The Dimensions of Ordinal Well-Being Indexes: Using Orthogonal Weighting with the Kids Count Index

Discussion of the Ross Knippenberg paper by Michael Wolfson IARIW, Seoul, April 26, 2017

IARIW-BOK Seoul April 2017

The Economist

Performance indicators How to lie with indices

Main Steps in Constructing a Summary Index

- choose a topic, e.g. population well-being
- select domains that are the key "constituents" or determining factors
 - e.g. poverty, health, literacy
- within each domain, select one or more indicators
 - e.g. for health: health status, infant mortality, health-adjusted life expectancy
- for each indicator, select a measure
 - e.g. for health status: self-reported, a generic measure like HUI or EQ-5D
- for the resulting set of measures, select an aggregation formula

or give up and use a "dashboard" (or flower petals per OECD)

IARIW-BOK Seoul April 2017

OECD's Flower Petals – Visualizing a Dashboard

Kids Count Index – Domains and Measures (Oh oh! some are highly correlated)

Economic Well-Being Indicators	1. Children in poverty
-	2. Children whose parents lack secure employment
	3. Children living in households with a high housing cost burden
	4. Teens not in school and not working
Education	5. Children not attending preschool
	6. Fourth graders not proficient in reading
	7. Eighth graders not proficient in math
	8. High school students not graduating on time
Health	9. Low-birthweight babies
	10. Children without health insurance
	11. Child and teen deaths per 100,000
	12. Teens who abuse drugs or alcohol
Family and Community	13. Children in single-parent families
	14. Children in families where the household head lacks a high school diploma
	15. Children living in high-poverty areas
	16. Teen births per 1,000

Kids Count Index – Aggregation Formula

- convert each measure to a z-score
- sum z-scores

Knippenberg's Concerns

- dimensions ≠ variable (??? what about "spanning set")
- measures may be highly correlated yes, OK
- measures are equally weighted when summed
- equal weighting implies orthogonality (really???)
- principal components inappropriate when measures are ratios

Knippenberg's Solution

- accept domains \rightarrow indicators \rightarrow measures
- accept z-score normalization
- accept aggregation
- accept equal weighting
- accept need for orthogonalization
- but use new method for orthogonalization
 - "law of cosines" ≡ essentially a projection of vector onto an orthoganal plane
 - but not clear which plane to choose

Points for Discussion

- even with full orthogonality = zero correlation, why aggregate?
 - yes, makes life easier for journalists and politcians
- when aggregating and with full orthogonality, why persist with equal weights
 - where are the "principled weights"?
 - e.g. think CPI and expenditure shares,
 - or other methods for eliciting the general public's comparative weighting of different life domains, e.g. Esposito and Chiappero-Martinetti?
- and why think only of linear aggregation?

Why Linear – Think Maslow's Hierarchy of Needs

- suppose the domains for well-being are
 - air to breathe
 - water to drink
 - clothing and shelter to maintain body temperature
 - food to eat
 - people with whom to converse
- linear aggregation implies that when there is no air to breathe, but lots of convivial friends, we can have quite high levels of well-being

Ridiculous!

unless all measures have values in a part of the space where non-linearities are unimportant, e.g. (maybe) CPI, where variations in expenditure baskets may be ignorable, and/or price changes all highly correlated

Why Aggregate – Data Visualization (I)

10

Why Aggregate – Data Visualization (II)

- one arrow per state (in this e.g.)
- think scatter plot matrix to handle multiple dimensions > 2
- distinguish data <u>analysis</u> (exploratory data analysis = EDA)
 use richly detailed info
- and data <u>presentation</u>
 - select summary presentation to highlight most salient findings
 - likely not unique across all analyses to come
- so again, why aggregate?