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Abstract:

The hedonic imputation method provides a flexible way of constructing quality-adjusted

house price indexes. However, the method becomes unreliable at higher frequencies

(e.g., for weekly indexes), since then the underlying price trend will be close to zero

and even in large data sets there may not be enough price observations in each period.

As a consequence computational and statistical problems occur (e.g., no observations

for some postcodes, a loss in degrees of freedom, or an increased variance of estimated

parameters). We show how the reliability of weekly indexes can be improved by re-

placing postcode dummies by a geospatial spline and then using a Kalman filter. This

approach has two advantages. First, the dimensionality of the model is reduced. Replac-

ing postcode dummies by values from the geospatial spline function at each location

in the data set very significantly reduces the number of parameters that need to be

estimated, and the number of covariance restrictions that must be imposed to make

the Kalman filter operational. Second, the small number of observations in each pe-

riod causes larger variability in estimated parameters (shadow prices) which should not

change that much from one week to the next. Estimation of a dynamic linear model

with the Kalman filter interconnects those parameters over time. Applying this hedonic

geospatial spline/Kalman filter approach to data for Sydney (Australia) we show that

it outperforms competing alternatives for computing house price indexes at a weekly

frequency. (JEL. C32; C43; E01; E31; R31)
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1 Introduction

The hedonic imputation method provides a flexible way of constructing quality-adjusted

house price indexes. The interplay of this well known method with the increasing num-

ber of recorded residential property transaction prices and the advances in computing

power and econometric techniques offers new opportunities in constructing higher fre-

quency indexes (at the weekly or even daily level) and in deepening the knowledge

about the real estate asset class. Bokhari and Geltner (2012) give further reasons for

the usefulness of higher frequency indexes:

“[T]he greater utility of higher frequency indexes has recently come to the

fore with the advent of tradable derivatives based on real estate price in-

dexes. Tradability increases the value of frequent, up-to-date information

about market movements, because the lower transactions and management

costs of synthetic investment via index derivatives compared to direct cash

investment in physical property allows profit to be made at higher frequency

based on the market movements tracked by the index. Higher-frequency

indexes also allow more frequent “marking” of the value of derivatives con-

tracts, which in turn allows smaller margin requirements, which increases

the utility of the derivatives.”

However, the hedonic imputation method becomes unreliable at higher frequencies

(e.g., for weekly indexes), since then even in large data sets there may not be enough

price observations in each period. As a consequence computational and statistical prob-

lems occur (e.g., no observations for some postcodes, a loss in degrees of freedom, or

an increased variance of estimated parameters). Geltner and Ling (2006) describe the

trade-off between statistical quality per period and the frequency of index reporting,
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holding constant the overall quantity and quality of raw valuation data and index con-

struction methodology. They conclude that the usefulness of an index for research

purposes clearly increases the greater the frequency of reporting, holding statistical

quality constant (per period) (Bokhari and Geltner, 2012).

Only in recent years have researchers in the housing field started to construct high-

frequency indexes. For example, Bokhari and Geltner (2012) propose a two-step pro-

cedure based on a generalised inverse estimator that improves the accuracy of high-

frequency indexes in scarce data environment (in an application to commercial property

repeat-sales data). In recent work, Bourassa and Hoesli (2016) apply the procedure of

Bokhari and Geltner (2012) and construct high frequency house price indexes for both

cities and submarkets within cities. Bollerslev, Patton, and Wang (2015) develop daily

house price indexes for 10 major US metropolitan areas. Their calculations are based

on a database of several million residential property transactions and a standard repeat-

sales method that closely mimics the methodology of the monthly Case-Shiller house

price index. Bollerslev, Patton, and Wang (2015) apply a multivariate time series model

for the daily house price index returns, explicitly allowing for commonalities across cities

and GARCH effects.

In this article we show how the reliability of weekly hedonic indexes can be improved

by replacing postcode dummies by a geospatial spline and then using a Kalman filter.

This approach has two advantages. First, the dimensionality of the model is reduced.

Replacing postcode dummies by values from the geospatial spline function at each

location in the data set very significantly reduces the number of parameters that need

to be estimated, and the number of covariance restrictions that must be imposed to

make the Kalman filter operational. Second, the small number of observations in each

period causes larger variability in estimated parameters (shadow prices) which should

not change too much from one week to another. Estimation of a dynamic linear model

with the Kalman filter interconnects those parameters over time.
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Applying this hedonic geospatial spline/Kalman filter approach to data for Sydney

(Australia) over the period 2001–2014 we show that it outperforms competing alterna-

tives for computing house price indexes at a weekly frequency. We evaluate the different

indexes and judge the index quality with the measures proposed in Guo et al. (2014)

where formal tests of the quality of an index in terms of precision and reliability, and a

smoothness test against random noise were introduced. In addition, we use the criterion

proposed by Hill and Scholz (2014) which is based on the repeat-sales price relatives in

our data set.

The remainder of this paper is structured as follows. Section 2 provides an overview

of the applied econometric methods for estimation of the hedonic model (a generalized

additive model and the Kalman-Filter), the hedonic price index construction, and dis-

cusses ways of measuring the quality of an index. Section 3 presents our data set, the

empirical study and the results of our analysis. Section 4 concludes by considering some

implications of our findings and gives a short outlook for further research. Technical

details regarding the estimation procedures are postponed to appendix.

2 Hedonic Imputation and Index Quality

Hedonic price indexes for housing are constructed in three main ways: time-dummy

methods, hedonic imputation, and average characteristic methods (Diewert, 2010; Hill,

2013). All of them have in common that in a hedonic model the price of a product is

regressed on a vector of characteristics (whose prices are not independently observed).

The hedonic equation is a reduced form that is determined by the interaction of supply

and demand. Hedonic models are used to construct quality-adjusted price indexes in

markets (such as computers) where the products available differ significantly from one

period to the next. Housing is an extreme case in that every house is different.
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2.1 Estimation of the hedonic model

In this paper, we use the hedonic imputation method and model the hedonic equation

in two different ways: (i) in a semi-parametric generalised additive model (GAM) and

(ii) a linear varying coefficient (dynamic) model. Our main goal is to extend the work

of Hill and Scholz (2014), who used (i) for annual data, to the weekly frequency and

combine it with (ii). The idea behind this is as follows. Hill and Scholz (2014) estimate

in each period t the semilog GAM model with a parametric part based on the physi-

cal characteristics Z (including an intercept) and a fully nonparametric function gt(·)

defined on the geospatial data (latitudes zlat and longitudes zlong):

y = Zβt + gt(zlat, zlong) + ε, (1)

where y = ln p. An increase in the estimation frequency (from annual to weekly) will

drastically reduce the number of observations in each period. As a result one expects

larger variability in estimated parameters. But the shadow prices β̂t and the price

surface ĝt should not change too much from one week to another. One possibility to

combine the shadow prices β̂t over time would be the estimation of a dynamic linear

model with the Kalman-filter. For example, Rambaldi and Rao (2011) use time-varying

hedonic models for the construction of house price indexes. The problem with such an

approach is that it is not clear ad-hoc, how to incorporate the fully nonparametric part

(the unknown function gt) in such a setting1. It is well known that the information of

the location of the individual dwellings is a main explanatory variable and price driver

in a hedonic context. As an alternative to a function gt(·) defined on longitudes and

latitudes often the use of postcode dummies is proposed:

y = Zβt +Dδt + ε, (2)

1We are only aware of approximative interpolation methods (kriging) which are combined with the

state-space model, known as the kriged Kalman filter (Mardia et al., 1998; Cressie and Wikle, 2002).

4



where D is a matrix of postcode dummies containing the location information and δ is

the vector of corresponding shadow prices. The drawback with (2) in our weekly esti-

mation context is now that the number of degrees of freedom is extremely reduced due

to data sparsity. It can even happen that for some postcodes we have no observations

in our records causing not only statistical problems but also computational problems

especially in the hedonic prediction step.

To overcome the disadvantages mentioned above we propose the combination of

both methods in the following way. First, we estimate (1) for the weekly frequency and

extract each time the estimated locational component ĝt. In a second step we include

this estimate of the spline function in (2) as a constructed variable replacing all the

postcode dummies

y = Zβt + ĝtγt + ε. (3)

Note that γ is a scalar coefficient that can now vary over time and thus shift the

whole spline surface up or down. But even more important, the Kalman filter can now

interrelate the spline surfaces over time. In addition, we have replaced a large number

of parameters (we have around 250 postcodes in our data set) by a single parameter,

what is a great gain in parsimony. In other words, the number of parameters to be

estimated and covariance restrictions that must be imposed to make the Kalman filter

operational have been heavily reduced.

2.2 Index construction

As usual in the hedonic imputation literature, we use the estimated hedonic models

(1)-(3) and impute prices which can be inserted into standard price index formulas. We

will refer to a formula that focuses on the houses that sold in the earlier period t as

Laspeyres-type, and formula that focuses on the houses that sold in the later period

t+ 1 as Paasche-type. Our price indexes are constructed by taking the geometric mean
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of the price relatives, giving equal weight to each house.2 Taking a geometric mean

of Laspeyres and Paasche type indexes, we obtain a Fisher-type index that has the

advantage that it treats both periods symmetrically and is consistent with a log-price

hedonic model.

The indexes presented below are all of the double imputation type.3 This means

that both prices in each price relative are imputed. For example, for model (1) and (3)

the double imputation Paasche index (DIP), Laspeyres index (DIL), and Fisher index

(DIF) are defined as follows:

PDIP
t,t+1 =

Ht+1∏
h=1

[(
p̂t+1,h(zt+1,h, ĝt+1,h)

p̂t,h(zt+1,h, ĝt+1,h)

)1/Ht+1
]
, (4)

PDIL
t,t+1 =

Ht∏
h=1

[(
p̂t+1,h(zt,h, ĝt,h)

p̂t,h(zt,h, ĝt,h)

)1/Ht
]
, (5)

PDIF
t,t+1 =

√
PDIP
t,t+1 × PDIL

t,t+1 (6)

In the index calculation for the hedonic model (3) where we apply the Kalman fil-

ter one has to be careful to compute the correct predictions p̂t,h(zt+1,h, ĝt+1,h) and

p̂t+1,h(zt,h, ĝt,h). The crucial point is that the constructed location effect needs to be

matched with the correct period. For example, p̂t,h(zt+1,h, ĝt+1,h) imputes prices for

houses sold in period t + 1 based on the parameters estimated with houses sold in

period t. In this case, ĝt+1,h has to be the estimated location effect for house h sold

in period t + 1 extracted from the GAM of period t, i.e. from gt(zlat, zlong). In other

words, p̂t,h(zt+1,h, ĝt+1,h) = exp
(
z>t+1,hβ̂t + ĝt,h(zt+1,h,lat, zt+1,h,long)γ̂t

)
. Thus, standard

prediction commands in software packages such as R usually give wrong results.

2This democratic weighting structure is in our opinion more appropriate in a housing context than

weighting each house by its expenditure share. See de Haan (2010) for a discussion on alternative

weighting schemes.
3We also calculated single imputation indexes where only one price of the price relatives is imputed.

The results are virtually indistinguishable. Hence to safe space we focus here only on the double

imputation type.
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2.3 Measuring the quality of the index

The constructed indexes should be useful instruments for policymakers or market par-

ticipants. But this claim requires measures for the quality of the proposed indexes. In

this subsection we present four different criteria for judging index quality.

Guo et al. (2014) distinguish between two types of errors: (i) systematic effects and

(ii) random errors. An example of the former is omitted variables bias which might

cause a systematic difference in the long-term growth rate of the indexes. Others are

sample selection bias, unbalanced data, or lagging. An example of the latter is the

noise in the index arising from coefficient estimation in the hedonic model. This source

of error has a larger impact on high-frequency indexes than on low-frequency indexes

where the underlying signal is stronger and the number of data points per period is

higher.

Guo et al. (2014) propose the use of the following three signal-to-noise measures for

index returns rt = ln (Pt+1/Pt), where Pt is the level of the price index in period t:

(i) The volatility (VOL) measure is the standard deviation of rt.

(ii) The first-order autocorrelation (AC1) measure is β̂ from the following OLS re-

gression:

rt+1 = βrt + εt+1.

(iii) The deviation from a smoothed Hodrick-Prescott (HP) filter representation. This

deviation is calculated as follows:

HP =
T−1∑
t=1

[
ln

(
Pt+1

Pt

)
− ln

(
HPt+1

HPt

)]2
,

where HPt is the smoothed price index calculated using the HP filter.

A smaller value of VOL and HP, and a higher value of AC1 indicate a smoother and

hence better performing index.
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Our fourth measure uses repeat sales as a benchmark against which to measure index

performance (see Hill and Scholz (2014)).4 Since the price relatives are the building

blocks in our price index formulas (4) and (5), what most matters is the quality of the

estimated price relatives p̂t+1,h/p̂t,h. Suppose house h sells in both periods t and t+ k.

For this house therefore we have a repeat-sales price relative: pt+k,h/pt,h, and can also

provide an imputed price relative p̂t+k,h/p̂t,h. Therewith we can define Vh as the ratio

of the actual to imputed price relative for house h:

Vh =
pt+k,h
pt,h

/
p̂t+k,h
p̂t,h

. (7)

Our quality measure is then the average squared error of the log price relatives of each

hedonic method:

D =

(
1

H

) H∑
h=1

[ln(Vh)]
2, (8)

where the summation in (8) takes place across the whole repeat-sales sample. We prefer

whichever model has the smaller value of D.

3 Empirical application

3.1 The data set

We use a data set obtained from Australian Property Monitors that consists of prices

and characteristics of houses sold in Sydney (Australia) for the years 2001–2014. For

each house we have the following characteristics: the actual sale price, time of sale,

postcode, property type (i.e., detached or semi), number of bedrooms, number of bath-

rooms, land area, exact address, longitude and latitude. (We exclude all townhouses

from our analysis since the corresponding land area is for the whole strata and not for

the individual townhouse itself.) Some summary statistics are provided in the Appendix

in Table 2.

4For an exact definition of repeat-sales and a broader discussion see Hill and Scholz (2014).
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For a robust analysis it was necessary to remove some outliers. This is because there

is a concentration of data entry errors in the tails, caused for example by the inclusion

of erroneous extra zeroes. These extreme observations can distort the results. The

exclusion criteria we applied are shown in the Appendix in Table 3. Complete data on

all our hedonic characteristics are available for 433 202 observations. To simplify the

computations we also merged the number of bathrooms and number of bedrooms to

broader groups (one, two, and three or more bathrooms; one or two, three, four, five or

more bedrooms). From earlier studies with the same data set we know that the quality

of the data improves over time. Especially the data of the first two years seems to be

poor. Thus we decided to present the hedonic indexes starting in 2003. Nevertheless,

we use the full sample period for estimation of the state space model. An other reason

for discarding the first two years when it comes to construct an index based on the

Kalman filter is that we have to assure that the filter has settled. Starting the index in

2003 we can be confident that the initial condition is not affecting the index base.

3.2 House price indexes

House price indexes for Sydney generated using the GAM method (i.e., hedonic impu-

tation with a spline but no state space model), SS+PC (i.e., hedonic imputation with

postcodes and a state space model), and SS+GAM (i.e., hedonic imputation with a

spline and state space model) are shown in Figure 1. Also shown is a median price

index. The median index is extremely volatile, thus demonstrating the need for quality

adjustment to generate an economically meaningful index. The three hedonic indexes

while broadly comparable, exhibit significant differences particularly in the middle part

of the data set.
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Figure 1: Weekly House Price Indexes from 2003 to 2014
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(2) with postcode dummies; SS+GAM is the state space model (3) with the spline component;

Median is the usual median index on a weekly frequency.
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3.3 Comparing the quality of the indexes

The performance of the three hedonic methods, a median index, and a repeat-sales

index are compared in Table 1. SS+PC performs best according to VOL followed by

SS+GAM. The AC1 results are striking in that all the coefficients are negative, unlike

in Guo et al. (2014). These authors show that the AC1 measure is a function of the

following components (none of which can be directly observed):

AC1 =
ρrσ

2
r − σ2

η/2

σ2
r + σ2

η

,

where ρr is the autocorrelation coefficient of the true return, σ2
r is the variance of the

true return, and σ2
η is the noise variance. Guo et al. (2014) use monthly data. Moving

from monthly to weekly data acts to reduce ρr and σ2
r while increasing σ2

η. This can

explain why our AC1 coefficients are all negative. Surprisingly though the median

index performs best according to AC1. This finding draws into question the usefulness

of this criterion in the context of weekly data. The HP results are similar to the VOL

results, and in particular generate the same ranking of methods. One problem with

the HP method is that the smoothed index is not very smooth. Figure 2 shows this

finding exemplarily for the GAM method. This suggests that the HP filter is not able

to smooth out all the volatility in the weekly indexes. A filter with a higher degree of

smoothness would work better here.

The SS+GAM method outperforms the SS+PC method according to the D criterion

that compares imputed price relatives with their repeat-sales counterparts. However the

GAM method without a state space model performs even better. These computations

though are preliminary. In particular the first years of the data set which constitute the

burning period of the state space model should be excluded when comparing methods.
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Figure 2: Log Weekly Returns and HP Weekly Returns for the GAM Method
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Table 1: Index quality criteria

VOL AC1 HP D

GAM 0.0161 -0.4312 0.1415 0.1008

SS+PC 0.0148 -0.4673 0.1203 0.1068

SS+GAM 0.0156 -0.4376 0.1339 0.1020

Median 0.0567 -0.1819 1.5845 –

RS 0.0170 -0.5182 0.1631 –

Note: GAM is based on periodwise estimation of model (1); SS+PC is the state space model

(2) with postcode dummies; SS+GAM is the state space model (3) with the spline component;

Median is the usual median index, RS is the repeat-sales index. All indexes based on a weekly

frequency.

4 Conclusion

Our results are still very preliminary. Our performance criteria are still being fine tuned,

and we may still also include more criteria.

The extent of the short-term volatility in our weekly hedonic indexes though is

surprising. It remains to be seen how much of this volatility is genuine and how much

reflects measurement problems. It is also perhaps surprising that the use of state space

models does little to reduce the volatility of our price indexes, and it remains to be seen

whether it can really be argued that the use of state space models improves the quality

of our weekly indexes.

We intend to increase the flexibility of the state space model by including Residex

region dummies (there are 16 Residex regions in Sydney). This will allow the state space

model to shift up or down different parts of the spline surface by differing amounts. It

remains to be seen what impact this increased flexibility will have on SS+GAM. Another

issue we are considering is to try extend the analysis to daily indexes.
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Appendix

A1. Estimation of the semiparametric hedonic model

The semiparametric hedonic model in (1) is an example of a generalized additive model

(GAM), a flexible model class that generalizes linear models with a linear predictor

combined with a sum of smooth functions of covariates. The problem is to select the

smooth functions and their degree of smoothness. Here, we use a penalized likelihood

approach (see Wood (2006), and the references therein) based on a transformation and

truncation of the basis that arises from the solution of the thin plate spline smoothing

problem. This method is computationally efficient and avoids the problem of choosing

the location of knots, known to be crucial for other basis functions. For example,

consider the following function:

y = g(x) + ε, (9)

where x is a d-vector (d ≤ n), and n is the number of observations. A thin-plate spline

smoothing function estimates g by finding the function f̂ that minimizes

||y − f ||2 + λJmd(f), (10)

where y = (y1, . . . , yn)>, f = (f(x1), . . . , f(xn))>, and Jmd(f) is a penalty function

measuring the wiggliness of f with smoothing parameter λ, which controls the trade-off

between the goodness of fit and smoothness of f .5 Under suitable conditions it can be

shown that the solution of (10) has the form,

f̂(x) =
n∑
i=1

δiηmd(||x− xi||) +
M∑
j=1

αjφj(x), (11)

where δi and αj are coefficients to be estimated, such that T>δ = 0 with Tij = φj(xi).

The M =
(
m+d−1

d

)
functions φi are linearly independent polynomials spanning the space

of polynomials in Rd of degree less than m, while the φi span the null space of Jmd.

5For more details on Jmd see Wood (2006). The order of the derivatives in the thin plate spline
penalty term is specified by m. It is set to the smallest value that satisfies 2m > d+ 1 (in our case we
have d = m = 2).
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Defining the matrix E by Eij = ηmd(||xi− xj||), the thin plate spline fitting problem is

now the minimization of

||y −Eδ − Tα||2 + λδ>Eδ s. t. T>δ = 0. (12)

There are as many unknown parameters as there are data points. The computational

cost of model estimation is proportional to the cube of the number of parameters. The

computational burden of (12) can be reduced with the use of a low rank approximation.

The basic idea of thin plate regression splines is now the truncation of the space of the

wiggly components of the spline (with parameter δ), while leaving the α-components

unchanged. For this let E = UDU> be the eigen-decomposition of E, such that D is

the diagonal matrix of eigenvalues and the columns ofU the corresponding eigenvectors.

Also, δ is restricted to the column space of Uk, by writing δ = Ukδk. Now with the

choice of an appropriate submatrix Dk of D and Uk, as the corresponding columns of

U , the minimization problem (12) becomes

Minδk,α
{
||y −UkDkδk − Tα||2 + λδ>kDkδk

}
s. t. T>Ukδk = 0. (13)

Hence the computational cost is reduced from O(n3) to O(k3). The remaining problem

is to find Uk and Dk sufficiently cheaply. Remember that a full eigen-decomposition

requires O(n3) operations and thus is inappropriate. The use of the Lanczos method

allows the calculation ofUk andDk at the substantially lower cost of O(n2k) operations.

For the selection of the smoothing parameter λ we refer to Wood (2011), who pro-

poses a Laplace approximation to obtain an approximate restricted maximum likelihood

(REML) estimate which is suitable for efficient direct optimization and computationally

stable. The REML criterion requires that a Newton-Raphson approach is used in model

fitting, rather than a Fisher scoring. The penalized likelihood maximization problem is

solved by Penalized Iteratively Reweighted Least Squares (P-IRLS).
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A2. Estimation of the time-varying hedonic model

The time-varying hedonic model (3) is estimated in the following way.6 Remember that

the parameters β and γ will be interconnected over time:

βt = βt−1 + ηβ and γt = γt−1 + ηγ (14)

where ηβ ∼ N(0, σ2
β), ηγ ∼ N(0, σ2

γ). For the error terms in (3) we also assume ε ∼

N(0, σ2
ε). Note that the intercept in Z could be interpreted as a local trend for period

t (which could also be expanded to cover a seasonal component). Define αt = (βt, γt)
>

as the vector of time-varying parameters to be estimated and E(αtα
′
t|=) = Ωt|= as the

variance-covariance matrix of parameters given available information. We require Ωt|t−1

for estimation and Ωt|t to construct standard errors and confidence intervals.

Given yt, Zt, ĝt, σ̂
2
ε , σ̂

2
β and σ̂2

γ, estimates of αt|t are obtained using the Kalman filter

estimator of αt given information up to and including week t,

at|t = at−1|t−1 +Gtνt|t−1, (15)

where Gt = Ωt|t−1Z
′
tF
−1
t is the Kalman Gain, Ft = E(νt|t−1ν

′
t|t−1), νt|t−1 = yt−Ztβ̂t−1−

ĝt−1|tγt−1, and ĝt−1|t is the estimated non-parametric surface for properties sold in period

t evaluated at time t− 1.

The variance-covariance matrix Ωt|t−1 is a function of σ̂2
β and σ̂2

γ, and Ft is a function

of σ̂2
ε . To compute (15) for week t = τ , the Kalman filter algorithm is run for period t =

1, . . . , τ to provide the estimate aτ |τ . Estimates σ̂2
ε , σ̂

2
β and σ̂2

γ are given by maximizing

the log-likelihood lnL in predictive form

lnL(σ2
ε , σ

2
β, σ̂

2
γ; yt, Zt, ĝt) = −NT

2
ln(2π)− 1

2

T∑
t=1

ln|Ft| −
1

2

T∑
t=1

ν ′t|t−1F
−1
t νt|t−1,

where N =
∑T

t=dNt; d is sufficiently large to avoid the log-likelihood being dominated

by the initial condition, α0 ∼ N(a0,Ω0).

6As mentioned before, model (2) has more parameters involved but the estimation is quite similar.
Thus we only present the setting for model (3).
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A3. Further information on the data set

Some summary statistics for our data set are provided in Table 2.

Table 2: Summary of characteristics

PRICE ($) BED BATH AREA LAT LONG
Minimum 56500 1: 1348 1: 190395 100.0 -34.20 150.6
1st Quartile 420000 2: 38578 2: 174161 461.0 -33.93 150.9
Median 610000 3: 200428 3: 57673 587.0 -33.84 151.0
Mean 784041 4: 147794 4: 8835 626.1 -33.85 151.0
3rd Quartile 900000 5: 38734 5: 1746 720.0 -33.76 151.2
Maximum 3200000 6: 6320 6: 392 4998.0 -33.40 151.3

For a robust analysis it was necessary to remove some outliers. The exclusion criteria

we applied are shown in Table 3.

Table 3: Criteria for removing outliers

PRICE BED BATH AREA LAT LONG
Minimum Allowed 50000 1.000 1.000 100.0 -34.20 150.60
Maximum Allowed 4000000 6.000 6.000 5000.0 -33.40 151.35
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