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Abstract

A property is a bundled good composed of an appreciating asset, land, and a depre-
ciating asset, structure. The motivation to separate the value of the land and structure
components of property prices includes a range of needs such as those of tax authorities,
climate adaptation research, and national accounting. Recent approaches to disentan-
gling these two assets have been based on employing non-linearities and a construction
price index as an instrument. This study proposes to identify them by treating them as
two unobserved components of the property price, each with a unique mapping to intrin-
sic hedonic characteristics and different dynamic behaviour. The estimation approach
uses a modified form of the Kalman filter. One advantage of the model estimation
strategy is that the estimated components and derived indices are less influenced by the
composition of sales at any given period even when the model is estimated at higher
frequencies (e.g. monthly instead of quarterly). The algorithm is simple to implement
and we demonstrate, using three datasets representing different urban settings in two
countries, that the method produces land value predictions comparable to the state val-
uer’s assessments, and price indices comparable to recently published alternatives that
rely on exogenous non-market information to disentangle land values. Our monthly
indices are smoother than the quarterly counterparts produced by alternative methods.

Keywords: urban land prices, housing prices, state-space, unobserved components,

Fisher price indices.
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1 Introduction

A property is a bundled good composed of an appreciating asset, land, and a depreciating

asset, structure. The importance of this distinction is increasingly recognized in both the

real estate (see Bostic et al. (2009), Malpezzi et al. (1987)) and the price index construction

literature (see European Comission et al. (2013), Chapter 13, Diewert et al. (2011, 2015) and

Diewert and Shimizu (2013)). The motivations to separate the value of the land and struc-

ture components of property prices include the needs of tax authorities, climate adaptation

research (Fletcher et al., 2013), and national accounting (Diewert et al., 2015). The literature

review of Diewert et al. (2015) concludes that land and structure should be modelled as two

additive components of the property value. This is the view we adopt as well.

Our paper provides an econometric approach to both obtaining the decomposition of the

price of a residential property into land and structure components, and computing price in-

dices for each component. The underlying economic model is a representation of the valuer’s

problem, whose task is to provide a valuation of either the property or the land. Economet-

rically, the identification makes use of the fact that each component (land/structure) can

be mapped to unique characteristics with behaviours that differ dynamically. The economic

arguments to justify the dynamic behaviour of each component are based on existing liter-

ature (see for example Bostic et al. (2009)). Due to the mobility of materials and labor,

construction costs are generally uniform within a housing market and thus it must be the

case that asymmetric appreciation across properties within a market arise from asymmetric

exposure to common shocks to land values. At any point in time the value of the structure is

its replacement cost less any accumulated depreciation. Thus, sufficiently large depreciation

can result in the structure (improvements on the land) declining in value over time1. Using

dynamic behaviour to separate unobserved components is an idea that dates back to Mar-

avall and Aigner (1977) and has been used recently in a number of contexts (e.g. separating
1see Malpezzi et al. (1987) and Knight and Sirmans (1996) for an excellent discussion and treatment of

modeling and accounting for depreciation and maintenance of the structure
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measurement error, Komumjer and Ng (2014), inflation and output gap, Harvey (2011)). Our

identification strategy is to use ’dynamic discount factors’, popular in the Bayesian statistics

literature dating back to the 1970s (see Koop and Korobilis (2013) for a recent application

in econometrics). We write the model in state-space form, specify part of the covariance

structure using discount factors and estimate in a classical framework. The estimation uses a

modified form of the Kalman filter algorithm. The parameters associated with the covariance

structure are estimated by evaluating the log-likelihood and those associated with the hedo-

nic characteristics by running the modified Kalman filter equations. The method proposed

here departs from recently proposed approaches to separate land and structure components,

Diewert et al. (2015) and Färe et al. (2015), in that we do not rely on the use of exogenous

price information as instruments to identify the components.

The use of hedonic characteristics that define the land and structure components is a fea-

ture of other recent works (structure size, distance to public transport, etc). In Diewert et al.

(2011), the focus is on non-linear hedonic regressions with specifications that use piecewise

or spline functions of the characteristics. However, the use of non-linearities is not sufficient

to separate the two components. In their most recent work, Diewert et al. (2015), the model

specification uses piecewise or spline functions of the characteristics together with exogenous

price information in the form of a construction price index which is used as instrument to

identify the land component (we refer to their approach as DdH). Diewert and Shimizu (2013)

use a similar approach to compute components price indices for Tokyo. Färe et al. (2015)

also use the construction price index as an instrument to develop further the DdH approach

(although they refer to it as the DS method after the work of Diewert and Shimizu (2013)).

Their estimator is based on a distance function approach; we will refer to their approach as

FGSS. Färe et al. (2015) estimates econometric models with fixed parameters over the whole

sample. This leads to index values that are functions of future market information. This is

not a desirable characteristic. DdH use a period by period estimation of the model to con-

struct the price indices, which might lead to excessive volatility due the varying composition
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of sales of the available sample in each time period. Our estimate of each component at any

period, ⌧, is a weighted sum of information in periods t = 1, . . . , ⌧ � 1, ⌧ . We construct two

hedonic imputed Fisher price indices. They differ in the type of weighting used for trans-

actions. When the weights are value shares (i.e. the weight of an individual transaction is

the ratio of its sale price to the sum of prices of all properties sold in that time period) the

index is labelled Fisher Plutocratic (FP). The index obtained by using equal weighting of

each transaction is labelled Fisher Democratic (FD). The computed indices from DhH and

FGSS are also Fisher type.

We use three data sets to demonstrate and evaluate our proposed method as well as

compare its performance against benchmarks. Two datasets from Queensland, Australia are

used to illustrate the estimation algorithm with data at two different frequencies (monthly

and annual) and compare the value of the predicted land component to that made by the

state valuer’s office. The third dataset from a Dutch city has been used by Diewert et al.

(2015) and Färe et al. (2015) to construct indices of land and structure components and thus

it provides the opportunity to compare the constructed hedonic imputed price indices from

our method to theirs.

2 The Valuer’s Model

In most developed countries there is the need to have a valuation for tax purposes of either

the property or the land. In the empirical application used in this paper, data from two urban

areas from the state of Queensland (QLD) in Australia are used. The state government has a

statutory authority (the Valuer-General of QLD) which issues land valuations for all rateable

properties in the state. These are then used by the local government to set ’rates’ or the state

to set land taxes. The valuations are typically carried out by expert assessors who use market

sales reports and local knowledge to provide an estimate of the value of the property/land
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within a given property market2. The valuer’s task is to provide the tax authorities and

the rate payers with a valuation of their property or land. We write a simple model for the

expected value of the property,

E
t

(V
t

) = E
t

(L
t

, S
t

|
⌧

X

j=0

w
t�j

[market sales: Property, Land]
t�j

) (1)

where,

V
t

is the value of the property

L
t

is the land component of the value

S
t

is the structure component of the property value

w
t

is a weight such that w
t�1 > w

t�2 > w
t�3 > ...

The model simply states that the valuer uses all available information up to the current

period on market trends, sales in similar locations, sales of similar dwellings, and sales of land

and properties, and that transactions in more recent periods are more heavily weighted than

those that have occurred further in the past. When land valuation is required, the value,

L
t

, has to be disentangled from V
t

. This task requires the use of additional information

that can assist in separating the trends in the value of each of the goods in this bundle

(i.e., land and structure) and the assumption that the evolution of these two trends can be

differentiated. This assumption is justified using the arguments made in the previous section;

for the structure, the value is given by its construction cost minus depreciation. Therefore,

the value of a given structure is likely to be mostly dominated by the trend in wages and

materials costs in the local market and the depreciation due to age. For the land, on the

other hand, appreciation in a given market is often related to the limited supply of urban

land which results in common shocks to land values. For instance, there could be influx
2The state government’s website makes the following statement regarding valuations: "When determining

statutory land values, valuers from our department: examine trends and sales information for each land use

category (e.g. residential, commercial, industrial and rural); inspect vacant or lightly improved properties

that have recently been sold; consider the land’s present use and zoning under the relevant planning scheme;

take into account physical attributes and constraints on use of the land" (http://www.dnrm.qld.gov.au/
property/valuations/about/considerations).
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of population into an area which would assert an upward pressure on the price of land.

In addition, location plays a big role as urban areas grow and expand. For instance, new

infrastructure (transport, bridges, train lines, etc) can result in big changes in the demand for

urban land in certain locations. It is obvious that the identification of the land value can be

assisted by observations of sales of vacant land; however, in heavily urbanised areas, land sales

are unusual. Using construction costs to identify the value of the structure is an alternative;

however, such a value would be an approximation, which would require some adjustment for

depreciation due to age as well as other intrinsic characteristics of the structure if available.

In other words, the valuers adjust prices based on hedonic characteristics. In practice, valuers

perform hedonic adjustment based on experience and data and it is unlikely that an explicit

econometric model is used, although this is likely to be changing as relevant data become

more readily available in electronic form and more research on statistically sound prediction

models becomes available. To contribute to the latter, our aim in the next subsection is to

set up an econometric specification that models the valuer’s tasks of obtaining the required

decomposition. The approach is based on an estimator that is a weighted sum of past

information and has well defined statistical properties.

3 The Econometric Approach to the Decomposition and

Construction of Price Indices

The aim of a our decomposition approach is to have a general model specification so that

it works with most datasets and is simple enough to be easily implemented. In addition,

we wish to obtain estimates that will not be subjected to frequent revisions as new data

are gathered, because the components’ estimates are also the inputs to the construction of

separate price indices for land and structure. We start by writing the observed sale price as

a sum of three additive components. This follows previous studies (Bostic et al. (2009) and

Diewert et al. (2015)) where three additive components are defined, land (L), structure (S )
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and noise.

y
t

= L
t

+ S
t

+ ✏
t

(2)

where,

y
t

is a vector (N
t

⇥ 1) with the sale price of each property (or vacant land) sold in period

t. That is, in each t, N
t

properties in the sample are sold.

L
t

is a vector (N
t

⇥ 1) where each row is the value of the land component for the ith

property sold in period t

S
t

is a vector (N
t

⇥ 1) where each row is the value of the structure component for the ith

property sold in period t, and S
it

= 0 if the sale is for vacant land

✏
t

⇠ N(0, H
t

)

In order to capture the trends in L
t

and S
t

, we must specify some form for these two

components. We define functions of each component’s unique hedonic characteristics and

some unknown parameters so that the resulting estimates capture the underlying smooth

trends in L
t

and S
t

.

L
t

= f(XL

t

,↵L

t

) (3)

S
t

= g(XS

t

,↵S

t

) (4)

where,

XL

t

is an N
t

⇥ k
l

matrix of hedonic characteristics intrinsic to the land component, e.g.

size of the lot, location

XS

t

is an N
t

⇥ k
s

matrix of hedonic characteristics intrinsic to the structure component,

e.g. age, size of the structure

↵c

t

are vectors of unknown parameters, c = L, S
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A simple, but very flexible, form of f() and g() is to use a linear combination of charac-

teristics and time-varying parameters,

L
t

= XL

t

↵L

t

(5)

S
t

= XS

t

↵S

t

(6)

We propose to achieve identification by specifying the law of motion of ↵L

t

and ↵S

t

as

driven by uncorrelated components’ specific discount factors in the covariance structure.

↵L

t

= ↵L

t�1 + ⌘L
t

(7)

↵s

t

= ↵s

t�1 + ⌘s
t

where,

↵L

t

is a vector of time-varying parameters associated with land characteristics

↵S

t

is a vector of time-varying parameters associated with structure characteristics

⌘L
t

⇠ N(0, QL

t

)

⌘S
t

⇠ N(0, QS

t

)

E(⌘
t

⌘0
t

) = Q
t

=

2

6

6

4

QL

t

0

0 QS

t

3

7

7

5

; with ⌘
t

=


⌘L
t

⌘S
t

�0

↵
t

=


↵L

t

↵S

t

�0
t = 1, . . . , T

↵0 ⇠ N(a0, P0) is the initial condition.

We do not specify Q
t

directly, instead we use what is known as a dynamic discounting

approach that models ↵
t

and its mean square error matrix, P
t

, with a modified form of the

Kalman filter. The approach originates in the engineering and statistics literature. There

are alternative decompositions of property prices depending on the final objective. Property

prices are well known to have trends, while XS

t

and XL

t

are unlikely to be trending variables.
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The conventional decomposition is into an overall price trend and a quality adjustment linear

combination of hedonic characteristics and parameters. This feature has been conventionally

captured through the use of time dummy variables as well as the use of stochastic trends (see

Rambaldi and Fletcher (2014) for a review). This conventional decomposition of the price is

well suited to predict the bundle (structure and land); however, it cannot provide information

on the differential movements in the prices of land and structure. The specification chosen

here implies the time-varying parameters provide a venue to capture the time evolution

of the marginal value of hedonic characteristics (e.g. the shadow price of land close to a

Central Business District might be trending upwards at a much faster rate than the market

valuation of an extra bathroom). The specification should be viewed as a device to obtain a

decomposition that can identify the trends in the two components of the price. To achieve

this, the hedonic characteristics used must be uniquely attached to one component, and this

could not be achieved by having an intercept or standalone trend component.

3.1 Estimation of Components’ Parameters

Writing (2) using expressions (5) and (6), and defining Z
t

=


XL

t

XS

t

�

, the vector of

observed prices is linked to the characteristics of those properties sold at time t, and the

vector ↵
t

=


↵L

t

↵S

t

�0
,

y
t

= Z
t

↵
t

+ ✏
t

(8)

↵
t

= ↵
t�1 + ⌘

t

(9)

To estimate ↵
t

in equations (8), we use a modified version of the Kalman filter which

allows identification of ↵c

t

, c = L, S through a restriction on the dynamic evolution of ↵
t

.

To show how this is achieved, we present the standard form of the Kalman filter algorithm

and then show how it is modified when discount factors are used (West and Harrison (1999),
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Ch. 6 provides a detailed introduction to the use of dynamic discount factors in a Bayesian

setting). Although the use of discount factors has been limited to applications in the Bayesian

literature, the limiting behaviour of the mean square error of the Kalman filter when using

discounting has been studied by Triantafyllopoulos (2007) who shows the covariance of a
t|t

converges to a finite non singular covariance matrix that does not depend on P0.

Denote the filter estimate of ↵
t�1|t�1 by a

t�1|t�1. Given the assumptions about ✏
t

, ⌘
t

,↵0,

we can write its distribution a
t�1|t�1 ⇠ N(↵

t�1, Pt�1|t�1). Given the form of the transition

equations (9), the prediction and updating equations in the standard Kalman filter are given

by the expressions

ŷ
t|t�1 = Z

t

a
t�1|t�1 (10)

a
t|t = a

t�1|t�1 +K
t

⌫
t

⌫
t

= y
t

� Z
t

a
t|t�1

K
t

= P
t|t�1Z

0
t

F�1
t

P
t|t = P

t|t�1 �K
t

F
t

K 0
t

F
t

= Z
t

P
t|t�1Z

0
t

+H
t

(11)

P
t|t�1 = P

t�1|t�1 +Q
t

(12)

The distribution of the one-step ahead prediction of y
t

is ŷ
t|t�1 ⇠ N(y

t|t�1,Ft

). To estimate

the covariances Q
t

and H
t

in a classical estimation context, the log-likelihood function is

written in prediction error form using ⌫
t

, the one-step ahead prediction error, and its variance-

covariance, F
t

, which are obtained from the above Kalman filter recursions. The mean square

error of a
t|t�1 (in this case a

t|t�1 = a
t�1|t�1) is associated with P

t|t�1, and that of a
t�1|t�1 is

P
t�1|t�1. However, P

t�1|t�1 is the mean square error of a
t|t�1 if there is no stochastic change in

the state vectors from period t�1 to period t (Q
t

= 0). This is the global model (converging
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state); however, locally the dynamics are better captured by Q
t

6= 0. In our case these are the

dynamics that will allow us to extract the underlying trends in the components. The dynamic

discounting literature specifies P
t|t�1 as a discounted P

t�1|t�1 by a proportion. As our model

has two components, we specify the problem with two discount factors, each associated with

one of the components. We write equation (12) as follows

P
t|t�1 = diag

n⇣

��1
L

P
t�1|t�1,[1:kL,1:kL]

⌘

,
⇣

��1
S

P
t�1|t�1,[(kL+1):(kL+kS),(kL+1):(kL+kS)]

⌘o

(13)

where P
t|t�1 is a partitioned diagonal matrix with sub-matrices P[a,b] corresponding to the

land and structure components. Each partition is a function of a discount factor, 0 < �
L

, �
S



1, and P
t�1|t�1 associated with the movements in the land or the structure components in

the model in period t � 1. It is easy to verify that the estimates of the state, a
t|t, for one

component are still functions of both the land and the structure characteristics, XL

t

and XS

t

,

since F
t

is a function of Z
t

.

Using (13) and (12), it is easy to derive an explicit form of Q
t

which is equal to zero if the

discount factors are equal to 1. The conventional approach was to set the discount factors

to a value, see West and Harrison (1999), usually in the range between 0.85 and 0.99 for

models with components such as trend, seasonal and cyclical. Recently Koop and Korobilis

(2013), in the context of large time-varying parameter vector autoregressive models, proposed

to estimate discount factors, which they refer to as forgetting factors, through a Bayesian

model averaging approach. Here we combine a grid search and an evaluation of the likelihood

function in an iterative procedure (the full algorithm is described in the next subsection).

Based on the arguments made in the literature, land and structure require different dis-

count factors that obey the following restriction: �
L

< �
S

< 1. Urban land destined for

residential housing is an appreciating scarce asset, and thus shocks in the market due to

changes in population trends as well as overall macroeconomic conditions are expected to

drive the trend in land prices. The trend in the value of the structure is expected to be in

line with movements in construction costs, which are likely to closely follow changes in wages
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and more generally CPI, as well as a more homogeneous evolution across markets (such

as major urban cities within a state or country). Individual structures will be subjected to

depreciation which would be a function of the age of the structure. This point is important

as it provides a strong argument for the need to include a measure of the age of the structure

in XS

t

.

Denoting by a
t

the estimate of ↵
t

and by P
t

the mean squared error matrix of a
t

, con-

ditional on all information up to period t, the Kalman filter is a form of nowcasting and

provides estimates such that a
t

is a weighted sum of current and past information,

a
t

=
t

X

j=1

w
j

(a
t|t)yj (14)

Explicit forms of the weights, w
j

(a
t|t), have been derived by Koopman and Harvey (2003)

based on the recursions of the Kalman filter. This work, as well as that presented in Harvey

and Koopman (2000), show the relationship between implied weighting patterns obtained

using the recursions of the Kalman filter, as used in this study, and those obtained using

kernels in the non-parametric literature. The weights are functions of current and past

values of the one-step ahead prediction error ⌫
t

= y
t

� Z
t

a
t|t�1 and its mean squared error

matrix, F
t

, which is a function of present and past values of H
t

and P
t|t�1 in our modified

filter. The type of pattern of w
j

(a
t|t) is such that, at any point t, a

t

is a function of current

sales data and a decreasing function of past sale prices, with weight, w
t

(a
t|t), determined by

current and past Xc

t

(c = L, S), discount factors and H
t

. Assuming XL

t

and XS

t

capture the

characteristics of the land (including location) and the structure, it is reasonable to specify

the distribution of the noise, ✏
t

, as spherical. Therefore, H
t

= �2
✏

I
Nt with N

t

the number of

transactions in period t.

3.2 Estimation of covariance parameters

All parameters associated with the functions (5) and (6), are in the state vector; thus, once

values of �2
✏

, �
L

, and �
S

are available, it is clear from the recursions of the Kalman filter
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that the estimates of the state, ↵
t

, and its mean square error matrix, P
t

, can be computed.

To estimate  = [�2
✏

, �
L

, �
S

] we combine a grid search and an evaluation of the likelihood

function in an iterative procedure. We first obtain an initial estimate of �2
✏

by running a

conventional regression with intercept time dummies. The algorithm is as follows:

Estimation Algorithm:

Initial Estimates of  ,  ̂: For �2
✏

we run least squares on a model with fixed time dummies

and all regressors, XS and XL, and compute �̂2
✏

from the OLS residuals. Given this

estimate, we run the Kalman filter equations over a grid of pairs of values [�
L

, �
s

] and

compute the squared correlation between the actual price and the predicted price of

each property (constructed as the sum of the predicted land and structure components).

This is a general R2 measure. The pair of discount factors that provides the highest

generalised R2 is taken as the initial estimates, [�̂
L

, �̂
S

].

Maximum Likelihood estimate of �2
✏

: Given [�̂
L

, �̂
S

], a Newton-Raphson algorithm is

used to find the value, �̃2
✏

, that maximises the log-likelihood function, using �̂2
✏

as

initial value.

Final Estimates of �
L

and �
s

: Given �̃2
✏

, we run the Kalman filter equations over a grid of

pairs of values [�
L

, �
s

] again and compute the squared correlation between the actual

price and the predicted price of each property. The value pair that provides the highest

squared correlation are the final estimates �̃
L

and �̃
S

.

The final estimates �̃2
✏

, �̃
L

and �̃
S

are used in the filtering equations (10-13) to obtain the

estimates of ↵S

t

and ↵L

t

which are used to compute predicted prices of the components for

each property and time period using equations (5 and 6) with ↵c

t

replaced by ac
t|t, c = L, S.

If the dataset contains a reasonable number of transactions of land only sales, we compute

both an overall correlation between each sale and the model’s prediction, but also compute

the generalised R2 to assess the accuracy of the model’s predictions of sales of land only.
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The set of discount factors found to give the maximum generalised R2 for land sales is used.

The algorithm, coded in Matlab, is fully automated and runs in seconds for the datasets

used in this study. The grid search for the discount factor pairs, �
L

�
S

, covers 19 possible

combinations in the ranges d
L

= 0.7 � 0.95 and d
S

= 0.8 � 0.99, and so that d
L

< d
S

to

reflect the underlying restriction, �
L

< �
S

< 1.

In Section 4.1 we present an empirical implementation of the modelling and estimation

using two datasets. These two datasets represent two different urban settings and two time-

series frequencies. The first is an expanding urban area (monthly observations), while the

second is an old and well established suburb very close to the city’s central business district

(annual observations).

3.3 Hedonic Imputed Price Indices

Diewert et al. (2015) construct Fisher type indices for the price of the land component. The

component is identified econometrically through the use of exogenous information in the form

of a construction price index produced by a statistical agency. Färe et al. (2015) construct

Fisher type indices for the land and the structure. Their identification of the land component

also uses the exogenous construction price index. To identify a construction price index, they

use their constructed land price index as the exogenous instrument.

We compute Fisher price indices for the land and structure components estimated by

our approach. Two alternative Fisher indices are computed by using a different weighting

scheme, they are labeled Fisher Plutocratic (FP) and Fisher Democratic (FD), respectively.

The plutocratic version uses weights that are functions of value shares, and it is defined as:

F P

(t�s),t =
q

LP

(t�s),t P
P

(t�s),t (15)

where Lp

t�s,t

and P p

t�s,t

are respectively the Laspeyres and Paasche index numbers,

For the land component the indices are given by
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where,

P̂L

(t�s)(x
j

t

) for s � 0 is a prediction of the value of the land component of property h, sold

at time t with characteristics Xj

t

(j = Land, Structure) using a vector of shadow prices for

time period t� s and the value shares defined as in (16).

For time t, the weight of property h sold in that period, wh

t

, is given by:

wh

t

=
P h

t

Nt
P

n=1
P n

t

(16)

where,

P h

t

is the observed sale price of property/land h and N
t

is the number of sales in period

t. Similarly, using the prediction of the structure component of property h, P̂ S

(t�s)(x
j

t

) the

structure price index is computed.

The Fisher democratic version of the index, FD

(t�s),t , is computed by replacing the weights,

wh

t

(wh

t�s

), by N�1
t

(N�1
t�s

), where N
t

(N
t�s

) are the number of observations at time t(t� s). In

this case each transaction within a given time period is given an equal weight.

Section 4.2 presents monthly hedonic imputed Fisher indices using data from a Dutch

city. The dataset has been labelled "Town of A" in previous studies (European Comission

et al. (2013), Diewert et al. (2011, 2015) and Färe et al. (2015)). These are compared to the

quarterly price indices produced by DdH and FGSS.

4 Empirical Implementation

In this section our estimation approach, the land/structure decomposition, and the construc-

tion of price indices for the components are illustrated using our three datasets. Each set

provides an opportunity to evaluate our method against comparative benchmarks. The two

datasets from Queensland, Australia are used to show the workings of the estimation algo-
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rithm with data at two different frequencies (monthly and annual), and compare the value of

the predicted land component to that made by the state valuer’s office. The discussion is in

Section 4.1. The third dataset is that used by Diewert et al. (2015) and Färe et al. (2015) and

thus it provides the opportunity to compare the constructed hedonic imputed price indices

from this method to theirs. The discussion is presented in Section 4.2.

4.1 The Decomposition into Land and Structure

In this section we illustrate the model estimation and decomposition with two datasets. The

Bay side data contains monthly observations from an urban area north of the city of Brisbane.

What is sometimes labelled as the "greater Brisbane area" has expanded rapidly as the South

East of the state of Queensland (SEQ) underwent a large influx of population in the last two

to three decades. These data are from Fletcher et al. (2011). The BrisSub dataset is for

a single suburb in the inner city of Brisbane. The suburb is within five km of the central

business district (CBD) and one of the oldest and most well established in the city. These

data are annual and have been sourced from Rambaldi et al. (2013). Descriptive statistics

for these datasets appear in Appendix A.

4.1.1 Monthly Data - Bay Side

The data area is composed of several urban centres surrounding the Bay which act as satellite

suburbs to Brisbane. A substantial proportion of the population travel into Brisbane every

day to reach their employment location. The market in the Brisbane and "greater Brisbane"

region went through a boom period between 2001 and 2005 and this is reflected in the

number of transactions per month for that period. The market was more stable between

2005 and 2008. Figure 1 (top panel) shows the number and type of transactions per month

over the sample period which covers 1991:5 to 2010:9 (233 months). There are transactions

of properties (land and structure) as well as land only. The 2008 global financial crisis is

noticeable in that the number of transactions drops to levels similar to the early 1990s and
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remained volatile for the rest of the sample. It is widely accepted that the influx of population

into the region, together with a lag in the release of new urban land, drove land prices up

substantially. Figure 2 shows the median price of land sales. In this data set there are a total

of 13088 transactions, 9774 are of properties and the rest are land. The sale of land in this

area is due to urban sprawling in the area known as ’South East Queensland’ (SEQ). Having

observations of both types of transactions is unusual, and thus this data set provides a unique

opportunity to test the method. In addition, a large number of hedonic characteristics of the

structure and land are available for each transaction. The available data contain sale price,

land characteristics (size and location) and structure characteristics (size, age, number of

bedrooms and bathrooms), see Table 3 in Appendix A. In the notation of equations (5) and

(6), these characteristics fit into XL

t

or XS

t

. Land area, structure footprint and age entered

as a quadratic function to capture the wide range of the data3.

The estimates of the land and structure components, L̂
t

and Ŝ
t

, are converted to pro-

portions for presentation. These estimates are presented in Figure 1 (bottom panel), and

Table 1 presents the estimates of the discount factors and the overall noise variance (�2
✏

) at

each step of the algorithm. We note that the initial estimate of �2
✏

, which is obtained from

a time-dummy regression, is very large compared to the maximum likelihood estimate of the

time-varying components model. This is a good indication that the model has been able to

capture most of the dynamics of the land and structure components.

The left bottom panel in Figure 1 shows the land value as a proportion of the property

transaction sale value. The proportion was around 60% over the period 2002 - 2007. The

global financial crises downturn is visible, and the proportion due to land is estimated a bit

lower for the last part of the sample. Looking at Figure 1’s top panel, it is clear that sales

of land only dried up over the period of late 2007 and 2008, and the recovery was slow over

the 2009-2010 period.

Concentrating on the sales of properties (i.e. ignoring land only transactions, bottom
3Plots of some of the coefficient estimates are available from the conference paper version, the rest are

available upon request
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Figure 1: Bay side - Number of (monthly) Transactions (top); Median of Estimated Proportion of Land
Component - all sales used in the estimation (bottom left) and Vacant land sales ignored in the estimation
(bottom right)
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Figure 2: Bay side -Median of (monthly) Observed Vacant Land Prices

right in Figure 1), indicates that the value of the land component for existing properties in

this area was around 45-50% over the 00’s decade and after the global financial crisis the

land component accounted for between 40% and 45%. This would seem reasonable for an

area that was expanding and where property would not be sold for the purpose of replacing

a single detached dwelling by townhouses or terraces, as is the case of the suburb in inner

Brisbane studied in the next section.

Table 1: Estimates of  = �2
✏

, �
L

, �
S

- Bayside Data
�2
✏

�
L

�
S

Highest Gen R2

Land
Highest Gen R2

All
Model: Property and Land Sales (N = 13088)

Initial Estimates 2.61e+03 0.7a 0.95a 0.768b 0.866c

Final Estimates
(MLE/Highest

Gen R2)

46.734 0.7a 0.95a 0.768b 0.866c

Model: Property Sales (N = 9774)
Initial

OLS/Highest R2
3.07e+03 0.7 0.90 0.857

Final Estimates
(MLE/Generalised

R2)

233.17 0.7 0.90 0.857

aChosen using Gen R2 from Land transactions; bthis value is equal for d
L

, d
S

= [0.7, 0.95]
and [0.7, 0.99]; cthis value is for d

L

, d
S

= [0.7, 0.90]
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4.1.2 Annual Data - BrisSub

The suburb (neighbourhood) is in the inner city of Brisbane. The dataset covers 41 years

from 1970 to 20104 (descriptive statistics are presented in Table 4 in Appendix A); however,

the number of transactions is very small and dispersed over the time period covered compared

to the previous dataset. For this reason the estimation frequency is annual. Nevertheless,

our method performs quite well when asked to predict the proportion of the sale value due

to the land component. We provide the comparison of the model’s predictions of land values

to those made by the state valuer’s office in the year 2009.

There are very few transactions of land only (about 2% of transactions) and they appear

in the latter part of the sample (Figure 3 top panel). This is consistent with sales of blocks

that would have housed a single dwelling (smaller and with a backyard) which are then

developed into townhouses or terrace type structures as the area undergoes a process of infill

due to its location and the substantial growth of the city of Brisbane.

The estimates of the covariance discount factor parameters are similar to those obtained

for the Bay side data set with �̂
L

= 0.7 and �̂
S

= 0.9. This is expected as both sub-markets

are part of SEQ, which has experienced massive increases in the property prices, especially in

the early to middle part of the 00’s. Analysts and commentators agree the massive increase

is in land prices.

Figure 3 (bottom panel) shows the estimated land proportion of the property value. The

first few years are expectedly hard to estimate as the number of transactions is very small

(top panel). However, the components estimator seems to gain traction relatively quickly

and provide a very reasonable trend from period ten (1980) onwards. The bottom panel plot

is based on all transactions and the estimates would indicate the proportion of the value of

the properties in this suburb in the decade 2001-2010 has been at a median of 55% to 70%.

Table 2 shows the Valuer’s estimated land value for the year 2009 as a ratio to the property

sale price for those properties in our dataset sold in 2009. The model estimates that the land
42010 data only covers the first half of the year

20



value was 67% (median) of the property sale value for that year. The valuer’s median for those

properties is 72%. The land valuation provided to the property owner by the state valuer’s is

based on a three year moving average. This is viewed as a way of decreasing volatility. Our

method is also weighted average of past values; however, the past information is not equally

weighted as in a simple moving average. One shortcoming of an equally weighting method

is that when the market takes a turn in either direction (e.g. the global financial crisis, the

Brisbane floods), the land valuations’ adjustment to these changes will be lagged. This was

observed by rate payers after the 2011 Brisbane flood episode.
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Figure 3: Brisbane Inner City - Number of (annual) Transactions (top); Median of Estimated Proportion
of Land Component (bottom)
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Table 2: Comparison of Land Price Valuation. State Valuer vs. Model
MonthSold Valuer’s Estimated

Land Proportion of
the actual sale

price

# Properties

Jan-09 0.721 13
Feb-09 0.704 11
Mar-09 0.762 16
Apr-09 0.741 17
May-09 0.746 16
Jun-09 0.675 9
Jul-09 0.738 11
Aug-09 0.673 13
Sep-09 0.734 14
Oct-09 0.617 19
Nov-09 0.683 12
Dec-09 0.716 15

Valuer’s Median 2009 0.716 166
Model (Median for 2009) 0.669 166

4.2 Price Indices for Land and Structure

In this section we construct price indices for land and structure using the "Town of A"

dataset kindly provided by W.E. Diewert (used in Diewert et al. (2015)). A shorter and

earlier version of this dataset was used by Färe et al. (2015). We clean the data following the

detailed code by Diewert. The original dataset had 3543 transactions, and 3487 were kept

after the cleaning process. Table 5 in Appendix Aprovides the descriptive statistics of the

working sample.

We label the indices FP and FD for Fisher plutocratic and Fisher democratic, respectively

(see Section 3.3). Throughout this section, we use a postfix "_L" to denote the index relating

to land (e.g. FP_L), and a postfix "_S" to denote structure (e.g FP_S). In this dataset land

area is the only characteristic describing land values; the structure is captured by dwelling

size, age, number of floors, number of floors2, number of rooms and number of rooms2. The

estimated discount factors for this dataset are �̂
L

= 0.8 and �̂
S

= 0.9. A plot of the estimated
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land proportion is presented in Appendix B.

We compare our indices to those computed by Diewert et al. (2015) and Färe et al. (2015).

Diewert et al. (2015) compute Fisher indices imputed from hedonic models that are non-linear

in the parameters (the economic modelling framework is labelled the Builder’s Model). To

assist with the identification, exogenous information in the form of a construction price index,

NDOPI (New Dwelling Output Price Index, published by the Central Bureau of Statistics of

Netherlands), is used as an instrument to estimate the land component. A model that uses

linear splines on lotsize, but no other hedonic information, is used to compute the indices

labelled DdH_P3. By adding additional characteristics to the model, such as rooms, the

version labelled DdH_P4 is produced. These are computed for a quarterly frequency.

Färe et al. (2015) adopt the same approach to the modelling. They refer to this as the

DS approach, derived from the work in Diewert and Shimizu (2013). In their paper the

index DS2 uses piecewise linear functions of the characteristics together with the NDOPI as

exogenous information. This index should be close to DdH_P4, although they were using

a shorter and earlier version of the ’Town of A’ dataset. Färe et al. (2015)’s contribution is

to estimate the models using a distance function approach. Their models are estimated by

Corrected OLS and using a Stochastic Frontier approach (SFA). Färe et al. (2015) compute

Fisher indices from their SFA estimates (we label these FGSS_SFA ). The index computed

from their SFA approach is then used by Färe et al. (2015) as the exogenous land price index

to identify the structure component in what they label DS2. We label their "Diewert and

Shimizu (2013); Diewert et al. (2015)" derived indices as FGSS_DS2. Their indices are also

computed for a quarterly frequency.

Figure 4 presents plots (for land and structure) showing our indices (computed monthly)

as well. Tables 6 and 7 in Appendix C presents the data behind these plots. The appendix

tables also show computed Fisher price indices for the property (labelled FP_p and FD_p).

These are constructed by adding the land and structure predicted prices to obtain the prop-

erty’s price and then using it as the imputed price in the Fisher’s indices formulae. Finally a
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median index constructed by computing the monthly median price of observed transactions

and setting Feb05 =1 is also presented for reference. The DdH and FGSS indices are based

on 2005:Q1=1. For the purpose of presentation the quarterly estimates have been aligned

with the central monthly indices (e.g. Q1 is aligned with February, Q2 is aligned with May,

Q3 is aligned with August and Q4 is aligned with November).

The DdH and FGSS_DS indices are estimated period by period which explains their more

volatile nature. The FGSS_SFA index is much less volatile as the underlying econometric

model is a fixed parameter model estimated with the data for the complete sample. The

problem with this approach to estimation is that in practice the transactions that occurred

in 2005, for example, had no information of the 2007 market; however, the model uses the

2007 information when estimating the parameters that will be then used to compute the

index. Our approach has time-varying parameters that update as new information becomes

available. The estimator is conditional on past and current information on the market and

therefore improves on DhH by using weighted past and current information, and on FGSS as

it does not use future information to estimate the parameters of the hedonic function. As a

result, our estimates are less volatile than DdH, but are able to pick up the turns in market

conditions due to the inherited learning nature of the Kalman filter estimator.

DdH did not compute a separate structure price index from the data, and thus DdH_P3

and DdH_P4 are identical to each other, and equal to NDOPI (their instrument). FGSS_DS2_S

is computed by estimating the Builder’s model with FGSS_DS2_L as the exogenous land

price index (that is, as the instrument to identify the structure). Our indices, FD_S and

FP_S, are based on the estimated structure component, Ŝ
t

, and thus no other exogenous

information has been used in their computation. Further evidence of the effectiveness of our

proposed approach is provided by the fact that our structure indices are very close to the

NDOPI (bottom panel Figure 4). Our index is not computed from construction costs of new

dwellings, instead it is using the sample information on the characteristics of the individual

dwellings and controlling for depreciation due to their age.
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5 Conclusion

We have proposed a new approach to decoupling property prices into land and structure and

have applied it to three widely different datasets. The approach is generalisable, applicable

to most datasets and simple to implement. We show our approach uses only prior sales infor-

mation, and has the flexibility to deal with varying data frequency. We have demonstrated

that it produces predictions of the land component of property values that are comparable to

those provided by the state valuer’s office. The imputed price indices for the land component

we generate are smoother than those produced by alternative methods. Importantly, our

computed indices do not rely on exogenous non-market price information on construction

costs in order to identify the land component of the price.

Developing better approaches for decoupling property prices into land and structure is

both important, and increasingly feasible. Both fair land taxation and economically sensible

urban development projects need to be informed by an understanding of what proportion of

the asset base is an appreciating asset (i.e. land), and what proportion is a depreciating asset

(i.e. house structure). Issues like climate change are raising the profile and importance of

making sound adaptation decisions. At the same time, electronic data on housing character-

istics are becoming more readily available, making approaches such as ours more accessible

to regular valuation.

Our paper starts by providing a simple underlying economic model, labelled the valuer’s

problem, whose task is to provide a valuation of either the property or the land. We then

propose an econometric representation of the problem. The identification of land and struc-

ture as two components is achieved through the use of dynamic discounting factors in a

modified form of the Kalman filter. Using well established behavioural patterns in the prices

of urban land and construction costs, we can impose econometrically a different dynamic be-

27



haviour in each of these components. We adopt a classical approach to the estimation, which

entails running the Kalman filter to evaluate the log-likelihood of the unknown covariance

parameters. The outcome of our paper is a generalisable approach that we hope responds to

emerging needs and data availability.

Appendices

A Descriptive Statistics

Table 3: Descriptive Statistics Bay side
Min Max Mean Median St.Dev

Sale Price (in 1000) 15.50 1250.00 191.77 161.50 129.44
Land Characteristics

Flood Plain Dummy 0.00 1.00 0.06 0.00 0.23
Large Plot Dummy 0.00 1.00 0.09 0.00 0.28
Land area (hectarea) 0.03 1.06 0.10 0.06 0.11
dist_coast (Km) 0.02 5.78 1.39 1.38 0.93
dist_waterway (Km) 0.01 0.86 0.27 0.25 0.16
dist_OffenIndus (Km) 0.18 8.38 2.87 2.27 1.83
dist_parks (Km) 0.01 0.98 0.13 0.11 0.11
dist_busStop (Km) 0.02 4.35 0.47 0.22 0.80
dist_Schools (Km) 0.01 6.55 0.65 0.32 1.09
dist_Shops (Km) 0.01 4.80 0.53 0.40 0.49
dist_BoatRamp (Km) 0.06 6.29 1.97 1.60 1.46
dist_PubsClubs (Km) 0.01 5.34 1.44 1.24 0.93
dist_Hospitals (Km) 0.01 13.26 3.20 2.26 2.71

Structure Characteristics
Structure=1 0.00 1.00 0.75 1.00 0.43
Age (years) 0.00 86.00 11.94 10.00 11.44
Structure Footprint (hectare) 0.00 0.09 0.02 0.02 0.01
Number of Bathrooms 0.00 4.00 1.06 1.00 0.78
Number of Bedrooms 0.00 8.00 2.52 3.00 1.58
Number of Parking Spaces 0.00 5.00 1.39 1.00 1.12
Total number of Transactions 13088
Number of Months 233 (1991:5 2010:9)
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Table 4: Descriptive Statistics BrisSub Data
Min Max Mean Median St.Dev

Sale Price (in 1000) 2.60 4710.00 305.22 215.00 269.48
Land Characteristics

Flood Dummy 0.00 1.00 0.04 0.00 0.20
Land area (hectareas) 0.02 0.22 0.06 0.06 0.02
dist_waterway (Km) 0.01 1.62 0.57 0.53 0.38
dist_river (Km) 0.95 4.77 2.97 3.04 0.87
dist_industry (Km) 0.00 2.62 1.00 0.91 0.66
dist_park (Km) 0.01 0.56 0.18 0.16 0.12
dist_bikeway (Km) 0.01 1.51 0.57 0.56 0.35
dist_busstop (Km) 0.01 0.50 0.20 0.18 0.11
dist_TrainStn (Km) 0.01 3.17 1.38 1.40 0.82
dist_school (Km) 0.04 1.23 0.47 0.45 0.24
dist_shops (Km) 0.00 1.09 0.36 0.33 0.19
dist_CBD (Km) 2.46 5.77 3.97 3.97 0.82

Structure Characteristics
Pre-War 0.00 1.00 0.49 0.00 0.50
War/Post War 0.00 1.00 0.37 0.00 0.48
Late 20th C 0.00 1.00 0.07 0.00 0.26
Contemporaneous 0.00 1.00 0.04 0.00 0.20
Structure=1 0.00 1.00 0.98 1.00 0.15
Structure footprint 0.00 0.10 0.02 0.02 0.01
Number of Levels 0.00 4.00 1.10 1.00 0.36
Number of Bathrooms 0.00 6.00 1.37 1.00 0.67
Number of Bedrooms 0.00 8.00 3.04 3.00 0.91
Number of Parking Spaces 0.00 8.00 1.66 2.00 0.78
Total number of Transactions 3944
Number of Years 41 (1970 2010)
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Table 5: Town of A Descriptive Statistics
min max mean median stdev

price (000
Euros)

70 550 182.260 160 71.316

Land Characteristics
land (sq mts) 70 1344 258.060 217 152.310

Structure Characteristics
house (sq mts) 65 352 126.560 120 29.841
Age (years) 0 4 1.895 2 1.231

floors 1 6 2.878 3 0.478
rooms 2 10 4.730 5 0.874

Number of
Transactions

3487

Number of
months

66 (2003:1 2008:6)

The data were cleaned following Diewert et al (2015). See footnotes 11,12,13.

We are indebted to W.E. Diewert for providing the data and cleaning code
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C Price Indices for the Town of A

Table 6: "Town of A" Land Price Indices

Month FD_p FP_p Median_I FP FD Quarter DdH P3 DdH P4 FGSS DS2 FGSS SFA

Aug-03 0.932 0.923 0.927 0.910 0.910 03:Q3 0.826 0.837

Sep-03 0.942 0.930 1.096 0.902 0.902

Oct-03 0.954 0.943 0.937 0.925 0.925

Nov-03 0.979 0.970 0.904 0.969 0.969 03:Q4 0.869 0.879

Dec-03 0.979 0.972 0.955 0.971 0.971

Jan-04 0.981 0.975 1.013 0.979 0.979

Feb-04 1.002 0.997 0.997 1.012 1.012 04:Q1 0.956 0.961

Mar-04 1.007 1.003 0.915 1.023 1.023

Apr-04 1.002 0.999 1.125 1.017 1.017

May-04 0.996 0.993 1.046 0.998 0.998 04:Q2 1.007 1.009

Jun-04 1.008 1.006 0.977 1.019 1.019

Jul-04 1.014 1.012 0.952 1.031 1.031

Aug-04 1.006 1.005 0.924 1.021 1.021 04:Q3 1.019 1.020

Sep-04 1.014 1.014 1.043 1.038 1.038

Oct-04 1.011 1.012 0.963 1.038 1.038

Nov-04 0.995 0.997 0.963 1.010 1.010 04:Q4 0.925 0.938

Dec-04 0.998 1.000 0.993 1.013 1.013

Jan-05 0.988 0.988 0.940 0.983 0.983

Feb-05 1.000 1.000 1.000 1.000 1.000 05:Q1 1.000 1.000 1.000 1.000

Mar-05 1.001 1.002 1.080 1.004 1.004

Apr-05 1.005 1.004 1.030 1.005 1.005

May-05 1.021 1.021 1.110 1.035 1.035 05:Q2 1.131 1.123 1.128 1.048

Jun-05 1.043 1.042 1.120 1.072 1.072
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Table 6: "Town of A" Land Price Indices

Month FD_p FP_p Median_I FP FD Quarter DdH P3 DdH P4 FGSS DS2 FGSS SFA

Jul-05 1.051 1.050 1.080 1.086 1.086

Aug-05 1.048 1.047 1.023 1.079 1.079 05:Q3 1.136 1.127 1.145 1.068

Sep-05 1.057 1.056 1.066 1.089 1.089

Oct-05 1.065 1.064 1.017 1.099 1.099

Nov-05 1.044 1.041 1.096 1.051 1.051 05:Q4 1.040 1.038 1.030 1.023

Dec-05 1.046 1.044 1.063 1.054 1.054

Jan-06 1.052 1.049 1.068 1.064 1.064

Feb-06 1.047 1.044 1.096 1.049 1.049 06:Q1 1.108 1.109 1.134 1.052

Mar-06 1.057 1.055 1.088 1.067 1.067

Apr-06 1.063 1.061 1.142 1.079 1.079

May-06 1.077 1.075 1.256 1.099 1.099 06:Q2 1.170 1.159 1.145 1.100

Jun-06 1.075 1.073 1.206 1.094 1.094

Jul-06 1.079 1.079 1.080 1.104 1.104

Aug-06 1.088 1.088 1.194 1.118 1.118 06:Q3 1.225 1.208 1.231 1.124

Sep-06 1.095 1.094 1.063 1.130 1.130

Oct-06 1.083 1.083 1.133 1.112 1.112

Nov-06 1.076 1.077 1.129 1.101 1.101 06:Q4 1.126 1.114 1.139 1.100

Dec-06 1.082 1.082 1.198 1.111 1.111

Jan-07 1.092 1.092 1.075 1.129 1.129

Feb-07 1.089 1.089 1.080 1.120 1.120 07:Q1 1.205 1.184 1.185 1.177

Mar-07 1.102 1.101 1.136 1.139 1.139

Apr-07 1.097 1.096 1.228 1.126 1.126

May-07 1.098 1.096 1.256 1.117 1.117 07:Q2 1.161 1.139 1.134 1.160

Jun-07 1.097 1.095 1.156 1.104 1.104
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Table 6: "Town of A" Land Price Indices

Month FD_p FP_p Median_I FP FD Quarter DdH P3 DdH P4 FGSS DS2 FGSS SFA

Jul-07 1.103 1.101 1.027 1.117 1.117

Aug-07 1.109 1.106 1.043 1.122 1.122 07:Q3 1.167 1.153 1.208 1.163

Sep-07 1.117 1.116 1.238 1.149 1.149

Oct-07 1.118 1.119 1.118 1.163 1.163

Nov-07 1.103 1.102 1.158 1.127 1.127 07:Q4 1.099 1.095 1.124 1.168

Dec-07 1.112 1.112 1.163 1.142 1.142

Jan-08 1.117 1.117 1.151 1.150 1.150

Feb-08 1.111 1.110 1.163 1.134 1.134 08:Q1 1.046 1.041 1.002 1.153

Mar-08 1.091 1.089 1.196 1.088 1.088

Apr-08 1.102 1.100 1.093 1.112 1.112

May-08 1.105 1.103 1.147 1.120 1.120 08:Q2 1.092 1.092 1.136 1.172

Jun-08 1.118 1.117 1.179 1.146 1.146

FD_p: Fisher Democratic (property); FD_l: Fisher Democratic (land);

FP_p: Fisher Plutocratic (property); FP_l: Fisher Plutocratic (land);

DdH_P3, DdH_P4: Land Price Indices; Diewert et al. (2015). Tables 1 and 2

FGSS_DS2, FGSS_SFA: Land Price Indices; DS and SFA computed by Färe et al. (2015) Table 5
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Table 7: "Town of A" Structure Price Indices

Month FD_p FP_p Median_I FP FD Quarter DdH P3 DdH P4 FGSS DS2 FGSS SFA

Aug-03 0.932 0.923 0.927 0.946 0.931 03:Q3 1.016 1.016

Sep-03 0.942 0.930 1.096 0.966 0.946

Oct-03 0.954 0.943 0.937 0.972 0.953

Nov-03 0.979 0.970 0.904 0.985 0.970 03:Q4 1.008 1.008

Dec-03 0.979 0.972 0.955 0.985 0.972

Jan-04 0.981 0.975 1.013 0.984 0.972

Feb-04 1.002 0.997 0.997 0.996 0.988 04:Q1 1.000 1.000

Mar-04 1.007 1.003 0.915 0.998 0.990

Apr-04 1.002 0.999 1.125 0.994 0.989

May-04 0.996 0.993 1.046 0.995 0.989 04:Q2 0.975 0.975

Jun-04 1.008 1.006 0.977 1.002 0.998

Jul-04 1.014 1.012 0.952 1.004 1.000

Aug-04 1.006 1.005 0.924 0.998 0.995 04:Q3 0.984 0.984

Sep-04 1.014 1.014 1.043 1.000 1.000

Oct-04 1.011 1.012 0.963 0.995 0.996

Nov-04 0.995 0.997 0.963 0.986 0.989 04:Q4 1.016 1.016

Dec-04 0.998 1.000 0.993 0.989 0.991

Jan-05 0.988 0.988 0.940 0.991 0.992

Feb-05 1.000 1.000 1.000 1.000 1.000 05:Q1 1.000 1.000 1.000 1.000

Mar-05 1.001 1.002 1.080 0.999 0.999

Apr-05 1.005 1.004 1.030 1.005 1.004

May-05 1.021 1.021 1.110 1.014 1.012 05:Q2 0.993 0.993 1.039 1.041

Jun-05 1.043 1.042 1.120 1.028 1.025

Jul-05 1.051 1.050 1.080 1.033 1.030
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Table 7: "Town of A" Structure Price Indices

Month FD_p FP_p Median_I FP FD Quarter DdH P3 DdH P4 FGSS DS2 FGSS SFA

Aug-05 1.048 1.047 1.023 1.031 1.028 05:Q3 1.015 1.015 1.070 1.090

Sep-05 1.057 1.056 1.066 1.039 1.038

Oct-05 1.065 1.064 1.017 1.047 1.043

Nov-05 1.044 1.041 1.096 1.040 1.035 05:Q4 1.039 1.045 1.050 1.054

Dec-05 1.046 1.044 1.063 1.043 1.038

Jan-06 1.052 1.049 1.068 1.046 1.041

Feb-06 1.047 1.044 1.096 1.048 1.043 06:Q1 1.007 1.007 1.061 1.062

Mar-06 1.057 1.055 1.088 1.054 1.048

Apr-06 1.063 1.061 1.142 1.057 1.051

May-06 1.077 1.075 1.256 1.067 1.061 06:Q2 1.017 1.017 1.055 1.053

Jun-06 1.075 1.073 1.206 1.064 1.061

Jul-06 1.079 1.079 1.080 1.065 1.063

Aug-06 1.088 1.088 1.194 1.071 1.070 06:Q3 1.012 1.012 1.082 1.087

Sep-06 1.095 1.094 1.063 1.074 1.073

Oct-06 1.083 1.083 1.133 1.065 1.065

Nov-06 1.076 1.077 1.129 1.061 1.060 06:Q4 1.015 1.015 1.048 1.073

Dec-06 1.082 1.082 1.198 1.062 1.063

Jan-07 1.092 1.092 1.075 1.068 1.068

Feb-07 1.089 1.089 1.080 1.070 1.069 07:Q1 1.034 1.034 1.029 1.084

Mar-07 1.102 1.101 1.136 1.081 1.078

Apr-07 1.097 1.096 1.228 1.078 1.075

May-07 1.098 1.096 1.256 1.085 1.081 07:Q2 1.045 1.045 1.056 1.127

Jun-07 1.097 1.095 1.156 1.091 1.086

Jul-07 1.103 1.101 1.027 1.093 1.089
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Table 7: "Town of A" Structure Price Indices

Month FD_p FP_p Median_I FP FD Quarter DdH P3 DdH P4 FGSS DS2 FGSS SFA

Aug-07 1.109 1.106 1.043 1.099 1.094 07:Q3 1.069 1.069 1.088 1.138

Sep-07 1.117 1.116 1.238 1.094 1.092

Oct-07 1.118 1.119 1.118 1.087 1.088

Nov-07 1.103 1.102 1.158 1.084 1.083 07:Q4 1.092 1.092 1.063 1.106

Dec-07 1.112 1.112 1.163 1.090 1.090

Jan-08 1.117 1.117 1.151 1.093 1.094

Feb-08 1.111 1.110 1.163 1.096 1.094 08:Q1 1.113 1.113 1.036 1.097

Mar-08 1.091 1.089 1.196 1.088 1.085

Apr-08 1.102 1.100 1.093 1.094 1.091

May-08 1.105 1.103 1.147 1.094 1.091 08:Q2 1.113 1.113 1.061 1.107

Jun-08 1.118 1.117 1.179 1.100 1.098

FD_p: Fisher Democratic (property); FD_S: Fisher Democratic (structure);

FP_p: Fisher Plutocratic (property); FP_S: Fisher Plutocratic (structure);

DdH_P3, DdH_P4: Structure Price Indices; Diewert et al. (2015) Tables 1 and 2. Statistics Netherlands "New Dwelling Output Price Index"

FGSS_DS2, FGSS_SFA: Structure Price Indices; DS and SFA computed by Färe et al. (2015) Table 7.
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