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Top Incomes and the Measurement of Inequality: A 

Comparative Analysis of Correction Methods using EU, US 

and Egyptian Survey Data 

Vladimir Hlasny and Paolo Verme 

 

Abstract 

It is sometimes observed and frequently assumed that top incomes in household surveys worldwide are 

poorly measured and that this problem biases the measurement of income inequality. This paper tests this 

assumption and compares the performance of reweighting and replacing methods designed to correct 

inequality measures for income biases generated by unit or item non-response. The European Union’s 

Statistics on Income and Living Conditions (EU-SILC), the United States’ Current Population Survey 

(US-CPS) and the Egyptian Household Income, Expenditure and Consumption Survey (EG-HIECS) are 

used as prototypes of vastly different data sets. Results indicate that survey response probability is 

negatively associated to income per capita thereby confirming that unit or item non-response bias the 

measurement of income inequality. When using reweighting methods, the higher the level of geographical 

disaggregation the lower the estimated bias of the Gini. Middle levels of geographical disaggregation are 

found to perform better than hyper aggregation or hyper disaggregation. When using replacing methods, 

the Pareto coefficient is sensitive to the cut-off point of the distribution. The use of Pareto distributions 

results in larger corrections as compared to the use of generalized beta distributions but the difference is 

not very large. 

JEL: D31, D63, N35. 

Keywords: Top incomes, inequality measures, survey non-response, Pareto distribution, parametric 

estimation. 

Sector Board: Poverty (POV) 
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1. Introduction 

Top incomes have been in the limelight since the beginning of the global financial crisis in 2007 and the 

eruption of discontent that followed the crisis as expressed by the “we are the 99%” and “Occupy Wall 

Street” social movements. Economics research had somehow anticipated this interest with the emergence 

of a body of literature that focused on the long-term evolution of top incomes as nicely summarized in 

Atkinson et al. (2011). Thanks to these studies and the wider public attention that top incomes have 

received in the aftermath of the global financial crisis, it is now acknowledged that top incomes have 

grown disproportionally faster than other incomes during the past few decades, a phenomenon that seems 

common to developed and emerging countries alike, although proper data on top incomes remain limited 

to a handful of countries 

Such phenomenon poses non negligible problems to the measurement of income inequality. A few large 

incomes can significantly affect the measurement of income inequality (Cowell and Victoria-Feser, 1996, 

Cowell and Flachaire, 2007, and Davidson and Flachaire, 2007) and trends in incomes of the richest 1% 

of households have been driving trends in income inequality over time (Burkhauser et al., 2012). The fact 

that top incomes are rising in numbers and weight and the fact that these incomes are difficult to capture 

in household surveys can potentially bias the estimation of income inequality significantly. Hence, one of 

the important questions recently debated in various strands of the economic literature is how to correct 

survey data for top incomes biases. 

National surveys suffer from a variety of issues related to the representation and precision of reported top 

incomes (Groves and Couper 1998). These range from issues related to sampling (underrepresentation of 

the very rich) to issues related to data collection (unit non-response, item non-response, item 

underreporting and other measurement errors), data preparation (top coding trimming or censoring, 

provision of subsamples) or data analysis (trimming of outliers, choice of estimator). Even the most 

sophisticated surveys such as the Current Population Survey (CPS) – the official source for income, 

inequality and poverty estimation in the U.S. – suffers from various data issues such as under-reporting of 

government assistance programs (Tiehen, Jolliffe and Smeeding 2013; Meyer, Mok and Sullivan 2009; 

Meyer and Mittag 2014), top-coding of various components of income of high-income individuals 

(Burkhauser et al. 2011; Jenkins et al. 2011), and unit and item non-response particularly by high-income 

households (Korinek et al. 2006; Dixon 2007).
1
 Poor income measurement can also explain differences in 

inequality measurements across data sources.  Juster and Kuester (1991) find that different household 

income surveys provide significantly different estimates of the income distribution due to different 

degrees of misreporting of various income components, unit and item non-response, and sample attrition 

rates. 

There are essentially two classes of methods that try, with different means, to address the question of 

correcting inequality in the presence of top incomes biases. The first class relies on the comparison 

between macro and micro data. We can call this class of methods the out of surveys correction methods. 

Burkhauser et al. (2012) report that tax-record and income-survey data may yield different measures of 

                                                      
1
 The U.S. Census Bureau provides a limited correction for unit non-response by reweighting observations within 

adjustment cells (central and noncentral districts within metropolitan statistical areas, and urban and rural districts in 

non-MSAs) by the density of non-responding households. This accounts for differences in response rates across 

adjustment cells but not for systematic differences across income groups within individual cells. 
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income inequality because of differences in income components and different definitions of inequality. 

Deaton (2005) shows how unit non-response may be one factor that can explain the discrepancy between 

national accounts and household surveys when it comes to the measurement of household consumption. A 

group of studies have attempted to align household survey results with those from national accounts by 

scaling up survey incomes to match aggregate national statistics (Bhalla, 2002; Bourguignon and 

Morrisson, 2002; Sala-i-Martin, 2002). This method avoids behavioral modeling of households’ 

decisions, and hinges on the restrictive assumption that the difference between survey and tax-record 

incomes is distribution-neutral, so that it would be appropriate to scale up all survey incomes by the same 

factor. Lakner and Milanovic (2013) proposed another approach by combining corrections for unit non-

response with corrections for measurement errors among top incomes and calibrate the estimated Pareto 

distribution among top incomes using aggregate income information from national accounts data. This 

method essentially assigns any disparity between the national accounts and household surveys to top-

income households, effectively accounting for both unit non-response and measurement errors. 

The second class of methods focuses instead on micro data only and tries to correct top income biases 

using within-sample information. We can call this class of methods the within surveys correction 

methods. There are two main methods under this class. The first method which we label reweighting aims 

at correcting the weights of existing observations using information on non-response rates across 

geographical areas. This method is used to correct for unit non-response (Mistiaen and Ravallion 2003; 

Korinek et al. 2006 and 2007) but can also be applied to item non-response. The second method which we 

label replacing aims at replacing top income observations with observations generated from theoretical 

distributions. This method is used to correct for issues such as top coding, trimming or censoring but can 

also be used for unit or item non-responses if these non-responses are concentrated among top incomes 

(Cowell and Victoria-Feser, 2007; Jenkins et al. 2011)  

This paper follows this last class of methods by testing the reweighting and replacing methods in the 

presence of different types of data. It is evident that both classes of methods have their advantages and 

disadvantages. Using tax records to inform the measurement of top incomes has its own measurement 

problems while the information available within surveys has its limits even if used creatively to correct 

for top incomes. However, the out of survey correction methods have a strong limitation in that good tax 

or macro data are only available in wealthy and largely formal economies and cannot be applied to most 

of the developing world, while household survey data of reasonable quality are now available in most of 

the developing world.    

The paper is organized as follows. The next section discusses measurement issues related to top incomes. 

The following section outlines the main methods used to correct for top income biases related to unit non-

response. Section four describes the data. Section five presents the main results and section six concludes.  

Measurement issues 

Problems related to top-income data may be due to sample design, data collection, data preparation or 

data analysis. We introduce these four typologies of errors in turn. 

Sample design issues emerge when the sampling is designed in such a way that top incomes cannot be 

captured by design. This can occur, for example, when the sampling is done poorly or when the 
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population census is old or the master sample has not been updated to capture newly constructed wealthy 

areas. If detected, some of these issues can be corrected post-survey by reweighting the sample, but either 

detecting or correcting these problems post-survey is not simple. To note here that we should not expect 

exceptionally high incomes to be captured in household sample surveys. Billionaires are a very rare 

characteristic in any population. There are less than 3,000 people worldwide with this characteristic and 

most countries have only one or two billionaires at the most. If one wishes to study billionaires, sample 

surveys are not the right instrument. It would also be unwise to add billionaires in survey income statistics 

partly because they are billionaires in wealth, not income, and partly because most of their wealth is 

generated globally rather than in a particular country. Including billionaires in income statistics would 

simply bias survey population statistics. Therefore, when we consider the very top income earners in this 

paper we are considering millionaires in wealth whose income is counted in the hundreds of thousands 

dollars annually. This is the class of people we want properly represented in household sample surveys at 

the top of the distribution. 

Data collection issues mostly arise from respondents’ or interviewers’ non-compliance to survey 

instructions and may result in unit non-response, item non-response, item underreporting or generic 

measurement errors: 

Unit non-response. Unit non-response refers to households that were selected into the sample but did not 

participate in the survey. The reasons for non-participation can be many such as a change of address or 

non-interest on the part of the household. Interviewers generally have lists of addresses that can be used to 

replace the missing household but this practice is not always sufficient to complete the survey with the 

full expected sample. Most of the available household survey data suffer from unit non-response. In some 

surveys, the reason for non-response is recorded but in others it is not. Unit non-response bias results if 

non-response is not random but systematically driven by specific factors. This paper will address unit 

non-response issues.  

Item non-response. Item non-response occurs when households participating in the survey do not reply to 

an item of interest (income or expenditure in our case). Item non-responses may be related to households’ 

characteristics such as wealth or education, and this may bias statistics constructed with income or 

expenditure variables. Item non-response biases results if non-response is not random and is related to 

specific factors. As compared to unit non-response, it is possible to correct for item non-response using 

information on the reasons for non-response (when available). The methods proposed in this paper for 

unit non-response also apply to item non-response. The only difference is that with item non-response one 

can also use alternative correction methods such as imputation techniques which are not available for unit 

non-response.  

Item underreporting. Consistent underreporting of variables on the part of respondents can lead to poor 

estimates of inequality. For example, if the degree of underreporting rises with income, the measurement 

of inequality could be affected. Even if underreporting applies equally across respondents, the 

measurement of inequality may change if the income inequality measure used is not scale invariant. Over-

reporting is also possible although extremely rare with income and expenditure data, particularly at the 

top end of the distribution. Item underreporting will not be treated in this paper explicitly but one of the 

methodologies proposed will implicitly consider this issue. 
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Generic measurement errors. Any variable including income or expenditure can be subject to 

measurement error. This error is typically expected to be random, distributed approximately normally and 

with zero mean. For example, extreme observations in an income distribution can result from data input 

errors, but if they are very large they bias sample statistics significantly. Statistical agencies are usually 

quite thorough on this issue and clear data of errors before providing the data to researchers. This issue 

will not be treated in this paper. 

Data preparation issues are mostly a consequence of statistical agencies’ compliance with rules and 

regulations governing data confidentiality and data use, and may result in top coding, sample trimming, or 

the provision of limited subsamples to researchers. 

Top coding. Top coding is the practice adopted by some statistical agencies to modify intentionally the 

values of some variables to prevent identification of households or individuals. Many agencies replace 

values above a certain threshold level with the minimum or mean of the variable in a group (cell) of 

similar units. In recent waves of the US-CPS, top coding is conducted via “rank proximity swapping,” 

whereas values above the cutoff for top-coding are swapped within demographic cells for another value 

within bounded intervals, and then rounded off. The imputed values are thus distributed similarly as the 

latent true values, but individual values are not identical to the true values and generate statistical errors. 

In some cases and for research purposes, statistical agencies provide restricted access to the original 

values. But in most cases researchers are left with the problem of having to correct sample statistics for 

top coding. Correcting for top coding is similar to addressing the issues of data censoring. In this paper, 

we will not review techniques to work with censored data but, rather, use and compare the performance of 

methods that replace potentially censored or top coded observations.  

Trimming. Trimming is the practice of cutting off some observations from the sample. This may be done 

for confidentiality reasons or for observations that appear unreliable. Researchers may not be informed 

whether statistical agencies have trimmed data, why trimming was performed, or both. A related issue is 

that of trimming through sampling weights. Statistical agencies sometimes trim sampling weights to bring 

them within a narrow range of values. The objective is to limit the influence of units that are rare in the 

sampling frame, particularly if their variable values may have been mismeasured. Trimming observations 

or weights biases statistical measurement and should be corrected for. The replacing methods evaluated in 

this paper address the problem of trimming observations at the top.. 

Provision of subsamples. Some statistical agencies cannot provide the entire data sets to researchers for 

confidentiality or national-security reasons or simply to prevent others from replicating official statistics. 

In many countries, statistical agencies provide 20% to 50% of their samples to researchers. These 

subsamples are usually extracted randomly so that statistics produced from these subsamples may be 

reasonably accurate. As we know from sampling theory, random extraction is the best option for 

extracting a subsample in the absence of any information on the underlying population. However, only 

one subsample is typically extracted from the full sample and given to researchers and this implies that a 

particularly “unlucky” random extraction can potentially provide skewed estimates of the statistics of 

interest. Hlasny and Verme (2014) have tested the margins of errors in inequality measurement that can 

arise from the provision of subsamples instead of full samples and found significant margins of errors.  

Data analysis issues may arise from an inadvertently wrong choice of statistical estimators on the part of 

researchers. Some estimators are more sensitive than others to the issues listed above so that one choice of 
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estimator may lead to greater errors than others. For example, Cowell and Victoria-Feser (1996) have 

found that the Gini index is more robust to contamination of extreme values than two members of the 

generalized entropy family, a finding later confirmed by Cowell and Flachaire (2007). In what follows, 

we will focus on the Gini index and leave the discussion of alternative inequality estimators aside. Also 

important to note is that many researchers routinely trim outliers or problematic observations or apply top 

coding with little consideration for the implications for the measurement of inequality.  

2. Models 

As for the discussion in the previous section, this paper will cover and compare techniques that can be 

used to correct inequality estimates for top income issues related to unit non-response, item non-response, 

top coding and trimming. As discussed, these techniques fall under two broad approaches: 1) Reweighting 

whereby original observations are kept intact while weights are recalibrated, and 2) Replacing whereby 

weights are kept intact but some observations are removed and replaced by others artificially generated. 

These two classes of techniques are presented below. 

Reweighting  

Reweighting is one possible approach to correct for unit non-response. Unlike in the case of item non-

response, we cannot simply infer households’ unreported income from their other reported characteristics, 

because we don’t observe any information for the non-responding households. Several statistical agencies 

have taken to the practice of assigning the mean or median values to the missing items, sometimes using 

the mean of the remaining observations in a cluster such as a Primary Sample Unit (PSU) and sometimes 

assigning the mean of the whole distribution. This is inappropriate, of course, as the missing values may 

be systematically very different from the rest of the cluster or distribution. In an effort to address this 

problem, Atkinson and Micklewright (1983) reviewed a method that relies on information about non-

response rates across regions, whereas the mass of respondents in a region is ‘grossed up’ uniformly by 

the regional non-response rate. This is the approach essentially taken by the US Census Bureau in 

correcting the CPS (Census & BLS, 2002, Ch.10-2). However, this approach is also problematic in that it 

accounts only for inter-regional differences in non-response rates, and not for systematic differences 

across units within individual regions.  

Mistiaen and Ravallion (2003), and Korinek et al. (2006 and 2007) tried to address this last issue by using 

a probabilistic model that uses information on non-response rates across geographical units as well as 

information about the distribution within units.
2
 It is assumed that the probability of a household i to 

respond to the survey, Pi, is a logistic function of its arguments: 

 
         

        

          
   (1) 

 

                                                      
2
 Korinek et al. (2006 and 2007) use the Current Population Survey, and correct for the presence of type-A unit non-

response households. Mistiaen and Ravallion (2003) add the count of item non-response households to the type-A 

unit non-response households, and use the methodology on them jointly. 
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where g(xi,θ) is a stable function of xi, the observable demographic characteristics of responding 

households i that are used in estimations, and of θ, the corresponding vector of parameters from a 

compact parameter space. Variable-specific subscripts are omitted for conciseness. g(xi,θ) is assumed to 

be twice continuously differentiable, but can take various functional forms. The parameters θ can be 

estimated by fitting the estimated and actual number of households in each region using the generalized 

method of moments (GMM) estimator 

          
 

            
           

 

 (2) 

where mj is the number of households in region j according to sample design,     is the estimated number 

of households in the region, and wj is a region-specific analytical weight proportional to mj. The estimated 

number of households (    ) can be imputed as the sum of inverted estimated response probabilities of 

responding households in the region (    ) where the summation is over all Nj responding households. If 

the sample is extracted from a larger population, the imputed true number of households should be 

divided by the sampling rate for the underlying population in each region (sj) to obtain population 

estimates. Finally, if the available sample includes only a fraction of the households responding to the full 

survey in a region – such as a 25% random extraction from a sample – we should divide by the sample-

extraction rate for each region (ssj). 

 

      
     

       
  

  

   

   

 

(3) 

Under the assumptions of random sampling within and across regions, representativeness of the sample 

for the underlying population in each region, and stable functional form of g(xi,θ) for all households and 

all regions, the estimator    is consistent for the true θ. Estimated values of    that are significantly 

different from zero would serve as an indication of a systematic relationship between household 

demographics and household response probability, and of a non-response bias in the observed distribution 

of the demographic variable. In that case, we could reweight observations using the inverted estimated 

household response probabilities to correct for the bias. 

Modalities of the method 

Regional definition. The model presented in equations 1-3 above uses within-j information as well as 

between-j information. It uses within-j information because the estimated number of households     is 

estimated within-j and it uses between-j information because the number of responding within-j 

households and the distribution of explanatory variables vary across js. The choice of geographic 

disaggregation involves a trade-off between the number of j data points, and the number and distribution 

of within-j observations vis-à-vis the underlying population. On the one hand, observations should be 

behaviorally similar to non-responding households within-j, calling for smaller geographic units. The 

number of regions should also be sufficiently large, because model errors are at the level of regions j, and 

individual regions with atypical non-response rates or distributions of demographic variables should be 

prevented from exerting undue influence on estimates. On the other hand, equation 3 requires the sample 

to encompass the entire range of values of relevant characteristics of the underlying population, 

potentially calling for larger geographic units. 



8 

 

Properties of the data at hand appear to call for different degrees of data aggregation. Typical response 

rates, geographic variation in response rates, dispersion of incomes within and across regions, 

heterogeneity of households within regions, and level of sample stratification are the parameters to 

consider. Korinek et al. (2006, 2007) used state-level disaggregation of US CPS data, because geographic 

identifiers are consistently reported only at that level whereas county or metropolitan statistical area 

identifiers are missing for a large portion of responding as well as non-responding households. In their 

analysis of the Egyptian Household Income, Expenditure and Consumption Survey (HIECS), Hlasny and 

Verme (2013) considered regional disaggregation both at the highest administrative level (governorate by 

urban–rural areas, 50 areas with 939.7 observations on average) and at the level of primary sampling units 

(PSUs, 2,526 areas with 18.6 average observations). These are clearly two different approaches with 

different implications. The PSUs tend to have relatively homogeneous within-j households, with similar 

behavioral responses between responding and non-responding households, and presumably also similar 

survey-response probabilities. The observed range of household characteristics in each PSU is expected to 

comprise the values of non-responding households. A higher level of geographic aggregation would make 

behavioral responses less likely to be stable within j areas, while offering little additional assurance that 

values of characteristics of responding households encompass values of non-responding units. 

Households’ response probabilities are essentially inferred by comparing regions with similar ranges of 

explanatory variables. In the analysis at the finely disaggregated level, the response probability curve is 

constructed using numerous sets of probability estimates that are little overlapping on the curve. At the 

less disaggregated level, response probabilities are inferred by comparing fewer regions with greater 

ranges of incomes. The response probability curve is constructed using fewer sets of probability estimates 

largely overlapping. This paper considers alternative degrees of regional disaggregation to identify 

patterns in the correction for the unit non-response bias across the alternative specifications, and to 

identify the preferred degree of disaggregation for various types of data. 

Finally worth noting, to satisfy the assumption of stability of g(xi,θ), the geographic extent of analysis 

should be limited to regions in which households are behaviorally similar, in the sense that households 

with similar values of demographic variables are expected to have a similar response probability across 

all regions. On the margins we will report how the exclusion of influential regions affects the correction 

for the unit non-response bias. 

Functional form. The relationship between households’ characteristics and their response probability can 

be modeled in a number of ways including logit or probit functions. This paper uses logit for modeling 

convenience and in deference to previous literature. Furthermore, equation 1 allows various functional 

forms of household characteristics. Korinek et al. (2006, 2007) and Hlasny and Verme (2013) evaluated 

specifications with varying degrees of allowed curvature, with or without monotonicity. They concluded 

that logarithmic specification of income yields better fit than linear, quadratic or higher-order polynomial 

forms, implying that unit non-response problem is concentrated in one end of the income distribution. 

This paper takes the problem of functional form as settled, and uses logistic probability model and 

logarithmic functional form in equation 1. 

Explanatory variables. Korinek et al. (2006, 2007) evaluated a number of variables affecting households’ 

response probability, including income, gender, race, age, education, employment status, household size 

and an urban–rural indicator. Hlasny and Verme (2013) compared income and expenditures. The choice 
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over covariates involves a tradeoff between robustness of complete specifications and efficiency of 

parsimonious specifications. Collinearity among covariates introduces estimation error. The above studies 

concluded that univariate models controlling for expenditures or income are the most efficient, 

prescription that this paper follows. Because this paper focuses on income per capita as the welfare 

aggregate, and because household surveys may not consistently report any additional variables, income 

per capita is used as the sole explanatory variable. This choice is not thought to affect results 

systematically or significantly. On the other hand, the choice of income over expenditure may affect the 

result systematically. Belhaj Hassine (2011) found that inequality in wage earnings in Egypt is nearly 

twice as high as inequality in expenditures. Hlasny and Verme (2013) found that the Gini of income per 

capita is systematically higher than the Gini for expenditure per capita by 2.5 percentage points. 

 

Replacing  

Another body of literature argues that the best approach to correct for poorly reported top incomes is to 

remove the top end of the distribution altogether and replace it with a parametric distribution. Atkinson et 

al. (2011), summarize literature contending that the distribution of top incomes is best illustrated by a 

Pareto distribution (Pareto 1896) and use this distribution to model historical tax records in several 

countries. Cowell and Victoria-Feser (1996) and Cowell and Flachaire (2007) suggest combining 

parametric Pareto estimates for the top of the distribution with non-parametric statistics for the rest of the 

distribution. Testing this method on Egyptian data, Hlasny and Verme (2014) find that replacing actual 

top incomes with Pareto parametric estimates has a small but significant effect on the computed Gini. 

Burkhauser et al. (2010) compared four methods designed to address top-coding issues in survey data – 

essentially replacing top-coded values using four alternative parametric estimators – and combining the 

estimates with those from non-top-coded incomes. A more extreme approach has been recently proposed 

by Alvaredo and Piketty (2014) who ignore survey data altogether and propose to estimate inequality 

using a mix of Pareto distributions for top incomes and log-normal distributions for the rest of incomes. 

Tested on Egypt, this approach yielded higher estimates than those reported by Hlasny and Verme (2014) 

for the same country. As discussed, we refer to these approaches as replacing. 

We follow this literature to study the shape of the top income distribution and use the Pareto measures in 

two different contexts. First, we assess how sensitive Pareto coefficients are to unit non-response and its 

correction using Korinek et al.’s (2007) method. Second, we use the parametric properties of the Pareto 

distribution to evaluate how representative are the top income observations in our sample to the 

underlying income distribution. Third, following Cowell and Flachaire (2007) and Davidson and 

Flachaire (2007) we correct the Gini coefficient for the potential influence of top observations by 

replacing highest-income observations with values drawn from the expected distribution and combining 

the corresponding parametric inequality measure for these incomes with a non-parametric measure for 

lower incomes. Finally we compare the results with non-corrected Ginis or Ginis corrected for other 

statistical issues. This allows us to comment on the relative influence of extreme observations and other 

statistical issues in our data. 
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The Pareto distribution is a particular type of distribution which is skewed and heavy-tailed. It has been 

used to model various types of phenomena and it is thought to be suitable to model incomes, particularly 

upper incomes. The Pareto distribution can be described as follows:  

 
       

 

  
             (4) 

 

where   is a fixed parameter called the Pareto coefficient and x is the variable of interest, in our case 

income per capita. It follows that the probability density function can be described as 

      
 

    
          (5) 

 

The probability density function has the properties of being decreasing, tending to zero as x tends to 

infinity and with a mode equal to 1. Intuitively, as income becomes larger, the number of observations 

declines following a law dictated by the constant parameter  . Clearly, this distribution function does not 

suit perfectly all incomes under all income distributions, but it should be thought of as one alternative in 

modeling the right hand tail of a general income distribution. 

The Gini coefficient under the estimated Pareto distribution for the k top-income households can be 

derived from the expression for the corresponding Lorenz curve (expression inside of the integral below) 

as 

 
                     

 
        

 

 

 
 

    
  (6) 

 

with a standard error composed of a sampling error in the estimation of the Pareto distribution, and an 

error in the estimation of the Gini coefficient. The sampling standard error under the Pareto distribution is 

equal to                               (Modarres and Gastwirth 2006), and estimation error 

due to imprecision in the estimation of α is equal to                     , where η is the 

standard error of   . 

The parametric Gini coefficient from a Pareto distribution can be combined with the non-parametric Gini 

coefficient for the n-k lower incomes using geometric properties of the Lorenz curves to derive the semi-

parametric Gini coefficient 

 
                  

 

 
                 

 

 
           

  

 
    (7) 

 

Its variance is    
 

 
   

 
         

 

 
        

 
   where εk and εn-k are the standard errors of the two 

respective Gini coefficients, and sk refers to the share of aggregate income held by the richest k 

households. 
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As long as it was correct to assume that top incomes in the population are distributed as Pareto, this semi-

parametric Gini coefficient obtained with an estimated Pareto parameter   can be compared to an 

uncorrected non-parametric estimate for the observed income distribution. A difference between the semi-

parametric and non-parametric estimates would indicate that some observed high incomes may have been 

generated by a statistical process other than Pareto, and that the inequality index is sensitive to this. A 

semi-parametric Gini that is lower than the non-parametric Gini can be interpreted as evidence that some 

top incomes in the sample are ‘extreme’ compared to those predicted under the Pareto distribution. A 

higher semi-parametric Gini would indicate that the observed top incomes are lower than what the Pareto 

distribution would predict, potentially implying under-representation or measurement errors in relation to 

high-income units in the sample. 

Modalities of the method 

Estimation of parameters. One possible definition of the Pareto coefficient ( ) as well as the inverted 

Pareto coefficient ( ) as proposed in Atkinson et al. (2011) is: 

 
  

 

        
   
       

     
 (8) 

 

   
 

   
   (9) 

 

where s10 and s1 represent the income shares of the top 10% and 1% of the population respectively. With 

tax records, it is generally more common to use the top 1% and 0.1% respectively but with household 

data, where samples are typically in the thousands of observations, the top 0.1% of households is a 

sample too small to be representative of the very top of the distribution as it may comprise extreme 

observations, hence the choice of the top 1% of the population. 

The interpretation of the beta coefficient is that larger betas correspond to larger top income shares while 

the opposite is true for the alpha coefficient. In what follows, we will report both coefficients but, as a 

rule of thumb, the beta coefficient is what provides a snapshot indication of top incomes. Research on top 

incomes has shown that the alpha and beta coefficients are rather stable across income distributions, in 

any given year and country, as originally predicted by Pareto. The work by Piketty and others, which used 

much longer time-spans than previous research, has shown that the beta coefficient can vary over time 

and that this variation can be explained by a combination of economic and political factors.   

Cowell and Flachaire (2007), propose the following formulation of   

 
  

 

             
   
               

   (10) 

 

where X(j) is the jth order statistic in the sample of incomes n, and k is the delineation of top incomes such 

as the top 10% of observations. In this paper, we estimate   using maximum-likelihood methods to obtain 
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an estimate with a robust standard error. All these alternative estimation methods allow weighting of 

observations by their sampling probability, and yield similar results. 

Appropriate parametric distribution. While Pareto distribution approximates well the dispersion of top 

incomes, it is not representative of incomes in the middle or bottom of the income distribution. 

Generalized beta distribution of the second kind (GB2), also known as the Feller-Pareto distribution, has 

been proposed as a suitable functional form representing well the entire income distributions (McDonald, 

1984). The upper tail of the distribution is heavy and decays like a power function. Four estimable 

parameters give the distribution flexibility to fit various empirical income distributions. The cumulative 

distribution function of the GB2 distribution is 

 
           

      

        
  (11) 

 

where I(p,q,y) is the regularized incomplete beta function, in which the last argument, y, is income 

normalized to be in the unit interval. Parameters a, p, and q are distributional shape parameters and b a 

scale parameter that can be estimated by maximum likelihood. Other suitable candidates for a distribution 

function, the Singh-Maddala (1976) and the Dagum (1980) distributions, are limiting cases of the GB2 

distribution with parameter p (q, respectively) restricted to one (McDonald, 1984). 

The Gini index of income inequality under the GB2 distribution can be computed by evaluating the 

generalized hypergeometric function 3F2 with the estimated parameters as arguments, and its standard 

error can be computed using the delta method (McDonald, 1984; Jenkins, 2009). In this paper, fit of the 

survey data to both the Pareto and the GB2 distributions will be evaluated. 

Selection of parametric values for replacement of unreliable incomes. One issue with replacing of 

potentially imprecise true top incomes with fixed Pareto fitted values is that the resulting measures of 

income distribution and inequality do not account for parameter-estimation error and sampling error in the 

available sample. An and Little (2007), and Jenkins et al. (2011) account for sampling error by drawing 

random values from the estimated distribution for all potentially imprecise top incomes, calculating a 

quasi-nonparametric inequality measure with its standard error, repeating the exercise multiple times and 

observing variability in the obtained inequality measure.
3
 Following Reiter (2003), the expected measure 

of inequality in such ‘partially synthetic’ data can be computed as a simple mean of inequality measures 

from individual random draws: 

 
        

      
  

 

   
  (12) 

 

                                                      
3
 Since top incomes in the US CPS do not appear to follow Pareto distribution exactly, Jenkins et al. fit the GB2 

distribution instead. They replace top-coded values with random draws from the estimated GB2 distribution. Since 

top-coding occurs at the level of individual components of income, this estimation is done at the level of income 

components, and the randomly drawn values for top coded components are added to actual values for non-top coded 

components. 
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In this expression, Giniqi is the quasi-nonparametric Gini coefficient from a random draw i, and m is the 

number of draws. Sampling variance of the expected        index can be computed as: 

 

     

 
                

 

     
  

   

 
  

     
  

 

   
  

(13) 

 

The first term is the sampling variance across different draws from the Pareto distribution, and the second 

term is the mean sampling variance within an individual draw. m refers to the number of repetitions, and 

varqi is the variance of the quasi-nonparametric Gini coefficient from an individual draw i. This 

methodology still ignores standard error from the estimation of parameters in the Pareto or the GB2 

distribution. However, this standard error is expected to be quite small compared to the sampling error, 

and can be ignored in large datasets where parameters have been estimated precisely (Jenkins et al. 2011). 

3. Data 

The methodologies outlined in the above section are evaluated and compared using three household 

surveys with vastly different characteristics: 1) the 2009 and 2011 rounds of the EU Statistics on Income 

and Living Conditions survey; 2) various rounds of the Current Population Survey, March Annual Social 

and Economic Supplement with the 2013 round serving as the primary round for our analysis, and 3) the 

2009 Egyptian Household Income, Expenditure and Consumption Survey. These surveys can be viewed 

as prototypes of surveys with different types of problems related to measurement issues that affect top 

incomes and inequality estimates.  

The EU Statistics on Income and Living Conditions (EU-SILC) survey, coordinated by a Directorate-

General of the European Commission, Eurostat, covers one of the most heterogeneous and largest 

common markets, including some of the world’s most affluent nations as well as former socialist 

economies. All European Union member states as well as Iceland, Norway and Switzerland are included. 

Incomes in the EU-SILC survey exhibit substantial cross-country inequality, but relatively less inequality 

within countries, as evidenced by the difference between state-specific and EU-wide Gini indexes (Table 

1). The data include relatively large sample sizes for each state but suffer from very different non-

response rates across member states and limited regional disaggregation. Non-response rates in the 2011 

EU-SILC survey range from 3.3 to 50.7 percent across member states (3.5 to 48.1 percent in 2009). These 

features allow for a limited number of methods to be used to reevaluate inequality under various 

measurement issues.
4
 

EU-SILC data are rarely used as one dataset for cross-country analysis in the same fashion as one would 

do cross-region analysis in a specific country. That is because EU-SILC data are derived from country 

specific surveys which may take different forms in different countries. However, in our case, they are an 

                                                      
4
 For more information on the EU-SILC see: http://ec.europa.eu/eurostat. 
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interesting set of data in that they are characterized by extreme diversity. They are therefore a good 

benchmark to test how different top incomes correction methodologies perform under such diversity.
5
  

In what follows, we will make use of the newest round of the EU-SILC, that is, the 2011 round, and we 

will report on the 2009 round only on the margins. When not noted explicitly, the discussion refers to the 

2011 round. Table 1 presents a summary of the 2011 EU-SILC data. (Table A1 in the annex presents a 

summary of the 2009 data.) 

[Table 1] 

 

The US Current Population Survey, March Annual Social and Economic Supplement (US-CPS) covers 

one of the most affluent countries, but the population it covers is relatively homogeneous between states. 

Incomes in the CPS exhibit a high degree of income inequality, particularly within US states rather than 

across states (Table 2). The CPS provides a large regionally well-disaggregated sample, but still suffers 

from a high rate of unit non-response of 9.5 percent nationwide in year 2013, ranging from 4.1 to 15.3 

percent across individual US states.
6
 Refer to table 2. 

One problem with this survey is that the various components of income are top-coded. The technique 

used for top-coding is “rank proximity swapping,” whereas values above the cutoff for top-coding are 

swapped one for another within bounded intervals. As a result, the imputed values are similar but not 

identical to the latent true values. In addition, the imputed values are rounded to two significant digits 

(e.g., $987,654=$990,000; $12,345=$12,000; $9,870=$9,900). Refer to the CPS (2013, Chart 1). Total 

household incomes and incomes per capita imputed from them could differ from the true values for a 

substantial fraction of the sampled households (Jenkins et al., 2011).
7
 To explore how influential this 

survey feature is, we could flag households with some of their income top-coded, and we could measure 

sensitivity of the measure of inequality to adjustments in their overall incomes. However, because this 

issue is absent in the EU-SILC and the Egyptian HIECS and because such flags are rare in survey data 

worldwide, we do not take advantage of the household-level flags in the CPS data in this paper. 

[Table 2] 

The 2009 Egyptian Household Income, Expenditure and Consumption Survey (EG-HIECS) is taken as an 

example of survey administered in an emerging or developing economy. Surveys in these countries are 

                                                      
5
 Indeed, sampling weights in the EU-SILC are distributed very widely, from essentially zero to 38,357.27 (mean 

719.59, standard deviation 1,088.41) in the 2011 round. This compares to weights of 90.12 to 548.06 in the Egyptian 

HIECS (mean 370.65, st. dev. 59.54), and weights of 98.86 to 8,761.64 in the 2013 round of the US CPS (mean 

1,904.67, st. dev. 971.66). This also suggests that comparing unweighted, EU-SILC weighted, and our non-response 

probability weighted statistics may yield very different estimates, much more so than in the US CPS or the Egyptian 

HIECS. Moreover, sampling weights in the EU-SILC are trimmed from below and from above to limit the extent to 

which individual observations can influence sample-wide statistics. To evaluate how much this trimming affects 

survey-wide results, we could compare results across alternative weighting schemes, or replace the trimmed weights 

with imputed values. 
6
 US Census Bureau distinguishes three types of unit non-interviews: explicit refusals or absence of anyone at home 

(type A), and vacant, demolished or otherwise un-contactable units (types B and C). Here we restrict our attention to 

type A non-response, following Korinek et al. (2007). 
7
 For more information on the US-CPS see https://www.census.gov. 
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characterized by reduced non-response rates as compared to wealthy countries while the statistical 

agencies that administer these surveys tend to refrain from applying post-survey censoring or data 

modifications. The Central Agency for Public Mobilization and Statistics (CAPMAS), the agency that 

administers the HIECS, has expended significant resources to ensure data completeness and reliability, as 

summary statistics show (Table 3). The CAPMAS does not apply data modification methods such as top 

coding, imputation of values or trimming of sampling weights. Item non-response is not an important 

issue in HIECS and unit non-response for the 2009 survey was about 3.7 percent, an extremely low value 

if compared to wealthy countries. However, unit non-response was systematic and influential to the 

measurement of inequality and the reason for non-response was not known (Hlasny and Verme 2013).
8
 

As shown in table 3, inequality within as well as across governorates is moderate, as the governorate-level 

and overall Gini coefficients indicate.
9
 

[Table 3] 

 

4. Results 

Recall that we want to correct the Gini measure of inequality for top income biases and that, in doing so, 

we focus on two classes of methods. Reweighting methods initially designed to address top income biases 

generated by unit non-responses and replacing methods initially designed to address top income biases 

generated by outliers or artificially modified distributions (trimming, top-coding, etc). Results are 

presented following this classification. Note that reweighting can be used to address issues like trimming 

and top-coding and, vice-versa, replacing can be used to address issues of unit non-response. The two 

methods fundamentally address the same problem of top incomes biases but they were initially motivated 

by the different issues described. 

Reweighting 

Table 4 presents the benchmark results of this study, correcting distribution of incomes in the three 

household surveys for unit non-response using cross-state information. Following the lead of Korinek et 

al.’s (2006, 2007) and Hlasny and Verme’s (2014) studies, these models estimate survey-response 

probability as a logistic function of the logarithm of income per capita. Logarithmic specification allows 

the relationship between income and response probability to be highly nonlinear, with the response rate 

dropping rapidly in the highest range of incomes. g(x) in equation 1 is thus a parsimonious logarithmic 

function of a single variable: g(income)=θ1+θ2log(income), where income could also be represented by 

expenditure, consumption or other demographic variable deemed relevant, depending on data availability. 

This specification is thought to be robust and quite efficient in the measure of fit achieved. Since the 

explanatory variable (income, expenditure or consumption per capita) is available in all budget surveys 

while other demographic information may not be, this specification is also preferable as most useful to 

practitioners. In what follows, we will use income per capita. Income is the welfare variable that is most 

                                                      
8
 Jolliffe et al. (2004) explain why the distribution of consumption data in the HIECS may not be comparable to 

those in other surveys, essentially due to the way of accounting for values of durable goods. 
9
 For more information on the Egyptian HIECS see www.capmas.gov.eg. 
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likely to be affected by measurement errors and top coding and the per capita form is chosen because 

income in household surveys is typically measured at the household rather than individual level. 

The main finding in table 4 is that households’ survey response probability is related negatively to income 

per capita. The coefficients on income E(θ2) are consistently negative and highly significant, an indication 

that unit non-response is related to incomes and is therefore expected to bias our measurement of 

inequality. As a consequence, the corrected Ginis are consistently higher than the non-corrected Ginis. 

Initially ignoring sampling weights, and reweighting households by the inverse of their estimated 

response probability allows us to correct measures of inequality for the differential probability of rich and 

poor households to respond to the survey. Across the three household surveys, the corrected Gini 

coefficients are 38.70, 49.63 and 41.16. These are higher than the uncorrected and unweighted Gini 

coefficients by 0.21, 3.60 and 5.34 percentage points, statistically highly significant for the latter two.
10

 

Making use of sampling weights provided by the national statistical agencies does not affect these 

findings. Applying the sampling weights to the distribution of incomes uncorrected for unit non-response 

leaves the Gini unchanged in the CPS and HIECS, and actually reduces the Gini in the EU-SILC by 5.9 

percentage points. This is surprising, given that both correction schemes – correction for various sampling 

issues (including non-response in the case of the CPS and the EU-SILC), and correction for unit non-

response were expected to inflate representation of atypical units such as top-income households. 

However, our correction for unit non-response significantly increases the estimate of inequality compared 

to both the unweighted and the sampling-weights corrected distributions of income.Applying both 

correction schemes in tandem, which is appropriate in the HIECS but amounts to double-correction for 

unit non-response in the CPS and the EU-SILC, leaves the basic findings above unchanged. The 

correction for unit non-response then amounts to 0.47, 3.86 and 4.79 percentage points of the Ginis across 

the three surveys, respectively. 

[Table 4] 

Given the significant correction for unit non-response identified in table 4, and the difference in the 

correction across the three household surveys, we should evaluate the implicit assumptions behind our 

model, as well as differences across the three household surveys. 

Non-response rates. The results in table 4 suggest that the correction for unit non-response bias varies 

significantly across household surveys. Differences in non-response rates across the surveys do not 

explain the differences in the estimated bias satisfactorily. While the EU-SILC has the highest non-

response rates, it is estimated to suffer from the lowest non-response bias in its Gini index. 

Using a single survey for multiple years, we can evaluate how the varying unit non-response rates, and 

potentially also the changing extent or nature of inequality, affect the estimated bias. The US CPS is ideal 

for this exercise as it has been collected systematically for over fifty years, in a consistent format since 

1989. Income distribution in the US CPS has also been consistent across years, with a moderate steady 

                                                      
10

 Table 5 reports that the correction varies from 0.35 to 9.66 percentage points across different waves of the US 

CPS. The small correction in the EU-SILC data for 2011 is consistent with that in the 2009 round. In the complete 

dataset of 30 member-states in the 2009 round of the EU-SILC survey, the sampling-weight uncorrected Gini 

coefficient is 43.30, while the one corrected for unit non-response is 43.42. The correction for unit non-response is 

0.12 percentage points. 
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drift in mean incomes and the Gini coefficient. Using years 1989 through 2013, table 5 reports cross-

sectional nationwide statistics and Gini coefficients. 

[Table 5] 

 

This analysis reveals that, even within a single survey administered across years, there is substantial 

variation in non-response rates, estimates of inequality, and estimates of the unit non-response bias. The 

estimated bias varies from 0.35% to 9.66% for the non-CPS weighted sample and from 0.35 to 10.23 for 

the CPS weighted sample. It depends positively on non-response rate, mean real income and corrected 

estimates of the Gini index (Pearson correlation of 0.63, 0.48 and 0.92, respectively, all statistically 

significant). Since unit non-response rates, real incomes and Gini index of inequality as measured in the 

US CPS have been persistently rising over time, the bias due to unit non-response has tended to increase. 

We also observe periods after 2005 when both mean income and the bias decrease. When these variables 

are studied jointly in a multiple regression, the bias turns out to be significantly affected by the true Gini 

index or the unit non-response rate, which are highly positively collinear. However, these facts still fall 

short of explaining credibly why the non-response bias estimated in the US CPS is significantly higher 

than that in the EU-SILC and slightly lower than that in the Egyptian HIECS. 

 

Regional disaggregation. Next, we evaluate the role of the definition of regions j across which 

distributions of incomes are compared, and which dictate the size and number of errors to be minimized 

in the estimation of equation 2. Unfortunately, the three household surveys do not provide unit non-

response rates for all administrative areas. The CPS includes information on Metropolitan-Core Based 

Statistical Areas (MCBSA) for approximately 75 percent of sampled households, at a similar rate for 

responding and non-responding households. This availability varies greatly across states (Table 2). In this 

section, we use a subsample from the 2013 US CPS for 24 states, each with MCBSA information 

available for over 75% of sampled households.
11

 

With the HIECS, we face a similar problem. Greater level of disaggregation is available only for a 25% 

extraction from the HIECS sample rather than for the entire 100% sample. The CAPMAS provided the 

authors short-term access to the full 2009 HIECS on site in Cairo in May 2013. During the visit we 

performed the analysis at the governorate by urban–rural regions level (J=50 regions with N=939.7 

responding households on average) and at the PSU level (J=2,526 with average N=18.6), but not at 

intermediate geographic levels. We report the analysis performed on the 25% extraction at the level of 

governorates (J=27 with average N=430.9), governorate by urban–rural regions (J=50 with average 

N=211.5), Kisms (J=446 with average N=26.1), groups of 1-32 Shakias within the same Kism (J=561 

with average N=20.7), and PSUs (J=2,515 with average N=4.6). 

Table 6 reports on the analysis performed at alternative degrees of geographic disaggregation for the 24-

state subsample from the 2013 US CPS and for the 25% extraction from the 2009 HIECS. The table 

shows that the more detailed the degree of geographic disaggregation, the smaller the estimated bias due 

to unit non-response. In the CPS data uncorrected using sampling weights, the bias estimated using state-

level disaggregation is 2.71 percentage points, falling to 1.58 points when estimated using MCBSA -level 

                                                      
11

 The CPS also includes information on counties, but only for 43% of households, and so this information cannot be 

effectively used. 
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disaggregation. This is not due to any systematic selection of households between those reporting and 

those non-reporting their MCBSA. The samples used in columns 2 and 3 are identical. Also, adding 

together households reporting and households non-reporting their MCBSA (column 1), we obtain the 

same results as when we restrict our attention to households reporting their MCBSA (column 2), 

suggesting that the selection is not systematically related to income distribution or the tendency to 

respond to the survey. Similarly, in the Egyptian HIECS non-corrected by CAPMAS sampling weights, 

the analysis performed at greater degrees of disaggregation yields systematically lower estimates of the 

bias, from 4.24 to 3.38 percentage points.
12

 The only exception to the consistent trend occurs in the case 

of disaggregation at the level of governorate urban-rural areas. While CAPMAS stratification methods 

account for differential sampling rates across urban and rural areas, it is possible that residents of these 

respective areas differ systematically in their behavioral responses, violating the assumption of stability 

across regions and confounding the results slightly. This could be attenuated by adding an urban-area 

indicator as an explanatory variable.  

[Table 6] 

Analyses using finer degrees of disaggregation yield lower corrections for unit non-response for several 

reasons. One, finer degrees of disaggregation translate into more numerous and smaller error terms in 

equation 2. This prevents any group of regions with outlying values of non-response rates or extreme 

incomes from unduly influencing the estimable relationship in equation 1, and allows more precise 

estimation of all statistics. Indeed, coefficient standard errors are significantly lower when finer degrees 

of disaggregation are used. Two, finer disaggregation reduces the dispersion of incomes within regions 

and reduces the overlap of income distributions across regions, particularly in datasets where inequality 

abounds at a lower geographic level rather than across different parts of the country. This reduction in 

dispersion within regions and in overlap across regions restricts the mechanism in the task of reweighting 

observations (equation 3), because greater fractions of observations in each region must be assigned 

similar weights, including very high or very low weights under the common response-probability function 

estimated for all regions. This is particularly restrictive in datasets with little overlap in income ranges 

and modest differences in non-response rates across regions. 

The change in the estimated bias across different disaggregation methods is notably large for the US, 

where substantial income inequality exists at the sub-state level, across cities rather than across states, and 

where non-response rates are similar across states as well as across MCBSAs. The estimated bias varies 

much less across different disaggregation methods in Egypt, where inequality occurs across governorates 

with relatively less inequality within them, and non-response rates vary greatly across kisms or across 

more finely delineated regions. 

In the CPS data, disaggregation from the state to the MCBSA level (eight times smaller regions) reduces 

the estimated bias to the Gini coefficient from 2.71 to 1.58 percentage points, by 42 percent. MCBSAs 

have non-response rates of 0.0–23.5%, or twice the cross-state range of non-response rates, 4.1–15.4%. In 

the HIECS data, disaggregation of a similar magnitude from governorate urban–rural strata to kisms 

                                                      
12

 A similar analysis performed on twenty US states, each with over 80% of households with known MCBSAs was 

also performed, with essentially the same results as in table 6. Also, a similar analysis performed on the full 100% 

sample of the HIECS at the governorate or PSU levels showed the same qualitative result – the smaller and more 

numerous the regions, the lower the estimated bias (Hlasny and Verme 2013). 
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reduces the estimated bias from 4.45 to 3.87 percentage points, by only 13 percent. Kisms have non-

response rates of 0.0–30.0%, or three times the range of non-response rates across governorate urban–

rural strata, 0.0–10.5%. 

Optimal disaggregation. Since the degree of geographic disaggregation of survey sample affects the 

correction for unit non-response systematically, the natural question then arises as to what geographic 

disaggregation would produce the most appropriate correction. 

The model in equations 1–3 relied on two assumptions about the underlying population and the sample: 

stability of the behavioral response across responding and non-responding households as well as across 

regions; and representative sampling across all income strata in the population. These conditions prescribe 

what the composition and the disaggregation of the sample should be. On the one hand, observations 

should be behaviorally similar to non-responding households within-j, and to households with similar 

values of income in surrounding areas, calling for smaller geographic areas. For the imputation of 

response probabilities, it is more meaningful to compare the frequencies of observing incomes of 

households with their counterparts in neighboring areas within a part of the country, than with households 

from across different parts of the country. On the other hand, equation 3 requires that the sample of 

respondents be representative of all population strata and encompass the entire range of incomes of non-

respondents, potentially calling for larger geographic areas. Geographic regions should thus be small but 

not too small. 

To test for the optimal level of disaggregation, we can conduct a simple experiment. We first choose a 

high quality sample with low non-response rates We then trim observations across the distribution using a 

response-probability function based on income so that higher income households are more likely to be 

excluded. Finally, we use the reweighting procedure illustrated in section 2 to correct the Gini and 

compare this Gini with the one based on the full sample.  

For this exercise, we use the 2010 sample of the US CPS, and the 25% sample of the 2009 Egyptian 

HIECS. The 2010 CPS sample covers 75,277 responding households with incomes per capita greater or 

equal to one, one of the largest samples across years. 73.5 percent of responding households and 79.2 

percent of non-responding households have a known MCBSA. The unit non-response rate (7.01%) was 

one of the lowest across all the evaluated years, and the corresponding Gini bias estimated using state-

level disaggregation, a mere 2.04 percentage points, was also among the lowest (table 5). This sample is 

as close to one free of unit-non-response problems as we can get. We can evaluate the correction for unit 

non-response bias performed at the level of Census regions, states and MCBSAs.The 25% sample of the 

2009 HIECS also has a very low rate of household non-responses (3.71%), and a low estimated bias due 

to them (3.59 percentage points using governorate urban–rural area disaggregation). This sample can be 

disaggregated geographically by governorate, governorate urban–rural area, kism, or group of nearby 

shakias, with each region containing a sufficient number of responding households.
13

 

For the trimming of observations, we apply the stochastic behavioral response proposed in equation 1 and 

confirmed in tables 4 and 6. Richer households have a lower propensity to appear in the sample. 

                                                      
13

 Analysis at the level of individual shakias or even PSUs is deemed not to be appropriate, since these regions cover 

as few as 3-5 responding households. The 100% sample of the HIECS would be necessary to conduct analysis 

disaggregated at this level successfully, but we currently do not have that dataset at our disposal. 
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Households’ probability of response – and thus one minus the probability of being trimmed – is made a 

logistic function, with a simple logarithmic function of income in the numerator and the denominator. 

Using coefficient estimates for the US CPS and the Egyptian HIECS in table 4 (and similar to estimates 

across all columns of table 6), g(x) in equation 1 is taken to be: g(income)=θ1+θ2log(income)=13.0-

1.0log(income) for samples from both surveys. 

Table 7 reports the results of this experiment. Across columns, different degrees of geographic 

disaggregation are evaluated. Across rows, different fractions of observations are trimmed from the 

sample according to the stochastic weighting scheme, with richer households systematically more likely 

to be trimmed. The top rows report on an experiment where 6.5% of observations were trimmed as non-

responders.
14

 The following rows trim 7%, 10%, 13% and 16% of observations. For the US CPS, as 

observations are trimmed, Gini in the sample falls from 46.54 in the original sample to 45.54 in the 

subsample with 16% of observations trimmed. While we would expect the Gini to keep falling as more of 

top incomes are trimmed, this does not occur consistently here due to the stochastic way in which 

observations were trimmed and due to the limited number of random draws (30) there were evaluated. For 

the Egyptian HIECS, the Gini falls nearly consistently from 36.57 in the original sample to 34.51 in the 

subsample with 16% of observations trimmed. 

In the US CPS, our method correcting for unit non-response performs well when only 6.5–7% of the 

sample is non-responding, but the correction is too small when 10–16% are non-responders. Across all 

weighting schemes, geographic-aggregation methods and degrees of sample trimming, the correction 

slightly underestimates the unit non-response bias, since the corrected Ginis are all smaller than the true 

Gini. The corrections range between 0.1 and 1.04 percentage points of the Gini, and bridge between a 

tenth and nine-tenths (two-fifths on average) of the bias induced by unit non-response. 

The method using state-level data aggregation performs consistently better than ones at the MCBSA or 

the Census-division levels. Clearly, seven Census divisions is too few to perform the fitting adequately. 

On the other hand, using 22 states or 171 metropolitan areas produces similar results. The under-

correction is also statistically insignificant for the cases when only 6.5–7% of the sample is trimmed in 

the state-level or MCBSA-level analysis. Finally, comparing the state-level and MCBSA-level analysis, 

we find the expected result that the finer the degree of disaggregation – MCBSA rather than state level – 

the smaller the correction for unit non-response, corroborating the results in table 6. In this case, the 

reduction in the correction is damaging as it keeps the corrected Gini from reaching up to the true value. 

Regarding derivation of the actual behavioral response function, the models in table 7 perform decently 

when 6.5–7% of the sample is trimmed, in models using state-level or MCBSA-level disaggregation. 

Estimated coefficients are within one standard deviation from the actual values (θ1=13, θ2=-1). When 

more observations are trimmed, or when Census division disaggregation is used, estimates differ from the 

actual values more, suggesting poor fit. 

For the Egyptian HIECS, similar patterns emerge, although the results are unstable. For the most part, the 

corrections for unit non-response under-correct for the non-response bias, as all the corrected Ginis are 

                                                      
14

 The algorithm performing randomized trimming according to household weights could not trim fewer than 6.5% 

of observations in the US CPS sample, and fewer than 1.1% of observations in the 25% HIECS sample, while 

observing the desired weighting scheme. 
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lower than the true original-sample Gini. In any case, the corrections amount to 0.9–1.25 percentage 

points of the Gini, and bridge between a half and four-fifths (three-fifths on average) of the bias induced 

by unit non-response. The strength of correction as fraction of the bias falls when more observations are 

trimmed, confirming a finding from the US CPS. 

Comparing the five columns for HIECS data, we find that the finer the degree of disaggregation – from 

governorates to PSUs – the smaller the correction for unit non-response tends to be. Like in the US CPS, 

this works against the goal of reaching up to the true statistic. Compared to the US CPS (columns 2–3 in 

table 7), however, the fall in the correction for non-response across columns is quite tepid in the HIECS 

(columns 4–8). This confirms the finding in table 6 that the comparison of demographic and behavioral 

factors across regions affects the relative performance of alternative ways of geographic disaggregation. 

Like in the US CPS, the trend of bias corrections falling across columns is not strictly monotonic 

(particularly in the case of income distributions corrected by CAPMAS sampling weights), reflecting 

problems including 1) insufficient number of regions in the case of governorate level disaggregation; 2) 

limited comparability of households’ behavioral responses across regions, particularly in less 

disaggregated samples; and 3) insufficient number of income observations in the case of PSUs. 

Geographic disaggregation that appears to provide the most consistent correction for non-response – both 

across unweighted and sampling-weights corrected income distributions, and across different degrees of 

trimming – is at the level of groups of nearby shakias. 

In conclusion, table 7 provides several important insights regarding the performance of the method for 

correcting for the unit non-response bias through reweighting of income observations. The method 

performs best in samples with low or moderate non-response rates, while it appears to be imprecise in 

samples with high non-response rates. Analysis performed at an intermediate degree of geographic 

disaggregation yields better correction than disaggregation into too many or too few regions. Among the 

options considered for the US CPS, state-level disaggregation was clearly preferred, while for the 25% 

extraction of the Egyptian HIECS, the jury is out on disaggregation into kisms versus into groups of 

nearby shakias. In the 100% sample of the HIECS, groups of shakias or a similar degree of regional 

disaggregation would presumably be justified as the preferred method. With an arbitrary worldwide 

household survey, properties of the data at hand should guide the choice over the appropriate degree of 

disaggregation, and should guide our interpretation of estimates. 

 

Replacing 

We use a methodology first proposed by Cowell and Victoria-Feser (2007) to test sensitivity of the Gini 

coefficients to extreme observations on the right-hand side of the distribution. If top incomes turn out to 

be influential, in the raw income distribution as well as in the distribution corrected for unit non-response 

bias, we correct for their presence using an estimated Pareto distribution as discussed in the 

methodological part. 

[Table 7] 
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Table 8 presents semi-parametric estimates of Gini coefficients, obtained by replacing the highest top 

0.1–1.0 percent of income observations with values imputed from the corresponding Pareto distribution as 

per Cowell and Flachaire (2007), and Davidson and Flachaire (2007).
15

 The first four rows show the 

benchmark non-parametric estimates from table 4 – unweighted; corrected for sampling probability using 

statistical-agency weights; corrected for non-response bias as per table 4; and corrected for both. The next 

four rows present the main results – semi-parametric estimates with the top 0.1 percent of incomes 

imputed from corresponding Pareto distributions. The four rows differ in the definition of the top 0.1 

percent of incomes and in the estimated α, as they assign different weights to each top income observation 

(i.e., unity, sampling weights, non-response correcting weights, or both). The following twelve rows 

report on an analogous exercise, where the parametric imputation is performed on top 0.2, 0.5 or 1.0 

percent of incomes. 

[Table 8] 

Table 8 shows that the exact cutoff for incomes to be replaced and the way income observations are 

weighted affect greatly the estimated shape of the top income distribution. For the EU-SILC, the 

estimated Pareto coefficient α varies between 1.65–2.09 and 2.36–3.12 depending whether only top 0.1% 

or up to top 1.0% of households are used for estimation. These ranges are 3.29–22.74 and 1.70–2.29 in 

the US CPS, and 0.81–2.07 and 1.75–2.51 in the Egyptian HIECS. The widths of these intervals also 

indicate that the estimated α depends on the way income observations are weighted. Most notably, the 

Pareto coefficients change systematically as more of top incomes in a distribution are evaluated. 

In the EU-SILC and the Egyptian HIECS, the higher the fraction of incomes evaluated, the higher the 

Pareto coefficient (and the lower the corresponding inverted Pareto coefficient), and thus the lower the 

estimated top income share. That suggests that in the EU-SILC and the Egyptian HIECS extreme incomes 

may be a problem among the top-most 0.1% of incomes, but not as much among the following 1% of 

incomes. In the US CPS, the opposite phenomenon occurs: income share of the handful super-rich (top 

0.1%) households is estimated to be not as high as in other income distributions or under a smooth Pareto 

curve, but income share of the next 1% of incomes is higher. One likely reason of this finding is that top-

most incomes in the CPS data are top-coded via ‘rank-proximity swapping’ and rounding. 

The estimated Gini coefficients are affected by the method of modeling top incomes in a qualitatively 

similar fashion, but to a much lower degree. The correction for potentially extreme or imprecise top 

income observations results in a reduction of up to 0.005 percentage points in the EU-SILC and 0.014 

percentage points in the HIECS, and an increase of up to 0.019 percentage points in the CPS. Half of the 

Gini corrections across the three surveys are downward and half are upward, and the corrections grow in 

absolute value with the fraction of observations replaced, but are all trivial.
16,17

 It appears that the exact 

                                                      
15

 Table A3 in the annex shows the analogous results for the exercise replacing the highest top 5%, 10% or 20% of 

income observations with values under the Pareto distribution. These high percentages of top incomes are chosen to 

allow precise estimation of Pareto coefficients. It is also in recognition that extreme observations of various income 

components – and top-coding of these observations in US-CPS – occur even among households with total incomes 

that do not appear extreme (Burkhauser et al. 2011). Table A3 is comparable to Hlasny and Verme’s (2013) table 3 . 

The results in table A3 are more stable than in table 8, because a larger fraction of incomes, and thus even values not 

too extreme are being replaced. 
16

 In table A3, the corrections are larger, because greater fractions of observations are replaced with fitted values. 

The correction is up to 0.24 percentage points in absolute value in the EU-SILC (from 44.10 to 44.35), up to 0.25 

percentage points in the CPS (from 46.16 to 46.41), and up to 0.56 percentage points in the HIECS (from 41.16 to 
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values of top-most incomes are not influential for the measurement of inequality in the overall income 

distribution, as compared to the corresponding smooth Pareto dispersion of top incomes, because they 

may skew Gini estimates only slightly upward or downward. In perspective of the findings in preceding 

sections we conclude that the systematic under-representation of top income households due to unit non-

response is a far more worrisome problem biasing inequality estimates systematically downward. 

Parameter specifications. One potential criticism of the above approach is that it relied on the fit of true 

top incomes to the one-parameter Pareto distribution. While the Pareto distribution has been accepted as 

providing a good fit for many national income distributions around the world, its fit to the CPS data has 

been questioned. Several studies have suggested other, more flexible statistical distributions as providing 

a better fit, such as the three-parameter Singh-Maddala and Dagum distributions. These are limit cases of 

a four-parameter generalized beta (type 2) distribution. In this section we re-estimate the semi-parametric 

Gini coefficients assuming top incomes to be distributed as under the generalized beta distribution. 

Table 9 reports the results.
18

 Coefficient estimates in table 9 carry small standard errors and are quite 

consistent across different weighting schemes of the samples, particularly for the US CPS and the 

Egyptian HIECS. For the EU-SILC, the coefficients – as well as the inferred parametric and 

semiparametric Ginis – vary across columns, due to heterogeneity across member-states and great 

differences in the alternative weights imposed. The coefficient estimates imply that the generalized beta 

distribution cannot be easily approximated by Singh-Maddala or Dagum distributions because E(p) and 

E(q), respectively, are significantly different from unity across all surveys and most columns. Only in 

three columns, all using corrections for unit non-response, there is some support for one of these two 

alternative distributions, as the estimate of E(p) in column 3 and the estimates of E(q) in columns 7 and 8 

are within two standard errors of unity. 

Comparing the Ginis in table 9 to the nonparametric estimates in table 4, we find that the parametric and 

semi-parametric Ginis under the assumed generalized beta distribution tend to be lower, implying that the 

true incomes are distributed more unequally than incomes predicted under that distribution. This is 

                                                                                                                                                                           
40.60). Greater corrections in absolute value occur when a greater number of top income observations are replaced – 

the corrections are greatest when top 20% of income observations are replaced. The corrections to the Gini tend to 

be positive in the EU-SILC and the CPS, suggesting that actual incomes there are lower or distributed more 

narrowly than would be predicted under the corresponding Pareto distributions. The corrections to the Gini are 

overall negative in the HIECS, suggesting that incomes observed there are higher or distributed more widely than 

would be predicted under the corresponding Pareto distributions. 
17

 A final note is that the parametric estimates of the Gini among top incomes in table 8 were calculated under 

smooth fitted Pareto curves rather than from any observations or fitted values per se. As a robustness check, we have 

re-estimated these Ginis by replacing top incomes with randomly drawn numbers from the corresponding Pareto 

distributions, then repeating the exercise 30 times and taking an average of the 30 obtained Ginis (refer to equation 

12). These Ginis from random draws differ by -1.28 to +1.53 percentage points from the smooth-distribution Ginis 

in table 8 (mean difference +0.02, mean difference in absolute value 0.50). Still, the corrections of the 

nonparametric Gini coefficients are very similar to those obtained in table 8. 
18

 An estimation note is in order: During estimation on the HIECS with the CAPMAS-provided sampling weights 

the algorithm fitting a generalized beta distribution had trouble converging due to the bottom one income 

observation (450 Egyptian pounds/year). Similarly, during estimation on the EU-SILC with the survey-provided 

sampling weights and non-response weights, the algorithm had trouble converging due to the bottom two income 

observations (2.43–2.50 Euro/year). These estimation issues indicate atypical distribution of the bottom-most 

incomes in the two surveys. Indeed, there are over 100 observations in the EU-SILC with annual income less than 

100 Euro, suggesting measurement errors. 
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particularly true for the HIECS, where the downward correction of the Gini is up to 3 percentage points 

and typically 1.5 percentage points, and less so for the EU-SILC (correction of up to 1.1 and typically 0.4 

percentage points) and for the CPS (correction of up to 0.6 and typically 0.2 percentage points). Using 

random income draws from a generalized beta distribution produces a similar correction of the Gini as 

numerical inference of the Gini under a smooth distribution, verifying that the procedure works correctly. 

Compared to the Pareto distribution evaluated in the previous section, the corrections to the Gini 

coefficients under the generalized beta distribution are larger and consistently negative for all three 

surveys.
19

 This indicates that the estimated generalized beta distributions predict a narrower dispersion of 

top incomes than the estimated Pareto distributions. For the EU-SILC and the Egyptian HIECS, the 

downward correction to the Gini derived in the previous section is now estimated to be even larger, of up 

to 1.1 percentage points for the EU-SILC and up to 2.9 percentage points for the HIECS. For the US CPS, 

the small upward correction to the Gini derived in the previous section is now replaced by a small 

downward correction, of up to 0.8 percentage points. This suggests that our assumption about the 

distribution of true top incomes affects our correction for extreme observations. In absolute terms, 

however, the difference is modest, at 0.1–1.1 percentage points (mean 0.5) for the EU-SILC, 0.0–0.8 

percentage points (mean 0.3) for the CPS, and 0.0–3.0 percentage points (mean 1.2) for the HIECS. 

 

  

                                                      
19

 Because top-income Gini coefficients are derived ‘quasi-nonparametrically’ and averaged across 30 random 

draws from the smooth distribution, there are 14 instances out of 96 where the generalized-beta Gini is higher than 

the semi-parametric Pareto Gini (tables 8 and A3). 
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Table 1. Non-response rate and income distribution by member state, 2011 EU-SILC 

Member State Households 

Non-response 

Rate (%) 

Mean Equivalised 

Disposable Income per 

Capita (Euro) 

Member State Gini, 

EU-SILC weighted 

households 

Austria 6,183 22.6 23,713.37 27.59 

Belgium 5,897 36.7 21,622.14 27.63 

Bulgaria 6,548 7.5 3,415.42 35.99 

Cyprus 3,916 10.2 20,084.84 31.65 

Czech Republic 8,865 17.1 8,402.77 25.91 

Denmark 5,306 44.4 28,441.21 27.45 

Estonia 4,980 26.0 6,475.47 32.62 

Finland 9,342 18.1 23,870.09 27.28 

France 11,348 18.0 24,027.78 30.84 

Germany 13,473 12.6 21,496.55 30.21 

Greece 5,969 26.5 12,704.72 32.92 

Hungary 11,680 11.2 5,146.29 26.86 

Iceland 3,008 24.8 20,668.26 24.99 

Italy 19,234 25.0 18,353.37 31.72 

Latvia 6,549 18.9 5,048.72 34.98 

Lithuania 5,157 18.6 4,588.81 33.02 

Luxembourg 5,442 43.3 37,232.63 27.32 

Malta 4,070 11.8 12,167.55 28.29 

Netherlands 10,469 14.5 22,726.06 25.66 

Norway 4,621 50.7 38,616.14 24.98 

Poland 12,861 14.9 5,849.61 32.10 

Romania 7,614   3.3 2,447.42 32.37 

Slovakia 5,200 14.5 6,983.48 26.21 

Slovenia 9,246 23.8 12,714.07 25.84 

Spain 12,900 37.2 14,584.40 32.67 

Sweden 6,694 36.5 23,727.45 25.76 

United Kingdom 8,009 27.3 20,843.59 32.85 

Wtd. Mean (Total) 7,947 (214,581) 23.60 17,727.32 30.68 (38.23) 

Note: Non-response rate is reported in the member-states’ Intermediate/Final Quality Reports at the state level as 

NRh for total sample. Croatia, Ireland, Portugal and Switzerland did not submit their Quality Reports. Per-capita 

income is weighted by household size. Incomes less than 1 are omitted. Mean incomes may not be representative of 

those for the entire states, as they omit non-responding households. For clarity of presentation, Ginis are multiplied 

by 100. 
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Table 2. Non-response rate and income distribution by state, 2013 CPS March Supplement 

State 

Metrop. 

CBSAs 

MCBSA Known 

(% hhds.) 

Responding 

Households 

Non-response 

Rate (%) 

Mean Income 

per Capita ($) 

Gini, CPS-

wtd. hhds  

Alabama 8 71.2       818  6.2     24,138.77  45.09 

Alaska 0   0.0       859  12.7     29,041.85  43.01 

Arizona 3 84.7       934  8.4     23,518.89  48.32 

Arkansas 3 49.5       826  5.6     21,019.29  46.59 

California 23 98.4    6,747  8.6     27,525.20  49.88 

Colorado 6 89.0    1,646  9.2     30,117.24  43.89 

Connecticut 6 92.1    1,592  12.5     36,135.82  44.85 

Delaware 2 79.8    1,134  8.2     25,528.58  43.28 

Distr. Columbia 1 100.0    1,297  13.3     45,482.45  50.79 

Florida 19 96.2    3,136  5.1     25,703.22  44.75 

Georgia 10 82.0    1,608  6.9     25,285.30  46.00 

Hawaii 1 70.2    1,215  6.8     27,270.77  46.12 

Idaho 2 46.7       767  8.9     22,251.83  44.96 

Illinois 10 89.1    2,240  8.3     29,677.16  47.62 

Indiana 9 69.7    1,091  8.3     24,372.35  42.85 

Iowa 6 49.1    1,361  7.1     26,319.05  40.47 

Kansas 4 65.1    1,049  8.8     26,200.10  43.19 

Kentucky 4 48.0    1,031  8.2     22,601.75  39.90 

Louisiana 6 82.9       754  7.4     22,305.71  43.22 

Maine 2 40.3    1,172  13.4     26,789.77  41.26 

Maryland 4 92.7    1,736  15.4     33,467.77  43.67 

Massachusetts 6 94.1    1,070  12.9     31,864.75  44.69 

Michigan 12 83.4    1,636  9.8     26,922.60  45.61 

Minnesota 3 70.2    1,706  9.1     29,875.77  40.22 

Mississippi 3 33.4       712  8.1     21,183.25  49.39 

Missouri 5 70.5    1,151  8.4     26,928.65  43.80 

Montana 1 12.5       707  4.1     24,531.35  40.25 

Nebraska 1 40.8    1,104  9.3     26,174.53  39.29 

Nevada 2 87.7    1,147  10.4     24,051.55  45.31 

New Hampshire 2 41.9    1,402  12.5     32,411.46  40.32 

New Jersey 7 100.0    1,412  13.5     33,882.08  45.11 

New Mexico 4 69.7       726  7.6     28,928.90  53.08 

New York 9 92.3    3,143  13.9     28,819.80  48.91 

North Carolina 9 64.3    1,520  8.7     23,821.30  43.96 

North Dakota 1 26.7       922  6.9     30,477.18  44.41 

Ohio 9 75.7    1,961  10.2     24,904.71  42.32 

Oklahoma 3 67.6       906  7.0     24,216.52  46.29 

Oregon 5 76.4    1,012  11.8     25,489.51  42.70 

Pennsylvania 11 82.6    2,197  9.6     27,146.49  44.15 

Rhode Island 1 100.0    1,192  15.3     30,503.79  47.27 

South Carolina 8 66.8    1,016  6.2     23,168.42  41.56 

South Dakota 1 27.2    1,065  8.0     25,255.50  42.20 

Tennessee 6 65.8    1,003  8.7     23,283.45  45.52 

Texas 17 86.4    4,310  9.8     24,270.31  48.45 

Utah 3 77.9       861  6.9     22,753.38  43.79 

Vermont 1 32.4       964  14.8     28,701.23  41.51 

Virginia 6 82.4    1,568  8.8     32,788.31  45.66 

Washington 7 83.1    1,283  9.8     29,870.95  45.89 

West Virginia 2 28.6       716  6.6     23,647.00  42.89 

Wisconsin 10 69.6    1,405  6.7     27,626.79  41.37 

Wyoming 0   0.0       935  9.7     27,221.34  43.16 

Wtd. Mean (Total) 5.57 (284) 74.6    1,446 (73,765) 9.5     27,463.41 45.15 (46.16) 

Notes: MCBSA availability is reported for both responding and non-responding households. Non-response rate is reported in the 

survey at the state level (and is available also at the level of MCBSAs and counties for 74.6% and 43.0% of households, 

respectively). Per-capita income is weighted by household size. Mean incomes may not be representative of those for the entire 

states, as they omit non-responding households. For clarity, Ginis are multiplied by 100. 
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Table 3. Non-response rate and income distribution by governorate, 2009 HIECS (100%) 

Governorate PSUs Households 

Non-response 

Rate (%) 

Mean Income 

per Capita (E) 

Governorate Gini, 

CAPMAS-

Weighted Hhds. 

Alexandria 149 2,801 6.0 5,393.10 32.57 

Assiut 101 1,872 2.4 2,665.06 34.18 

Aswan 52 978 1.0 3,635.79 29.67 

Behera 152 2,871 0.6 3,680.44 25.00 

Beni Suef 69 1,294 1.3 2,887.36 25.91 

Cairo 285 5,194 8.9 6,499.94 40.69 

Dakahlia 176 3,289 1.6 4,467.94 28.30 

Damietta 52 959 2.9 5,460.37 27.45 

Fayoum 78 1,466 1.1 3,071.68 25.56 

Gharbia 139 2,584 2.2 4,606.58 30.13 

Giza 215 3,939 6.5 4,347.80 38.44 

Ismailia 52 967 2.1 5,401.84 40.66 

Kafr ElSheikh 85 1,547 4.2 4,279.37 28.02 

Kalyoubia 145 2,668 3.2 4,137.20 29.97 

Luxor 14 263 1.1 4,704.10 31.56 

Matrouh 11 209 0.0 5,861.38 37.12 

Menia 128 2,371 2.5 3,451.37 31.49 

Menoufia 107 1,977 2.8 4,147.15 31.06 

New Valley 8 146 3.9 5,322.18 26.31 

North Sinai 14 243 10.5 3,768.41 27.73 

Port Said 50 925 7.4 6,501.37 35.84 

Qena 88 1,628 2.6 3,302.03 28.66 

Red Sea 13 239 3.2 7,050.69 38.47 

Shrkia 175 3,262 1.9 3,662.45 27.60 

South Sinai 4 69 9.2 10,969.95 68.00 

Suez 50 951 4.9 7,269.37 32.68 

Suhag 114 2,145 1.0 2,809.37 28.44 

Wtd. Mean (Total) 94 (2,526) 1,735 (46,857) 3.7 4,653.03 31.76 (35.56) 

Notes: Non-response rate, reported in the survey at the PSU level, is weighted by the number of responding 

households in each PSU. Per-capita income and expenditure are further weighted by household size. Mean incomes 

may not be representative of those for the entire governorates, as they omit non-responding households. For clarity, 

Ginis are multiplied by 100. 
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Table 4. Benchmark results of Gini correction for unit non-response bias 

 EU-SILC (2011) US CPS (2013) HIECS (2009), 100% sample* 

E(θ1) 6.998 12.959 12.948 

(s.e.) (2.302) (2.444) (0.070) 
E(θ2) -0.601 -1.032 -1.138 

(s.e.) (0.231) (0.226) (0.008) 

Regions j  27 member states  51 states  
55 governorate urban–rural 

areas  

Households i 214,581 73,765 46,857 

Uncorrected Gini 44.10 46.03 35.82 

 (0.09) (0.18) (0.35) 

Gini using stat. agency weights 38.23 

(0.14) 

46.16 

(0.24) 

35.56 

(0.32) 

Gini corrected for unit non-response 

bias 
44.31 

(0.23) 
49.63 

(0.44) 
41.16 

(2.04) 

Gini corrected for unit non-resp. bias 

& with stat. agency weights 
38.70 

(0.26) 
50.02 

(0.59) 
40.35 

(1.73) 

Unit non-response bias 0.21 3.60 5.34 

Bias (using stat. agency weights) 0.47 3.86 4.79 

Notes: For clarity, Ginis and their standard errors are multiplied by 100. Standard errors on Ginis are bootstrapped. 

Only incomes greater or equal to 1 are retained. Note that results for the 2009 HIECS differ from those of Hlasny 

and Verme (2013) mainly because of the choice of the welfare aggregate and explanatory variable (income per 

capita in this paper and expenditure per capita in Hlasny and Verme, 2013). 
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Table 5. Gini correction for unit non-response bias across years 1989-2013, US CPS 

Year 

Mean 

income/ 

capita ($) 

Real mean 

income/ 

capita 

(2000$) 

Non-

respons

e rate 

(%) 

Gini, non-

weighted 

Gini, CPS-

wtd. hhds 

Gini, non-

response 

corrected 

Gini, non-

resp. & CPS 

wghted. 

Unit non-

response 

bias in 

Gini 

Bias in 

CPS 

wghted

.Gini 
1989 12,589.96 17,483.79 5.46 41.74 (.14) 42.05 (.17) 44.00 (.28) 44.32 (.30) 2.26 2.27 

1990 13,430.92 17,695.52 4.55 42.10 (.13) 42.10 (.15) 44.74 (.29) 44.83 (.32) 2.64 2.73 

1991 13,694.75 17,314.51 4.70 42.06 (.13) 42.00 (.15) 44.77 (.29) 44.72 (.32) 2.71 2.72 

1992 14,009.88 17,195.30 5.02 42.01 (.13) 41.95 (.15) 43.52 (.22) 43.47 (.22) 1.50 1.52 

1993 14,337.65 17,086.11 4.99 42.15 (.13) 42.08 (.15) 43.60 (.19) 43.50 (.22) 1.45 1.42 

1994 14,791.24 17,186.58 5.17 42.51 (.13) 42.41 (.15) 45.73 (.36) 45.30 (.32) 3.23 2.89 

1995 15,304.90 17,293.33 4.53 42.77 (.15) 42.62 (.17) 43.12 (.15) 42.97 (.17) 0.35 0.35 

1996 16,780.93 18,417.31 7.69 44.59 (.19) 44.41 (.21) 49.48 (.52) 49.37 (.58) 4.89 4.96 

1997 17,648.09 18,934.59 7.18 45.29 (.20) 45.14 (.22) 49.80 (.42) 49.78 (.46) 4.51 4.64 

1998 18,808.96 19,870.56 7.79 45.54 (.20) 45.33 (.21) 52.60 (.55) 52.37 (.58) 7.05 7.04 

1999 19,722.67 20,385.61 7.90 45.08 (.18) 44.88 (.20) 49.77 (.41) 49.58 (.45) 4.69 4.70 

2000 20,204.57 20,204.57 6.89 44.35 (.16) 44.33 (.18) 48.56 (.32) 48.67 (.37) 4.20 4.34 

2001 21,517.55 20,922.20 8.03 44.95 (.18) 45.02 (.21) 50.56 (.44) 50.74 (.51) 5.61 5.72 

2002 21,209.13 20,301.35 7.31 44.99 (.17) 45.50 (.22) 48.62 (.31) 49.34 (.39) 3.63 3.84 

2003 21,227.65 19,866.31 7.17 44.91 (.18) 45.41 (.22) 49.46 (.40) 50.11 (.48) 4.56 4.70 

2004 21,766.41 19,842.12 7.69 44.78 (.16) 45.27 (.21) 50.58 (.46) 51.42 (.57) 5.80 6.15 

2005 22,642.33 19,964.20 9.01 44.73 (.16) 45.25 (.20) 54.39 (.63) 55.48 (.78) 9.66 10.23 

2006 23,810.11 20,337.80 8.61 45.20 (.16) 45.64 (.20) 53.73 (.56) 54.99 (.71) 8.53 9.35 

2007 25,122.74 20,868.96 8.66 45.12 (.15) 45.49 (.19) 49.65 (.35) 50.11 (.41) 4.53 4.62 

2008 25,763.93 20,606.07 7.82 44.68 (.14) 44.99 (.17) 47.78 (.28) 47.99 (.31) 3.09 3.00 

2009 26,059.47 20,916.86 7.06 44.70 (.15) 45.11 (.18) 47.19 (.24) 47.66 (.29) 2.48 2.55 

2010 25,578.70 20,199.64 7.01 45.24 (.15) 45.48 (.18) 47.28 (.22) 47.62 (.28) 2.04 2.14 

2011 25,683.59 19,661.84 8.12 45.21 (.17) 45.68 (.23) 46.94 (.32) 47.67 (.46) 1.73 1.99 

2012 26,773.36 20,080.55 8.93 45.71 (.18) 46.20 (.24) 49.21 (.42) 50.17 (.60) 3.50 3.97 

2013 27,463.41 20,300.74 9.54 46.03 (.18) 46.16 (.24) 49.63 (.44) 50.02 (.59) 3.60 3.86 

Notes: Real incomes are computed using CPI with year 2000 as base. For clarity, Ginis and their standard errors are 

multiplied by 100. Standard errors on Ginis, in parentheses, are bootstrapped. 
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Table 6. Gini correction for unit non-response bias, varying geographic disaggregation 

 2013 

CPS: 24 

states 

2013 CPS: 24 states, 

households with known 

MCBSA 2009 HIECS, 25% sample 

 

Analysis 

at the 

state level 

 

state level 

MCBSA 

level 

governorate 

level 

governorate 

urban–rural 

level 

level of 

kisms 

level of 

nearby 

shakias 

PSU 

level 

E(θ1) 12.101 11.704 9.925 10.895 10.964 10.587 10.575 10.301 

(s.e.) (3.511) (3.736) (2.319) (0.080) (0.070) (0.020) (0.018) (0.012) 
E(θ2) -0.954 -0.918 -0.751 -0.904 -0.913 -0.872 -0.870 -0.839 

(s.e.) (0.325) (0.346) (0.218) (0.008) (0.008) (0.002) (0.002) (0.001) 

         

         

         

         

Regions j 24 states 24 states 
185 

MCBSAs 
27 governt. 

50 urban v. 

rural 

governt. 

446 

kisms 

561 groups 

of nearby 

shakias 

2,515 

PSUs 

Households i 45,616 40,746 40,746 11,634 11,634 11,634 11,634 11,634 

Households 

per region 
1,900.67 1,697.75 220.25 430.89 211.53 26.09 20.74 4.63 

Uncorrected 

Gini 

47.27 47.49 36.57 

(0.23) (0.25) (0.96) 

Gini using 

stat. agency 

weights 

46.87 47.02 36.01 

(0.29) (0.31) (0.76) 

Gini 

corrected for 

unit non-

response bias 

50.35 50.21 49.07 40.81 41.02 40.44 40.39 39.95 

(0.50) (0.50) (0.39) (2.99) (3.10) (2.78) (2.76) (2.53) 

Gini 

corrected for 

unit non-

response 

with stat. 

agency 

wghts. 

50.25 50.18 48.91 39.90 39.60 39.85 39.81 39.65 

(0.65) (0.65) (0.51) (2.69) (2.38) (2.38) (2.36) (2.17) 

Unit non-

response bias 
3.08 2.71 1.58 4.24 4.45 3.87 3.82 3.38 

Bias (using 

stat. agency 

weights) 
3.38 3.16 1.89 3.89 3.59 3.84 3.80 3.64 

Notes: For clarity, Ginis and their standard errors are multiplied by 100. Standard errors on Ginis are bootstrapped. 

Ginis in columns 2-3 are also corrected for the state-level inverse rate of MCBSA availability. The 24 states with 

availability of MCBSA information over 75% of responding and non-responding households include: AZ, CA, CO, 

CT, DC, DE, FL, GA, LA, MA, MD, IL, MI, NJ, NV, NY, OH, OR, PA, RI, TX, UT, VA, WA. 
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Table 7. Gini correction for unit non-response bias in a trimmed sample 

 2010 CPS: 22 states, households with 

known MCBSA (N=38,641) 2009 HIECS, 25% sample (N=11,634) 

True uncorrected Gini 46.544 (0.200) 36.568 (0.958) 

True Gini using stat. wghts 46.312 (0.239) 36.006 (0.761) 

Disaggregation into 

regions j 

7 Census 

divisions 

22 states 171 

MCBSAs 

27 

governt. 

55 governt. 

urban–rural 

446 

kisms 

561 groups 

of nearby 

shakias 

2,515 

PSUs 

 6.5% or 2,512 trimmed, N=36,129 

Uncorrected Gini: 45.449 (0.193) 

Gini using CPS wghts: 45.210 (0.230) 

6.5% or 756 trimmed, N=10,878 

Uncorrected Gini: 34.797 (0.741) 

Gini using CAPMAS weights: 34.364 (0.616) 

Gini corrected for unit 

non-response 

45.690 

(0.190) 

46.474 

(0.249) 

46.343 

(0.239) 

35.930 

(0.832) 

35.865 

(0.810) 

35.826 

(0.795) 

35.833 

(0.798) 

35.757 

(0.779) 

Gini corrected for unit 

non-response & 

sampling wghts 

45.466 

(0.227) 

46.265 

(0.302) 

46.130 

(0.291) 

35.525 

(0.734) 

35.409 

(0.665) 

35.546 

(0.706) 

35.546 

(0.708) 

35.612 

(0.711) 

 7% or 2,705 trimmed, N=35,936 

Uncorrected Gini: 45.490 (0.195) 

Gini using CPS wghts: 45.241 (0.233) 

7% or 814 trimmed, N=10,820 

Uncorrected Gini: 34.753 (0.715) 

Gini using CAPMAS weights: 34.346 (0.605) 
Gini corrected for unit 

non-response 

45.718 

(0.192) 

46.421 

(0.250) 

46.296 

(0.240) 

35.826 

(0.786) 

35.819 

(0.783) 

35.783 

(0.767) 

35.800 

(0.772) 

35.707 

(0.750) 

Gini corrected for unit 

non-response & 

sampling wghts 

45.484 

(0.228) 

46.192 

(0.301) 

46.063 

(0.289) 

35.457 

(0.713) 

35.390 

(0.653) 

35.531 

(0.695) 

35.542 

(0.699) 

35.588 

(0.698) 

 10% or 3,864 trimmed, N=34,777 

Uncorrected Gini: 45.477 (0.198) 

Gini using CPS wghts: 45.221 (0.234) 

10% or 1,163 trimmed, N=10,471 

Uncorrected Gini: 34.907 (0.793) 

Gini using CAPMAS weights: 34.445 (0.650) 
Gini corrected for unit 

non-response 

45.722 

(0.195) 

46.008 

(0.234) 

45.979 

(0.231) 

35.933 

(0.850) 

35.926 

(0.848) 

35.943 

(0.850) 

35.957 

(0.854) 

35.848 

(0.826) 

Gini corrected for unit 

non-response & 

sampling wghts 

45.475 

(0.231) 

45.742 

(0.281) 

45.713 

(0.277) 

35.507 

(0.744) 

35.445 

(0.689) 

35.632 

(0.741) 

35.639 

(0.745) 

35.673 

(0.742) 

 13% or 5,023 trimmed, N=33,618 

Uncorrected Gini: 45.479 (0.202) 

Gini using CPS wghts: 45.202 (0.240) 

13% or 1,512 trimmed, N=10,122 

Uncorrected Gini: 34.795 (0.776) 

Gini using CAPMAS weights: 34.365 (0.651) 
Gini corrected for unit 

non-response 

45.786 

(0.200) 

45.889 

(0.237) 

45.781 

(0.229) 

35.842 

(0.847) 

35.798 

(0.829) 

35.801 

(0.826) 

35.828 

(0.833) 

35.699 

(0.798) 

Gini corrected for unit 

non-response & 

sampling wghts 

45.532 

(0.236) 

45.609 

(0.283) 

45.501 

(0.274) 

35.470 

(0.778) 

35.350 

(0.689) 

35.543 

(0.754) 

35.564 

(0.760) 

35.585 

(0.748) 

 16% or 6,183 trimmed, N=32,458 

Uncorrected Gini: 45.537 (0.206) 

Gini using CPS wghts: 45.299 (0.246) 

16% or 1,861 trimmed, N=9,773 

Uncorrected Gini: 34.713 (0.705) 

Gini using CAPMAS weights: 34.328 (0.609) 
Gini corrected for unit 

non-response 

45.853 

(0.202) 

45.682 

(0.228) 

45.642 

(0.226) 

35.668 

(0.732) 

35.697 

(0.736) 

35.707 

(0.741) 

35.732 

(0.746) 

35.622 

(0.725) 

Gini corrected for unit 

non-response & 

sampling wghts 

45.631 

(0.241) 

45.432 

(0.275) 

45.394 

(0.272) 

35.317 

(0.668) 

35.305 

(0.634) 

35.478 

(0.682) 

35.496 

(0.686) 

35.532 

(0.690) 

Notes: Trimming of observations is randomized subject to household weights given by probability of response 

(equation 1) where g=13-log(income). For clarity, Ginis and their standard errors are multiplied by 100. Ginis in 

columns 1-3 are also corrected for the state-level inverse rate of MCBSA availability, to make results comparable to 

state-wide statistics. Ginis from 30 random draws are computed as per equation 11. Standard errors on Ginis, in 

parentheses, are bootstrapped, and computed as per equation 12. The 22 US states with sufficiently high availability 

of MCBSA information include: AZ, CA, CO, CT, DC, DE, FL, GA, LA, MA, MD, IL, MI, NJ, NV, NY, PA, RI, 

TX, UT, VA, WA. The 7 US Census divisions are: E.N. Central, Middle Atlantic, Mountain, New England, Pacific, 

S. Atlantic, W.S. Central. 
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Table 8. Semi-parametric estimates of Gini indexes: Pareto distribution for top 0.1–1% of incomes 

Correction 

of extreme 

observ. 

Sampling 

correction 

2011 EU-SILC 2013 CPS 2009 HIECS, 100% 

Observ. 

replaced 

Pareto 

coef. α Gini 

Observ. 

replaced α Gini 

Observ. 

replaced α Gini 
 no   44.10 

(0.09) 

  46.03 

(0.18) 

  35.82 

(0.35) 

no (non-

parametric 

stat. agency 

weights 

  38.23 

(0.14) 

  46.16 

(0.24) 

  35.56 

(0.32) 

estimation) unit non-resp.   44.31 

(0.23) 

  49.63 

(0.44) 

  41.16 

(2.04) 

 stat. agency 

weights & 

unit non-resp. 

  38.70 

(0.26) 

  50.02 

(0.59) 

  40.35 

(1.73) 

yes (semi-

parametric 

estimation) 

no 214 2.087 

(0.144) 

44.10 

(0.14) 

73 3.288 

(0.377) 

46.03 

(0.19) 

46 2.033 

(0.361) 

35.82 

(0.30) 

stat. agency 

weights 

193 1.989 

(0.186) 

38.23 

(0.19) 

59 3.706 

(0.620) 

46.16 

(0.24) 

49 2.066 

(0.340) 

35.56 

(0.37) 

k=0.1% unit non-resp. 91 1.654 

(0.193) 

44.31 

(0.34) 

16 5.407 

(0.755) 

49.63 

(0.44) 

9 0.810 

(0.141) 

41.17 

(8.47) 

stat. agency 

weights & 

unit non-resp. 

71 2.041 

(0.278) 

38.70 

(0.34) 

11 22.740 

(12.970) 

50.02 

(0.59) 

12 0.901 

(0.183) 

40.36 

(5.11) 

 no 429 2.435 

(0.132) 

44.10 

(0.09) 

147 2.171 

(0.138) 

46.03 

(0.27) 

93 2.289 

(0.286) 

35.82 

(0.28) 

yes (semi-

parametric 

stat. agency 

weights 

394 2.301 

(0.187) 

38.23 

(0.17) 

126 2.296 

(0.191) 

46.16 

(0.30) 

95 2.343 

(0.278) 

35.56 

(0.27) 

estimation) unit non-resp. 215 1.698 

(0.143) 

44.31 

(0.42) 

40 2.419 

(0.276) 

49.63 

(0.55) 

34 1.031 

(0.241) 

41.17 

(12.51

) 

k=0.2% stat. agency 

weights & 

unit non-resp. 

193 1.698 

(0.162) 

38.70 

(0.46) 

29 2.287 

(0.275) 

50.02 

(1.27) 

39 1.152 

(0.270) 

40.36 

(3.29) 

 no 1,072 2.875 

(0.104) 

44.10 

(0.08) 

368 2.325 

(0.116) 

46.03 

(0.23) 

234 2.720 

(0.216) 

35.82 

(0.25) 

yes (semi-

parametric 

stat. agency 

weights 

993 2.728 

(0.153) 

38.23 

(0.14) 

333 2.178 

(0.135) 

46.16 

(0.46) 

240 2.723 

(0.204) 

35.56 

(0.28) 

estimation) unit non-resp. 632 2.137 

(0.128) 

44.31 

(0.28) 

134 1.890 

(0.139) 

49.63 

(0.71) 

132 1.469 

(0.308) 

41.16 

(1.32) 

k=0.5% stat. agency 

weights & 

unit non-resp. 

576 2.096 

(0.165) 

38.70 

(0.28) 

103 2.020 

(0.195) 

50.03 

(0.72) 

140 1.588 

(0.307) 

40.35 

(0.98) 

 no 2,145 3.116 

(0.078) 

44.10 

(0.08) 

737 2.272 

(0.080) 

46.03 

(0.22) 

468 2.471 

(0.118) 

35.82 

(0.27) 

yes (semi-

parametric 

stat. agency 

weights 

2,224 2.839 

(0.108) 

38.23 

(0.13) 

659 2.290 

(0.106) 

46.16 

(0.27) 

469 2.512 

(0.119) 

35.56 

(0.27) 

estimation) unit non-resp. 1,386 2.455 

(0.105) 

44.31 

(0.13) 

346 1.775 

(0.103) 

49.64 

(0.65) 

315 1.749 

(0.267) 

41.15 

(0.76) 

k=1.0% stat. agency 

weights & 

unit non-resp. 

1,321 2.364 

(0.137) 

38.70 

(0.46) 

295 1.701 

(0.124) 

50.04 

(0.87) 

327 1.841 

(0.251) 

40.34 

(0.77) 

Sample size (households) 214,581 73,765 46,857 

Notes: Pareto coefficients are estimated using maximum-likelihood methods. Semi-parametric Gini coefficients are 

computed as in equations 6 and 7. Their standard errors, in parentheses, are jackknife estimates and are computed 

using 30 random draws from the estimated Pareto distribution as in equation 13. Unit non-response bias is corrected 

using geographic disaggregation at the level of EU member states, US states, and Egyptian governorate urban–rural 

areas. EU-SILC sample is for 27 member states, excluding Croatia, Ireland, Portugal and Switzerland. For clarity, 

Ginis and their standard errors are multiplied by 100.
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Table 9. Parametric & semiparametric estimates of Ginis: Generalized beta distribution 

 EU-SILC (2011) US CPS (2013) HIECS (2009), 100% sample 

 

No 
sampling 

correction 

Stat. agency 

weights 

Unit non-

resp. 

Stat. weight 
& unit non-

resp. 

No 
sampling 

correction 

Stat. 
agency 

weights 

Unit non-

response 

Stat. 

weight & 
unit non-

resp. 

No 
sampling 

correction 

Stat. 
agency 

weights 

Unit non-

resp. 

Stat. weight 
& unit non-

resp. 

E(a) 1.051 4.372 1.501 4.947 2.112 2.107 2.325 2.337 3.054 3.164 3.424 3.529 

 (0.029) (0.121) (0.049) (0.150) (0.046) (0.054) (0.060) (0.073) (0.100) (0.103) (0.141) (0.136) 
E(b) 78,435.70 23,417.00 37,983.05 23,080.67 33,746.99 35,785.83 31,065.35 32,689.51 2,563.605 2,582.503 2,610.804 2,626.116 

 (7,872.67) (200.84) (1,938.18) (194.67) (469.81) (625.42) (472.98) (639.78) (47.020) (44.728) (42.362) (39.980) 

E(p) 1.541 0.302 0.965 0.278 0.695 0.688 0.629 0.618 1.945 1.844 1.634 1.561 
 (0.060) (0.009) (0.042) (0.009) (0.021) (0.024) (0.021) (0.025) (0.122) (0.114) (0.115) (0.103) 

E(q) 8.814 0.776 3.309 0.610 1.245 1.257 0.921 0.910 0.755 0.730 0.610 0.596 

 (0.852) (0.031) (0.266) (0.027) (0.045) (0.054) (0.040) (0.049) (0.032) (0.031) (0.035) (0.031) 
Log(pseudo-likel.) -2,288,898 -2.186×109 -2,972,056 -2.878×109 -832,897.1 -1.368×109 -929,569.5 -1.534×109 -429,258.4 -1.588×108 -449,834.3 -1.662×108 

Parametric Gini 44.02 37.79 43.59 37.98 46.03 46.10 49.36 49.64 35.85 35.58 38.35 37.96 

(0.07) (0.11) (0.10) (0.16) (0.17) (0.22) (0.36) (0.47) (0.23) (0.23) (0.47) (0.42) 
Semiparam. Gini, top 

0.1% replaced  

43.69 37.95 43.46 38.13 45.94 46.02 49.65 50.05 35.79 35.50 38.33 38.09 

(0.06) (0.12) (0.09) (0.18) (0.20) (0.24) (0.54) (0.68) (0.31) (0.31) (0.88) (0.78) 

Semiparam. Gini, top 
0.2% replaced  

43.63 37.92 43.33 38.01 45.87 45.90 49.48 49.89 35.80 35.62 38.23 38.00 
(0.06) (0.12) (0.08) (0.17) (0.21) (0.23) (0.57) (0.71) (0.30) (0.30) (0.64) (0.72) 

Semiparam. Gini, top 

0.5% replaced  

43.60 37.88 43.25 37.96 45.82 45.85 49.04 49.42 35.86 35.72 38.43 38.05 

(0.06) (0.12) (0.08) (0.17) (0.19) (0.22) (0.42) (0.61) (0.29) (0.36) (0.86) (0.62) 
Semiparam. Gini, top 

1% replaced  

43.63 37.88 43.26 37.93 45.80 45.89 49.11 49.22 35.87 35.57 38.28 37.85 

(0.06) (0.12) (0.08) (0.16) (0.19) (0.26) (0.58) (0.60) (0.30) (0.31) (0.57) (0.50) 

Semiparam. Gini, top 

2% replaced 

43.74 37.90 43.35 37.95 45.89 45.94 49.00 50.05 35.86 35.74 38.34 37.88 

(0.06) (0.11) (0.08) (0.15) (0.20) (0.23) (0.41) (0.68) (0.33) (0.43) (0.75) (0.49) 

Semiparam. Gini, top 

5% replaced  

44.00 37.93 43.60 38.03 45.98 46.07 49.40 49.39 35.92 35.55 38.09 37.82 

(0.06) (0.11) (0.07) (0.14) (0.19) (0.25) (0.34) (0.45) (0.33) (0.29) (0.40) (0.42) 
Semiparam. Gini, top 

10% replaced  

44.21 37.97 43.79 38.10 46.00 46.12 49.29 49.53 35.91 35.62 38.29 37.76 

(0.06) (0.11) (0.07) (0.15) (0.19) (0.22) (0.33) (0.44) (0.34) (0.30) (0.40) (0.38) 

Semiparam. Gini, top 
20% replaced 

44.28 37.98 43.87 38.10 45.94 45.97 49.31 49.56 35.78 35.61 38.32 37.98 
(0.06) (0.11) (0.07) (0.14) (0.19) (0.22) (0.39) (0.39) (0.28) (0.32) (0.52) (0.41) 

Notes: Standard errors are in parentheses. Parametric Ginis are calculated by numerical integration with 5,000 integration points. Semi-parametric Ginis are 

computed as in equations 7 and 12. Standard errors of semiparametric Ginis, in parentheses, are jackknife estimates and are computed using 30 random draws 

from the estimated generalized beta type-2 distribution as in equation 13. EU-SILC sample is for 27 member states, excluding Croatia, Ireland, Portugal and 

Switzerland. For clarity, Ginis and their standard errors are multiplied by 100.
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5. Conclusions 

This study has evaluated several methods for correcting of statistical problems with top incomes, 

including unit non-response and representativeness of top income observations. The joint use of two 

distinct statistical methods for correcting top incomes biases, sensitivity analysis of their technical 

specifications, and analysis of their performance on three vastly different household surveys were 

methodological contributions of this study. The European Union Statistics on Income and Living 

Conditions, the United States Current Population Survey and the Egyptian Household Income, 

Expenditure and Consumption Survey were used as prototypes of worldwide surveys with different types 

of measurement issues. We first tested for the problem of unit non-response by top income households, 

and corrected for the problem by imputing households’ response probability and reweighting them 

accordingly. We then tested how influential are individual observations at the upper tail of the 

income distribution, and corrected for the potential problem by replacing actual incomes with 

values drawn from parametric distributions. 

The evidence in this paper suggests that unit non-response is responsible for a significant 0.4–9.7 

percentage point bias in the Gini index of inequality in the US CPS, a 0.9–5.3 percentage point bias in the 

Egyptian HIECS, but only a modest 0.1–0.5 percentage point bias in the EU-SILC. This divergence stems 

from several differences between the three respective datasets. In the case of the HIECS data, the non-

response bias correction is limited by the low observed non-response rate and by homogeneity of 

households within PSUs, which prevent the model from estimating response probabilities too low. In 

other national surveys, such as the US CPS, response probabilities can be estimated very low for some 

households, because other households in the same region, of different demographics, can be assigned very 

high probabilities in compensation. 

In the EU-SILC, the low correction may also be attributed to relatively little overlap in the income 

distributions of various member states. The narrow range of estimates for the EU-SILC, rather than 

implying precision of estimation, reflects on limitations in the ways EU-SILC data can be analyzed. 

Income distributions vary significantly across member states with relatively little overlap. Economic and 

cultural differences across member states also put the assumption of stability of behavioral responses 

across regions into question, suggesting that we may not estimate a clear response-probability function. 

Data on unit non-response rates at lower levels of geographic aggregation – at which the assumption of 

behavioral stability is more likely to hold – are missing. 

The second most significant finding of this study is that changing of the geographic level of analysis has 

an important systematic impact on the unit non-response correction. Greater degrees of geographic 

disaggregation typically yield lower estimates of the non-response bias, but the bias remains significant. 

The degree of geographic disaggregation is thus an important parameter to consider in correcting for unit 

non-response through reweighting. That implies that understanding of the income distribution, 

demographics and behavioral similarities in the population within and across regions is important. An 

experiment on two high quality samples suggested that a medium degree of disaggregation achieves the 

best estimate of the bias and correction for it. 
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Correcting for non-representative distributions of top income observations using fitted values or random 

draws from the Pareto or generalized beta distributions helps to refine the estimated Gini, but by a small 

magnitude. In the EU-SILC and the Egyptian HIECS the correction was downward, of up to 0.014 

percentage points, and suggested that the observed top 0.1% of incomes may be extreme or overstated, 

commanding an undue share of national income, while the following 1% of incomes followed typical 

distributions more closely. In the US CPS, on the other hand, the correction was either negative or 

positive, depending on whether generalized beta distribution or Pareto distribution was applied, 

respectively. Using the Pareto approximation, income share of the super-rich 0.1% of households is 

estimated to be not as high as in other income distributions or under a smooth Pareto curve, but the 

income share of the next 1% of incomes is higher. That may serve as a confirmation that topmost incomes 

in the US CPS are top-coded, or may suggest that extreme observations appear among the top 1% of 

incomes, rather than among the super-rich 0.1%. In any case, the assumption regarding the true 

distribution of top incomes has a small effect on the correction, particularly relative to the correction for 

unit non-response. 
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Annex 

 

Table A1. Non-response rate and income distribution by member state, 2009 EU-SILC 

Member State Households 

Non-response 

Rate (%) 

Mean Equivalised 

Disposable Income per 

Capita (Euro) 

Member State Gini, 

EU-SILC weighted 

households 

Austria 5,875 28.1 22,186.58 26.99 

Belgium 6,107 36.7 21,114.74 27.10 

Bulgaria 5,583 22.5 3,245.85 34.82 

Cyprus 3,144 10.5 19,130.27 32.19 

Czech Republic 9,908 17.7 8,210.21 26.02 

Denmark 5,811 46.5 26,279.67 24.92 

Estonia 4,952 25.4 7,113.63 33.10 

Finland 10,128 20.8 22,845.36 27.65 

France 10,597 16.9 23,382.75 30.40 

Germany 13,065 23.1 21,112.46 30.42 

Greece 6,951 15.2 13,606.02 32.69 

Hungary 9,907 15.4 5,237.55 24.63 

Iceland 2,893 26.9 26,452.07 30.75 

Ireland 5,174 21.1 25,678.21 30.05 

Italy 20,363 16.3 18,156.96 31.68 

Latvia 5,760 20.8 6,369.70 38.79 

Lithuania 5,103 13.0 5,815.69 36.12 

Luxembourg 4,243 48.1 36,985.05 29.32 

Malta 3,645 20.2 11,941.52 28.20 

Netherlands 9,708 16.6 22,883.81 27.13 

Norway 5,423 39.6 35,940.48 25.68 

Poland 13,221 17.4 6,019.32 32.25 

Portugal 4,961 13.1 10,407.29 36.01 

Romania 7,670   3.5 2,552.65 34.44 

Slovakia 5,256 11.5 6,277.28 25.08 

Slovenia 9,281 22.3 12,597.30 24.75 

Spain 13,153 17.9 14,880.70 31.92 

Sweden 7,510 27.0 22,485.91 26.02 

Switzerland 7,357 24.8 34,443.89 31.08 

United Kingdom 8,314 28.7 19,496.29 32.54 

Wtd. Mean (Total) 7,702 (231,063)   22.24 17,485.22 30.73 (38.16) 
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Note: Non-response rate is reported in the member-states’ Intermediate/Final Quality Reports at the state level as 

NRh for total sample. All states from table 1 plus Ireland, Portugal and Switzerland are included. (Croatia was 

omitted from the EU-SILC survey until the 2010 wave.) Per-capita income is weighted by household size. Incomes 

less than 1 are omitted. Mean incomes may not be representative of those for the entire states, as they omit non-

responding households. For clarity of presentation, Ginis are multiplied by 100. 

 

Table A2. Non-response rate and income distribution by governorate, 2009 HIECS (25%) 

Governorate PSUs Households 

Non-response 

Rate (%) 

Mean Income 

per Capita (E) 

Governorate Gini, 

CAPMAS-

Weighted Hhds. 

Alexandria 148 694 6.0      5,347.73  32.88 

Assiut 100 459 2.4      2,746.14  35.40 

Aswan 52 236 1.0      3,597.35  28.59 

Behera 152 704 0.6      3,620.25  23.83 

Beni Suef 67 295 1.3      2,835.28  24.92 

Cairo 284 1,308 8.9      6,651.74  40.51 

Dakahlia 176 756 1.6      4,456.14  27.79 

Damietta 52 248 2.9      5,567.66  28.78 

Fayoum 78 394 1.1      3,041.00  22.80 

Gharbia 139 653 2.2      4,461.02  27.75 

Giza 214 993 6.5      4,537.38  39.56 

Ismailia 52 252 2.1      6,260.87  50.21 

Kafr ElSheikh 85 405 4.2      4,424.67  27.05 

Kalyoubia 144 658 3.2      4,252.08  28.82 

Luxor 14 72 1.1      5,332.94  35.26 

Matrouh 11 56 0.0      5,195.80  24.36 

Menia 128 591 2.5      3,561.99  34.11 

Menoufia 106 477 2.8      3,988.81  31.13 

New Valley 8 39 3.9      5,220.90  29.73 

North Sinai 14 70 10.5      3,683.03  25.59 

Port Said 49 204 7.4      6,333.59  34.16 

Qena 87 415 2.6      3,432.64  30.74 

Red Sea 13 59 3.2      6,646.68  29.89 

Shrkia 175 793 1.9      3,610.43  24.55 

South Sinai 4 25 9.2    12,662.86  78.45 

Suez 50 242 4.9      7,490.56  37.08 

Suhag 113 536 1.0      2,837.55  27.20 

Wtd. Mean (Total) 93 (2,515) 431 (11,634) 3.7      4,321.06  31.51 (36.01) 

Notes: Non-response rate, reported in the survey at the PSU level, is weighted by the number of responding 

households in each PSU. Per-capita income and expenditure are further weighted by household size. Mean incomes 

may not be representative of those for the entire governorates, as they omit non-responding households. For clarity, 

Ginis are multiplied by 100. 
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Table A3. Semi-parametric estimates of Gini indexes: Pareto distribution for top 2–20% of incomes 

Correction 

of extreme 

observ. 

Sampling 

correction 

2011 EU-SILC 2013 CPS 2009 HIECS, 100% 

Observ. 

replaced 

Pareto 

coef. α Gini 

Observ. 

replaced α Gini 

Observ. 

replaced α Gini 
 no   44.10 

(0.09) 
  46.03 

(0.18) 

  35.82 

(0.35) 
no (non-

parametric 

stat. agency 

weights 

  38.23 

(0.14) 

  46.16 

(0.24) 

  35.56 

(0.32) 

estimation) unit non-resp.   44.31 

(0.23) 

  49.63 

(0.44) 

  41.16 

(2.04) 

 stat. agency 

weights & 

unit non-resp. 

  38.70 

(0.26) 

  50.02 

(0.59) 

  40.35 

(1.73) 

 no     4,291  3.324 

(0.058) 

44.10 

(0.07) 

1,475 2.378 

(0.063) 

46.03 

(0.23) 

   937 2.369 

(0.076) 

35.82 

(0.29) 

yes (semi-

parametric 

stat. agency 

weights 

    4,766  3.018 

(0.083) 

38.22 

(0.12) 

1,358 2.301 

(0.076) 

46.16 

(0.29) 

   969 2.346 

(0.074) 

35.56 

(0.32) 

estimation) unit non-resp.     2,987  2.783 

(0.082) 

44.30 

(0.10) 

   848 1.769 

(0.075) 

49.65 

(0.97) 

   713 1.822 

(0.172) 

41.13 

(0.69) 

k=2% stat. agency 

weights & 

unit non-resp. 

    3,241  2.547 

(0.101) 

38.69 

(0.26) 

   740 1.703 

(0.093) 

50.05 

(1.11) 

   737 1.860 

(0.153) 

40.32 

(0.60) 

 no   10,729  3.377 

(0.035) 

44.09 

(0.07) 

3,688 2.436 

(0.041) 

46.03 

(0.20) 

2,342 2.350 

(0.049) 

35.82 

(0.31) 

yes (semi-

parametric 

stat. agency 

weights 

  11,973  3.231 

(0.057) 

38.21 

(0.12) 

3,329 2.476 

(0.054) 

46.15 

(0.25) 

2,438 2.326 

(0.048) 

35.56 

(0.31) 

estimation) unit non-resp.     8,099  3.017 

(0.049) 

44.27 

(0.09) 

2,595 1.959 

(0.055) 

49.63 

(0.45) 

1,984 1.913 

(0.094) 

41.05 

(0.86) 

k=5% stat. agency 

weights & 

unit non-resp. 

    9,303  2.827 

(0.069) 

38.67 

(0.15) 

2,306 1.885 

(0.069) 

50.04 

(0.93) 

2,092 1.948 

(0.084) 

40.26 

(0.51) 

 no   21,458  3.159 

(0.021) 

44.10 

(0.08) 

7,376 2.409 

(0.028) 

46.04 

(0.21) 

4,679 2.307 

(0.033) 

35.83 

(0.33) 

yes (semi-

parametric 

stat. agency 

weights 

  22,487  3.228 

(0.039) 

38.20 

(0.12) 

6,610 2.442 

(0.036) 

46.15 

(0.27) 

4,876 2.282 

(0.033) 

35.57 

(0.32) 

estimation) unit non-resp.   17,102  2.956 

(0.030) 

44.24 

(0.09) 

5,797 2.032 

(0.039) 

49.59 

(0.44) 

4,235 2.033 

(0.062) 

40.87 

(0.47) 

k=10% stat. agency 

weights & 

unit non-resp. 

  18,823  2.910 

(0.047) 

38.62 

(0.14) 

5,147 2.014 

(0.051) 

49.96 

(0.44) 

4,378 2.032 

(0.055) 

40.12 

(0.50) 

 no   42,916  2.736 

(0.012) 

44.35 

(0.09) 

14,753 2.215 

(0.017) 

46.27 

(0.35) 

9,367 2.213 

(0.022) 

35.93 

(0.37) 

yes (semi-

parametric 

stat. agency 

weights 

  41,058  2.990 

(0.023) 

38.28 

(0.14) 

13,467 2.208 

(0.021) 

46.41 

(0.30) 

9,695 2.212 

(0.022) 

35.67 

(0.32) 

estimation) unit non-resp.   36,061  2.659 

(0.016) 

44.37 

(0.11) 

12,637 1.969 

(0.024) 

49.69 

(0.38) 

8,829 2.033 

(0.037) 

40.60 

(0.44) 

k=20% stat. agency 

weights & 

unit non-resp. 

  35,915  2.838 

(0.029) 

38.61 

(0.15) 

11,471 1.908 

(0.029) 

50.18 

(0.55) 

9,141 2.043 

(0.034) 

39.89 

(0.49) 

Sample size (households) 214,581 73,765 46,857 

Notes: Pareto coefficients are estimated using maximum-likelihood methods. Semi-parametric Gini coefficients are 

computed as in equations 6 and 7. Their standard errors are computed using 30 random draws from the estimated 

Pareto distribution as in equation 13. Jackknife standard errors are in parentheses. Unit non-response bias is 

corrected using geographic disaggregation at the level of EU member states, US states, and Egyptian governorate 

urban–rural areas. EU-SILC sample is for 27 member states, excluding Croatia, Ireland, Portugal and Switzerland. 

For clarity, Ginis and their standard errors are multiplied by 100. 


