

Table 2: Similarity Matrix Φ

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 1 0.75 0.46 0.54 0.58 0.68 0.74 0.71 0.69 0.38 0.46 0.42 0.46 0.73 0.67 0.67
2 0.75 1 0.56 0.47 0.5 0.69 0.66 0.78 0.69 0.38 0.44 0.34 0.56 0.83 0.72 0.59
3 0.46 0.56 1 0.48 0.37 0.52 0.56 0.68 0.62 0.41 0.24 0.38 0.55 0.63 0.56 0.46
4 0.54 0.47 0.48 1 0.6 0.76 0.74 0.75 0.66 0.4 0.48 0.44 0.48 0.67 0.64 0.64
5 0.58 0.5 0.37 0.6 1 0.6 0.44 0.43 0.34 0.37 0.53 0.42 0.42 0.43 0.4 0.54
6 0.68 0.69 0.52 0.76 0.6 1 0.74 0.71 0.55 0.4 0.48 0.44 0.48 0.6 0.64 0.64
7 0.74 0.66 0.56 0.74 0.44 0.74 1 0.79 0.72 0.41 0.52 0.41 0.52 0.73 0.67 0.63
8 0.71 0.78 0.68 0.75 0.43 0.71 0.79 1 0.72 0.43 0.5 0.39 0.54 0.77 0.68 0.61
9 0.69 0.69 0.62 0.66 0.34 0.55 0.72 0.72 1 0.41 0.48 0.38 0.55 0.77 0.69 0.62
10 0.38 0.38 0.41 0.4 0.37 0.4 0.41 0.43 0.41 1 0.48 0.43 0.43 0.57 0.4 0.63
11 0.46 0.44 0.24 0.48 0.53 0.48 0.52 0.5 0.48 0.48 1 0.33 0.35 0.43 0.52 0.63
12 0.42 0.34 0.38 0.44 0.42 0.44 0.41 0.39 0.38 0.43 0.33 1 0.38 0.47 0.36 0.42
13 0.46 0.56 0.55 0.48 0.42 0.48 0.52 0.54 0.55 0.43 0.35 0.38 1 0.8 0.69 0.62
14 0.73 0.83 0.63 0.67 0.43 0.6 0.73 0.77 0.77 0.57 0.43 0.47 0.8 1 0.7 0.6
15 0.67 0.72 0.56 0.64 0.4 0.64 0.67 0.68 0.69 0.4 0.52 0.36 0.69 0.7 1 0.64
16 0.67 0.59 0.46 0.64 0.54 0.64 0.63 0.61 0.62 0.63 0.63 0.42 0.62 0.6 0.64 1

sum 9.93 9.96 8.48 9.75 7.98 9.93 10.27 10.49 9.9 7.51 7.86 7 8.83 10.73 9.97 9.93

If two well-being indicators are orthogonal to one another, then the similarity matrix would have

an entry of zero. The conditions necessary for equal weighting of these indicators in an index is

that either all indicators are orthogonal - in which the similarity matrix can be represented simply

by the identity matrix Φ = I - or that all o�-diagonal similarity measures are equal to a constant

c. Another interesting fact is that the highest entry in the similarity matrix - the two well-being

indicators which are most highly correlated - are �Children whose parent lack secure employment�

and �Children in families where the household head lacks a high school diploma.� This is not

surprising, as other research has shown that the unemployment rate is highest for U.S. men who

lack a high school diploma. The lowest entry in the table is for the similarity between �Children

living in households with a high housing cost burden� and, not surprisingly, �Child and teen deaths
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per 100,000.�

Now following the example set by the original Kids Count Index, which converted each indicator

to a z-score by subtracting the national mean and dividing by the national standard deviation. The

original calculation also did this, and then simply added up the z-scores from all 16 indicators.

Because each indicator measures a negative aspect of child welfare, the state with the highest sum

was the worst, and the state with the lowest sum (the least of the negative indicators) was the best.

I leave the indicators as z-scores going into the next step.

The key point here is that, in simply adding up the 16 indicators, there is an implicit assumption

that each indicator is orthogonal to every other one. Because the similarity matrix is not the identity

matrix, this is not the case. In terms of distance metrics, this simple adding of z-scores is equivalent

to a manhattan distance metric that measures the distance from the origin (the national average

for each of the indicators) to a state's location as de�ned by the 16-dimensional space of child

well-being. My argument is that this is not as accurate as it could be, and instead of implictly

using a manhattan distance metric, a better method would be one that accounts for the entries

in the similarity matrix. The mathematical calculations to do so are the subject of the following

subsection.

3.3 Law of Cosines Distance Metric

Once I have calculated the similarity between all welfare indicators, how can I use this information to

compare each state? The answer is to map the welfare indicators of each state into a welfare space,

as de�ned by the information in the similarity matrix, Φ, and then to �nd the relative positions of

each state in that space.

Plotting a state c and the national average on this line, I can �nd the distance between them as

a straight line on the triangle's hypotenuse, using the Pythagorean Theorem:

ρ2c,d = (xc,1 −X1)
2 + (xc,2 −X2)

2 (5)

The above is an example of a distance metric, with the implicit assumption that indicators x1

and x2 are completely unrelated and uncorrelated. However, this is clearly not the case and this

information needs to be incorporated into the distance measure. For that reason, think of each

indicator xc,i of a state's welfare vector xc is its own vector that spans all of xc, but is with zeros

as entries j for which j 6= i.

Now comes the innovation. According to Gentle (2007), a similarity matrix gives extra infor-

mation about the orientation of a set of vectors: �The cosine of the angle between two vectors is

related to the correlation between the vectors, so a matrix of the cosine of the angle between the

columns of a given matrix would also be a similarity matrix. �(pg 298). Assuming that a reverse

of Gentle's logic holds, then given a similarity matrix, one can use the similarity measures as the

proportion of an angle between any two entries within a vector 1.

1My interpretation of this passage is a key point. Note that Gentle (2007, pg 37) de�nes Corr(x, y) =
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The vectors representing di�erences in export shares can be represented by line segments which

are not parallel to the axes. The angle between these line segments is given by a simple transfor-

mation of the economic indicators' similarities: (1− φi,j)90°. Two goods which are always revealed

as exceeding the national average together, φi,j = 1, can be thought of as highly correlated and

indistinguishable from one another, and are extremely likely to be measuring the same underlying

factors. In the extreme case, the angle between the two indicators is zero degrees when they measure

exactly the same variable, since (1− φi,j)90°= 0. On the other extreme if φi,j = 0, then indicators

i and j are completely di�erent and are very likely to be measuring completely unrelated variables.

In this case the angle between the two indicators would be: (1− φi,j)90°= 90°. In the last case we

refer to the two indicators as being orthogonal.

The distance from a U.S. state to the national average in the two-dimensional case is given by

the Law of Cosines:

ρ2c,d = (xc,1 −X1)
2 + (xc,2 −X2)

2 + 2(xc,1 −X1)(xc,2 −X2) cos((1− φ1,2)90
π

180
) (6)

The length of the triangle's third side on the hypotenuse is given by the square root of Equation

6. For the purposes of this study, the distance formula needs to account for all 16 indicators included

in the Kids Count Index. Using the result from Ding (2008), who derives the Law of Cosines in

n-dimensions, I have:

ρ2c,d =
n∑

i=1

n∑
j=1

(xc,i −Xi)(xc,j −Xj) cos((1− φi,j)90
π

180
) (7)

Alternately, in matrix form, let Φ be de�ned as above, and let #»x i denote a vector of the di�erence

in the indicators between state i and the national average. Then the matrix representation is simply:

yi = #»x i cos(Φ) #»x ᵀ
i , (8)

Note that yi is a scalar. Here I am dividing the Law of Cosines measure by the square root

of 2, which is the largest possible distance between any two points on a unit simplex. I subtract

1 from the measure so that it approximates similarity, rather than distance, which is more inline

with previous literature and is intuitively appealing. This measure makes sense because I need to

�nd the distance along the (n-1)-dimensional hyperplane representing all possible combinations of

export share vectors. Given that I have information on the lengths of export share vectors and the

angle between any two of them, this distance measure is appropriate.

This derivation of the Law of Cosines distance metric should not be confused with other deriva-

tions of the Law of Cosines. The main di�erence here is that I am assuming the shape of the space

cos(angle(xc, yc), and because −1 ≤ Corr(x, y) ≤ 1, the direct corollary of this should hold for similarity, where
0 ≤ φc,d ≤ 1 is more restrictive, and two objects cannot have a negative similarity. If I interpret each element of an
export vector to be itself a vector projected in as many dimensions as there are goods (whereas a vector entry for
plain data would be orthogonal to every dimension except its own), then this interpretation reveals a rather simple
equation.
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is not Euclidean. Distance in the linear algebra sense depends on the coordinate system being

Euclidean, and results from algorithms in papers such as Pan, Kotani, and Ohmi (2004) depend on

knowing the Euclidean coordinate system. Instead I am assuming that any data vector given is not

in canonical form, or, equivalently, that the the space is not an orthogonal one. The whole point

is that the similarity matrix gives researchers additional information not contained in any one data

vector. This information is about the shape of the space in which the measurements lie, which is not

necessarily Euclidean space. A basic concept in measure theory says that just because something

can measure be measured, doesn't mean that what is measured correctly represents anything.

This is one of the metrics to take into account similarity between variables, or non-canonical

form data matrices. This similarity is important, for two reasons. The �rst is that a researcher

should never assume that pair-wise similarity between economic indicators is zero or homogeneous,

as seen in the previous discussion of the product space. The second is that leaving out the notion

of similarity is akin to leaving out the notion of covariance in other statistical analyses. Indeed

Gentle (2007) goes so far as to say that similarity and correlation have the same interpretation: as

the cosine of the angle between two vectors (pg. 298). A researcher would never run a regression

without accounting for covariates. Analogously, I hope that the reader now �nds any metric not

accounting for similarity to be just as nonsensical.

The �nal step is to turn the yi entries into an ordinal set by ranking them from the best to the

worst. Just like with the original indexes' calculation, the one with the lowest index number value

(the least of the negative indicators) is the best state, and the one with the highest index number

value is the worst.

4 Discussion

An article in The Economist demonstrated the importance of ordinal ranking indices. It told of the

billions of dollars poured into education based on the OECD's Programme for International Student

Assessment, and highlighted the policy implications from indices such as the World Bank's Ease of

Doing Business Index and the U.S. State Department's Tra�cking in Persons Report, all of which

have drummed up sensationalist rhetoric based on where a country falls on the list. However, this

article was also quite critical, and stated that such indices are based on shaky data, questionable

assumptions, and are mainly used as policy tools. The Kids Count Index is similar. Though it ranks

U.S. states instead of countries, the index is used as a policy tool to both praise the best-performing

states and shame the worst-performing ones. The di�erence with the Kids Count Index is that it is

based on good data: U.S. state data is generally quite reliable, and the Annie E. Casey Foundation

has made impressive e�orts by setting up o�ces in states to collect the best data possible. I would

only add that the �nal computation can be improved.

The results of the analysis show some changes in the relative rankings of states. Table 3 presents

the 2013 state rankings, the rankings using orthogonal weights, and the change in rank between

the two methods, while Figure 1 graphs this same information. The reader can see that Alaska

10



Table 3: Kids Count Rankings

State Original Rank Orthogonal Rank Change

Alabama 45 46 1
Alaska 30 37 7
Arizona 46 45 -1
Arkansas 42 43 1
California 41 44 3

Colorado 22 25 3
Connecticut 7 8 1
Delaware 23 22 -1
Florida 38 35 -3
Georgia 37 38 1

Hawaii 24 31 7
Idaho 20 21 1
Illinois 21 19 -2
Indiana 31 26 -5
Iowa 8 7 -1

Kansas 16 16 0
Kentucky 35 34 -1
Louisiana 47 48 1
Maine 13 13 0
Maryland 10 11 1

Massachusetts 2 2 0
Michigan 32 28 -4
Minnesota 5 6 1
Mississippi 50 50 0
Missouri 26 20 -6

Montana 28 32 4
Nebraska 9 9 0
Nevada 48 47 -1
New Hampshire 1 3 2
New Jersey 4 4 0

New Mexico 49 49 0
New York 29 30 1
North Carolina 34 29 -5
North Dakota 6 5 -1
Ohio 27 23 -4

Oklahoma 40 36 -4
Oregon 33 33 0
Pennsylvania 14 14 0
Rhode Island 25 27 2
South Carolina 43 40 -3

South Dakota 17 18 1
Tennessee 36 39 3
Texas 44 41 -3
Utah 11 10 -1
Vermont 3 1 -2

Virginia 12 12 0
Washington 18 17 -1
West Virginia 39 42 3
Wisconsin 15 15 0
Wyoming 19 24 5
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and Hawaii worsened by seven ranks, while Missouri improved by six places. Many states improved

in ranking while others declined. Many states didn't change at all. The average absolute change

was two places. So the changes made are not particularly groundbreaking, as the researchers

who originally developed the index surely knew what they were doing and made good decisions

in what to include in the original index. The changes are marginal, but, I believe, represent a

stronger theoretical foundation. So while the changes in general are not large, the changes for a few

particular states are indeed so. If I were a federal policymaker and about to make a decision on the

amount of funding that were to go to a particular state, this change could sway my decision. And

because allotment of government funds is a zero-sum game, ranking does matter. For example, I

know that policymakers in the state of Colorado follow the Kids Count Index very closely, because

many funding decisions are made on the basis of a state's relative ranking, and particularly on how

that ranking changes over time.

Figure 1: Kids Count Index, Original and Orthogonal

The fact that the rankings change so little is comforting. It means that the creators of the index
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have done a good job in their choice of variables: The computation method is robust in that it

stands up to scrutiny, and the variables chosen appear to minimize parallel measurements. It also

adds evidence to the fact that the orthogonalization technique described herein appears to be not

only theoretically valid, but valid in applications as well.

The above methodology is being proposed as only second best in this case. It is second best

because it depends only on correlation, or co-relatedness of the variables involved. The best possible

way to create an index in this setting is by establishing cause and e�ect. We know some of the things

that decrease child well-being, and some of the things that are symptoms. The best approach to

creating a well-being index is to create an all-inclusive economic model with empirically validated

cause-and-e�ect relationships. Otherwise the calculation is an exercise that cannot distinguish

causes from symptoms.

5 Conclusion

This paper demonstrates an orthogonal weighting technique using the Kids Count Index, a ranking

of child well-being across U.S. states. This method reduces the heterogeneous similarity between

the 16 indicators used in the Kids Count Index. The results show relatively little change in ranking,

signifying that the components of the original index are good indicators of child well-being.

13



References

[1] Aitchison, John. (1986) The Statistical Analysis of Compositional Data, Chapman and Hall,

Ltd. London, UK, 1986.

[2] Aitchison, John, C. Barceló-Vidal, and V. Pawlowsky-Glahn. (2002). �Some comments on com-

positional data analysis in archaeometry, in particular the fallacies in Tangri and Wright's

dismissal of logratio analysis,� Archaeometry 44(2):295-304.

[3] Atkinson, A. and Bourguignon, F. (1982) �The Comparison of Multidimensional distributions

of economic status,� Review of Economic Studies 49:183-201.

[4] Bossert, Walter, Satya R. Chakravarty, and Conchita D'Ambrosio (2013) �Multidimensional

poverty and material deprivation with discrete data,� The Review of Income and Wealth

59(1):29-43.

[5] Bourguignon-Satya, François and R. Chakravarty (2003) �The Measurement of Multidimen-

sional Poverty,� The Journal of Economic Inequality 1(1):25-49.

[6] Carlson, Marcia and Mary Corcoran. (2001) �Family structure and children's behavioral and

cognitive outcomes,� Journal of Marriage and Family 63(3):779-792.

[7] Caruso, Germán., Walter Sosa-Escudero, and Marcela Svarc. (2015) �Deprivation and the Di-

mensionality of Welfare: A Variable-Selection Cluster-Analysis Approach,� Review of Income

and Wealth 61(4):702-722.

[8] Decancq, Koen and Dirk Neumann. (2014) �Does the Choice of Well-Being Measure Matter

Empirically? An Illustration with German Data,� IZA Discussion Paper no. 8589, October

2014.

[9] Ding, Yiren. (2008). �The Law of Cosines for an n-Dimensional Simplex,� International Journal

of Mathematical Education in Science and Technology 39(3):407-410.

[10] Downey, Douglas. (1994) �The school performance of children from single-mother and single-

father families: Economic or interpersonal deprivation?� Journal of Family Issues 15(1):129-

147.

[11] Ferro Luzzi, G., Y. Fluckiger, and S. Weber. (2008) �A Cluster Analysis of Multidimensional

Poverty in Switzerland,� in Kakwani, N. and J. Silber (eds), Quantitative Aproaches to Multi-

dimensional Poverty Measurement, Palgrave Macmillan, New York, NY.

[12] Gasparini, L., W. Sosa Escudero, M. Marchionni, and S. Olivieri. (2013) �Multidimensional

Poverty in Latin America and the Caribbean: New Evidence from the Gallup World Poll,�

Journal of Economic Inequality, 11(2):195-214.

[13] Gentle, James. (2007) Matrix Algebra: Theory, Computations, and Applications in Statistics,

Springer Publishing, New York, NY.

[14] Knippenberg, Ross. (2014) �Spatial Relationships in International, Historical, and High-

Dimensional Data,� Dissertation, University of Colorado Boulder, Department of Economics.

http://gradworks.umi.com/36/21/3621355.html

14

http://gradworks.umi.com/36/21/3621355.html


[15] Levanon, Gad, Ataman Ozyildirim, Brian Schaitkin, and Justyna Zabinska. (2011) �Compre-

hensive Benchmark Revisions for the Conference Board Leading Economic Index for the United

States,� The Conference Board Econonmics Program Working Paper EPWP #11-06, December

2011.

[16] Levitt, Steven D. and Stephen J. Dubner. (2005) Freakonomics: a rogue economist explores the

hidden side of everything 1st Revised and Expanded Edition, HarperCollins Publishers, New

York, NY. 320 pgs.

[17] Madden, D. (2010) �Ordinal and Cardinal Measures of Health Inequality: An Empirical Com-

parison,� Health Economics 19:243-250.

[18] Otoiua, Adrian, Emilia Titan and Remus Dumitrescu (2014) �Are the variables used in build-

ing composite indicators of well-being relevant? Validating composite indexes of well-being,�

Ecological Indicators 46: 575-585.

[19] Pawlowsky-Glahn, Vera, Juan José Egozcue, and Raimon Tolosana-Delgado.

(2007) �Lecture Notes on Compositional Data Analysis,� http://dugi-

doc.udg.edu/bitstream/handle/10256/297/CoDa-book.pdf?sequence=1

[20] Pearson, Karl (1897). �On the form of spurious correlation which may arise when indices are

used in the measurement of organs,� Proceedings of the Royal Society of London 60:489-498.

[21] Sonnne-Schmidt, Christo�er, Finn Tarp, and Lars Peter Østerdal. (2016) �Ordinal Bivariate

Inequality: Concepts and Application to Child Deprivation in Mozambique,� The Review of

Income and Wealth 62(3):559-573.

[22] The Economist. (2014a) �Performance Indicators: How to Lie with Indices,� November

8, 2014 http://www.economist.com/news/leaders/21631025-learn-ruses-international-country-

rankings-how-lie-indices.

[23] The Economist. (2014b) �Performance Indices: Ranking the Rankings,� November

8, 2014. http://www.economist.com/news/international/21631039-international-comparisons-

are-popular-in�uentialand-sometimes-�awed-ranking-rankings

[24] Thomson, Elizabeth, Thomas Hanson, and Sara McLanahan. (1994). �Family structure and

child well-being: Economic resources vs. parental behaviors,� Social Forces 73(1):221-242.

[25] Vives-Mestres Marina, Josep-Antoni Martin Fernandex and Ron Kenett. (2016). �Composi-

tional Data Methods in Customer Survey Analysis,� Quality and Reliability Engineering Inter-

national 32(6):2115-2125.

[26] Vyas, Seema and Lilani Kumaranayake. (2006). �Constructing socio-economic status indices:

how to use principal components analysis,� Health Policy Plan 21(6):459-468.

15

http://dugi-doc.udg.edu/bitstream/handle/10256/297/CoDa-book.pdf?sequence=1
http://dugi-doc.udg.edu/bitstream/handle/10256/297/CoDa-book.pdf?sequence=1
http://www.economist.com/news/leaders/21631025-learn-ruses-international-country-rankings-how-lie-indices
http://www.economist.com/news/leaders/21631025-learn-ruses-international-country-rankings-how-lie-indices
http://www.economist.com/news/international/21631039-international-comparisons-are-popular-influentialand-sometimes-flawed-ranking-rankings
http://www.economist.com/news/international/21631039-international-comparisons-are-popular-influentialand-sometimes-flawed-ranking-rankings

