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Abstract
I determine UK income inequality levels and trends by combining inequality estimates from
tax return data (for the ‘rich’) and household survey data (for the ‘non-rich’), taking
advantage of the better coverage of top incomes in tax return data (which I demonstrate) and
creating income variables in the survey data with the same definitions as in the tax data to
enhance comparability. For top income recipients, I estimate inequality and mean income by
fitting Pareto models to the tax data, examining specification issues in depth, notably whether
to use Pareto I or Pareto II (generalised Pareto) models, and the choice of income threshold
above which the Pareto models apply. The preferred specification is a Pareto II model with a
threshold set at the 99th or 95th percentile (depending on year). Conclusions about aggregate
UK inequality trends since the mid-1990s are robust to the way in which tax data are
employed. The Gini coefficient for gross individual income rose by around 7% or 8%
between 1996/97 and 2007/08, with most of the increase occurring after 2003/04. The
corresponding estimate based wholly on the survey data is around –5%.
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1. Introduction

There is a bifurcation in the literature on income inequality levels and trends. On the one

hand, most official statistics and academic analysis utilise data from household surveys and

report estimates of the inequality of family or household disposable income summarised

using Gini coefficients and other inequality indices calculated using all incomes from poorest

to richest. (See e.g. OECD 2008, 2011, 2015, on cross-national comparisons, and Department

of Work and Pensions 2015 on UK trends.) On the other hand, there is the ‘top incomes’

literature that uses administrative record data on personal income tax returns, reporting

estimates of top income shares – the share of total income received by the richest 1% or

richest 10%, and so on. (See e.g. Alvaredo et al. 2013, Atkinson and Piketty 2007 on cross-

national comparisons, and Atkinson 2005 on UK trends.)

The two literatures differ in their findings about recent inequality trends: estimates

from tax return data show a substantial rise in inequality over the last two decades in both the

UK and USA, for instance, whereas survey-based estimates of inequality show much less

change. For the UK, for example, the share of total income held by the richest 1% increased

by 29% between fiscal years 1996/97 and 2007/08 whereas the Gini coefficient increased by

7%. For the USA, the corresponding increases over the same period are 30% and 2%. (See

Burkhauser et al. (2016: Figures 1 and A1), for further details about estimates and sources.)

The divergent findings about inequality trends from the two data sources arise partly

because different inequality indices and income definitions are employed (more on this later).

However, another important explanation is that household surveys do not capture top

incomes very well, whereas tax data do a much better job of this.

In this paper, I determine UK income inequality levels and trends since the mid-1990s

by combining estimates from tax return data (for the ‘rich’) and household survey data (for

the ‘non-rich’), taking advantage of the better coverage of top incomes in tax return data

(which I demonstrate) and creating income variables in the survey data with the same

definitions as in the tax data to enhance comparability. I also analyse how estimates of

inequality trends differ by inequality index.

There are multiple sources of under-coverage of top incomes in survey data. The first

is under-reporting among high-income respondents or top-coding of their responses by

survey administrators. In these cases, survey data are right-censored. A second source of

under-coverage is the sampling of high-income respondents per se. Respondents may provide

sparse coverage of the top income ranges and, in addition, there may be no respondents at all
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from the extreme right-hand tail, because the survey organisation does not target potential

high income respondents by design, or it is unable to contact them, or there is contact but

refusal to participate. In this case, the observed income data are a right-truncated sample of

the ‘true’ distribution. Both types of under-coverage contribute downward bias to survey

estimates of inequality for a given year because there is not enough income observed in the

very top income ranges. A by-product of sparse coverage of the top income ranges is that the

high-income observations present in the survey data have the characteristics of outliers (even

if they are genuine rather than an error) and have substantial influence on the conventional

non-parametric estimate of an inequality measure: see Cowell and Victoria-Feser (1996,

2007) and Cowell and Flachaire (2007). This sensitivity can introduce spurious volatility in

time series of inequality estimates.

There are three approaches to estimating inequality measures that address these

under-coverage problems: see Figure 1 for a schematic summary. Approach A is based

entirely on survey data. It derives an inequality estimate for the poorest p% using non-

parametric methods applied to survey unit-record data, and derives an inequality estimate

from the richest (1–p)% by fitting a Pareto Type I distribution to the top income observations

from the same source. The estimate of total inequality, mostly summarised using the Gini

coefficient, is calculated by adding together three components: inequality within the top

group, inequality within the non-top group, and between-group inequality.

<Figure 1 near here>

Cowell and Flachaire (2007) provide a thorough examination of the properties of

Approach A motivated by, and focusing on, the problem of sparse coverage of top income

ranges. Their headline conclusion is that such ‘use of appropriate semiparametric methods for

modelling the upper tail can greatly improve the performance of those inequality indices that

are normally considered particularly sensitive to extreme values’ (2007: 1044). Alfons et al.

(2013) also motivate their application of Approach A, using EU-SILC survey data for Austria

and Belgium, with reference to sensitivity issues. Neither article refers to under-coverage per

se. By contrast, Ruiz and Woloszko motivate their application to survey data for OECD

countries in terms of ‘correcting household survey data for underreporting in the upper-tail of

income distributions’ (2015: 6). Burkhauser et al. (2012) use Approach A to adjust for the

systematic under-coverage of high incomes in public use Current Population Survey datasets

introduced by US Census Bureau top-coding. In both applications, the idea is that the upper

tail to the income distribution implied by the parametric model estimates will capture more

income than non-parametric estimates.
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There is evidence that Approach A’s ability to address survey under-coverage at the

top is limited. For example, survey-based estimates of the share of total income held by the

top 1% are several percentage points less than the estimates from tax return data according to

the analysis of Atkinson et al. (2011) and Burkhauser (2012) for the USA. Put differently,

fitting a parametric upper tail may obviate the sparsity problem (there is density mass at all

points of the distribution’s support, by assumption), but the estimate of the ‘true’ upper tail

based on model-based extrapolation from the observed survey observations may not be

reliable. This motivates the use of tax return data, as they have better coverage of the upper

tail.

Approaches B and C both use tax return data but take different routes to addressing

under-coverage issues. Approach B replaces the highest incomes in the survey with cell-mean

imputations based on the corresponding observations in the tax return data. The ‘SPI

adjustment’ to Family Resource Survey income data – used to derive the UK’s official

income distribution statistics since the early 1990s – is an example of this approach (see e.g.

Department for Work and Pensions 2015). Burkhauser et al. (2016) apply Approach B in a

more extensive and comprehensive manner and use World Top Incomes Database (Alvaredo

et al. 2015) estimates of top income shares as a benchmark. Bach et al. (2009) is an

application to Germany.

Approach C, used in this paper, combines estimates from the two types of data source

rather than combining data per se as Approach B does. It is thus identical to Approach A

except that it uses both survey and tax data rather than only the former; it is this feature that

addresses the under-coverage problem. Approach C was developed by Atkinson (2007: 19–

20) with an application to the USA by Atkinson et al. (2011), and extended by Alvaredo

(2011) who also included applications to Argentina and the USA. Subsequent applications

include those by Alvaredo and Londoño Vélez (2015) and Diaz-Bazan (2015) to Colombia,

and by Lakner and Milanovic (2016) and Anand and Segal (2016) to global income

inequality. Each of the applications cited uses a Pareto I model to describe the upper tail of

the income distribution. In principle, researchers could employ non-parametric estimates of

inequality indices for the top incomes in the tax data, but there is then the issue of whether

these would be subject to the sensitivity problems mentioned earlier. The issue has not been

studied using tax data before: I do so in this paper.

To perform well, Approaches B and C both rely on the researcher using the same

‘income’ definition in both data sources and ensuring that calculations refer to the same

population. Otherwise, there is an ‘apples + bananas’ problem: non-comparability introduces
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bias. To avoid this, we may exploit a comparative advantage of survey data. The ability to

change income definitions in tax return data is limited but, with access to unit record survey

data, we can do a cross-walk from survey to tax data definitions. That is what I do in this

paper, employing the same harmonized income variables for the survey and tax data as

Burkhauser et al. (2016). For more details, see below.

This paper makes several contributions. First, there is the substantive application to

UK inequality trends since the mid-1990s. How much income inequality has been growing is

of much public interest. Second, related, there is question of whether Approaches C and B tell

the same story about trends when applied to the same data sources. I contrast my Approach C

estimates with the Approach B estimates provided by the official statistics (Department for

Work and Pensions 2015; see also Belfield et al. 2015) and Burkhauser et al. (2016). Third, I

provide new evidence about the extent to which there is under-coverage by survey data of the

UK income distribution, using comparable tax data as the benchmark.

Fourth, I provide new analysis of issues that arise when fitting a Pareto model to the

upper tail of the income distribution, and hence of direct relevance to researchers applying

the semiparametric Approaches A and C. My findings are relevant to analysis of other heavy-

tailed distributions such as wealth (Shorrocks et al. 2015, Vermeulen 2014), and city and firm

size (Eeckhout 2004; Gabaix 2009, 2016). I use unit record tax return data rather than

grouped (bracketed) data and so have flexibility to explore a number of econometric issues.

(On estimation issues that arise with grouped tax return data – the only source available for

deriving very long historical series – see Atkinson 2005, 2007 and references therein.) For

instance, for the Pareto Type I model, I compare the performance of ordinary least squares,

maximum likelihood, and maximum likelihood-robust estimators. I also address two

implementation questions.

The first question is: what model should be fitted to top incomes? To date, researchers

have invariably used the Pareto Type I model. This has a single shape parameter and there are

simple formulae for calculating mean income and inequality indices from parameter

estimates. There is also a widespread view that Pareto Type I models fit top income data well

(Atkinson et al. 2014: 14). However, many of the goodness of fit checks that researchers have

employed do not reliably distinguish Pareto distributions from other heavy-tailed

distributions. In addition, most of the goodness of fit approaches used can only check whether

data are consistent with a distribution in the Pareto family, i.e. not with the Pareto Type I

specifically (Cirillo 2013). I provide the first systematic comparison of the goodness of fit of

Pareto Type I and Pareto Type II (‘generalised Pareto’) models to top income data, and show
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that the latter outperforms the former except at extremely high thresholds – thresholds that

are well above those typically employed.

The second and related implementation question is: if we assume that incomes are

described by a Pareto model above some threshold, what should that threshold be? In

particular, when implementing Approaches C or A, what is the cut-off to use to distinguish

between top incomes and non-top incomes? Is the top income group the top 10% (Ruiz and

Woloszko 2015), or the top 5% (Atkinson 2016), or the top 1% (Alvaredo 2011)? There is

some evidence that a higher cut-off decreases the estimate of the Pareto Type I shape

parameter, i.e. increases inequality among top incomes, other things being equal (see e.g.

Burkhauser 2012: Appendix A). However, the impact on total inequality estimated using

Approach C of changing the threshold is unclear, because inequality and the mean among

non-top incomes and between-group inequality also change.

Several criteria have been proposed for choosing Pareto thresholds (see e.g. Clauset et

al. 2009, Coles 2001) and I employ them. However, I also argue that there is an additional

issue to be taken into account when applying Approach C. That is, because non-coverage

issues motivate the approach, it is important to ascertain precisely where along the top

income range it is that survey non-coverage occurs. There is little evidence about this for the

UK. I show that survey non-coverage is apparent from around the 99th percentile upwards in

the mid- to late-1990s or from around the 95th percentile in the 2000s. I use the 99th and 95th

percentiles as the Pareto threshold when deriving my inequality estimates, as well as the 90th

percentile as a robustness check.

I introduce in Section 2 the UK tax return and survey data that I use, and explain the

creation of income variables using harmonized definitions and hence on a comparable basis.

Section 3 provides evidence about under-coverage of the survey data using the tax data as the

benchmark. I analyse the fitting of Pareto models to top incomes in tax return data in Section

4, and present estimates of overall inequality levels and trends since the mid-1990s in Section

5. Section 6 provides a summary and conclusions. Applying Approach C, I show that

choosing different Pareto models and different thresholds has noticeable impacts on estimates

of inequality among the rich. However, my conclusions about overall inequality trends are

broadly robust to the choice of Pareto model and percentile threshold, and there are similar

results if upper tail inequality and mean income are estimated non-parametrically. The

estimated inequality trends from Approach C are also similar to those derived using

Approach B (Burkhauser et al. 2016). For example, the Gini coefficient for gross individual

income rose by around 7% or 8% between 1996/97 and 2007/08, with most of the increase
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occurring after 2003/04. The corresponding estimate based wholly on the survey data is

around –5%.

2. Survey and tax data, and the definition of income

The income tax return data are from the public-release files of the Survey of Personal

Incomes (SPI) for each year 1995/96 through 2010/11, with the exception of 2008/09 for

which no data have been released. Atkinson (2005) uses these data, as well as published

tabulations from the SPI and from supertax and surtax returns for earlier years, in his

pioneering analysis of trends in UK top income shares since 1908. (See also Atkinson 2016

for Pareto I parameter estimates back to 1799.) The SPI data underlie the UK top income

share estimates in the World Top Incomes Database (WTID) (Alvaredo et al. 2015). Each

year’s SPI is a stratified sample of the universe of tax returns. The number of individuals in

the data has increased from around 57,000 individuals in 1995/96 to nearly 677,500 in

2010/11, corresponding to around 32 million taxpayers. For further details, see HM Revenue

and Customs KAI Data, Policy and Co-ordination (2014) and Burkhauser et al. (2016). The

data are comparable over time, except for a small discontinuity between 1995/96 and later

years (the effect of which I show later). Self-assessment was introduced that year and there

were changes to the SPI methodology (personal communication with HMRC). Hence, I use

1996/97 as the base year for analysis of inequality trends rather than 1995/96.

Throughout the period of my analysis (and since 1990), the unit of assessment in the

UK income tax system has been the individual. For this reason, the SPI income variables are

all individual-level variables, rather than referring to the incomes of families or households

(as in the survey data and official income distribution statistics). The SPI income variable I

use is individual gross income (total taxable income from the market plus taxable government

transfers, and before the deduction of income tax), i.e. the same variable that the WTID and

the top income shares literature focuses on.

In addition, and to further align my research with the WTID and top income shares

literature, I restrict analysis to the population of individuals aged 15 years or more. Because

the SPI does not cover all individuals in the UK population or all of their income, the WTID

uses external population and income control totals for each year, i.e. estimates of the total

number of individuals aged 15 or more, and of the total income held by them. I use the WTID

control totals throughout. In practice, I accomplish this by introducing some observations
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with zero income into each year’s unit record data and adjusting the grossing-up weights

supplied with the data.

The unit record survey data I employ come from the Family Resources Survey (FRS),

and the accompanying subfiles of derived income variables called the Households Below

Average Income (HBAI) dataset (Department for Work and Pensions 2013, Department for

Work and Pensions et al. 2014). I use data for the same period as the SPI data, 1995/96–

2010/11. The FRS is a large continuous cross-sectional survey with data released annually for

around 20,000 respondent households and the individuals within them. The Department for

Work and Pensions (DWP) administers the FRS, and DWP staff produce the HBAI subfiles

that they use to derive the UK’s official income distribution statistics published annually

using a variant of Approach B, i.e. the ‘SPI adjustment’. (Despite its label, the HBAI

provides information about the income distribution as a whole.) In essence, the HBAI

subfiles contain a set of FRS income variables that DWP statisticians have cleaned.

Because the DWP’s focus is on family and household post-tax post-transfer income

variables (reflecting the needs of official statistics), there is a definitional mismatch between

the income variables in the HBAI and the SPI. As it happens, the DWP’s public-use files do

contain an individual-level gross income variable but only from 2005/06 onwards.

Burkhauser et al. (2016) create a complete time series for the period 1995/96–2010/11 (as for

the SPI data) from FRS variables and show that their derived individual-level gross income

variable is virtually identical to the DWP’s for the years for which they can make

comparisons. I use Burkhauser et al.’s individual gross income variables derived from the

HBAI in this paper. (None of these variables are SPI-adjusted in the sense described earlier.)

Burkhauser et al. (2016) go on to create a second set of individual-level income variables

when implementing Approach B. These data reflect a more extensive ‘SPI adjustment’

procedure than employed by the DWP for the official statistics, and Burkhauser et al. (2016)

label it ‘SPI2’ accordingly.

In sum, there are two main individual-level gross income data series employed in the

paper to implement Approach C: that from the tax data (‘SPI’) and from the DWP’s cleaned-

up survey data (‘HBAI’). In Section 5, I contrast my results for overall inequality based on

the SPI and HBAI series (combining estimates) with those derived using Approach B

(combining data). I refer to the DWP’s (2015) inequality series as ‘HBAI-SPI’ and the

Burkhauser et al. (2016) series as ‘HBAI-SPI2’.

To fully align the survey data with the tax return data, I restrict attention to

individuals aged 15 years or more. I use the FRS weights in all calculations with the survey
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data and SPI weights with the tax data ones. All income variables (from tax and survey data)

are expressed in pounds per year in 2012/13 prices.

3. Under-coverage of top incomes by household survey data

Ascertaining the point on the income range at which survey under-coverage of top incomes

begins is an integral part of implementing Approaches A and C and of independent interest as

well.

Table 1 shows estimates of percentiles p90, p95, p99, p99.5 and p99.9 derived from

the survey and tax data as well as the ratio of each corresponding survey and tax data

estimate (in %), by year. (For brevity, henceforth I refer to tax years 1995/96 as ‘1995’,

1996/97 as ‘1996’, and so on.) Real incomes at the top of the distribution generally rose over

the period according to either source (look down each column of Table 1), except that there is

fall in the uppermost percentiles after 2007, especially in the tax data estimates.

<Table 1 near here>

There are two explanations for the post-2007 fall in the uppermost percentiles. One is

the recession at that time. The second, particularly relevant here, is the incentive for high

income taxpayers to declare income in tax year 2009/10 rather than 2010/11 in order to avoid

the increase in top marginal tax rate from 45% to 50% with effect from April 2010. The

subsequent reintroduction of the 45% top marginal rate with effect from April 2013 provided

an incentive to defer declaration of income. On these issues of ‘forestalling’ and ‘reverse

forestalling’, see HM Revenue and Customs (2012). Because of these issues (and having no

SPI data for 2008), although I provide annual estimates for the full period between 1995 and

2010, I mostly focus discussion on inequality trends through to 2007.

Table 1 provides clear evidence of under-coverage in top incomes and that its nature

changed over the period. Survey estimates of the very top percentiles are more volatile over

time than are the tax data estimates, which is indicative of the sparsity aspect of under-

coverage. Regarding under-coverage per se, look at the ‘ratio’ columns: values less than

100% suggest under-coverage. Throughout the period, there is a broad correspondence

between survey and tax incomes up to around p99. In the mid- to late-1990s, one might refer

to ‘over-coverage’ of the survey up to p95. However, in the 2000s, there is a substantial uplift

in the very highest incomes shown by the tax data. This is not picked up by the survey data.

Between 2000 and 2007, the ratio of survey p99 to the tax data p99 fell from around 100% to
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82%. There is a similar decline in the corresponding ratio for p99.5 starting from around

1997 (when it was 100%), down to 78% in 2007. These changes in under-coverage over time

suggest that it may be inappropriate to use the same percentile cut-off to define the top

income group for all years. I return to this issue. This aside, the table also suggests that the

optimal threshold for application of Approach C (or A) should not be lower than p95, because

survey coverage is adequate up to this point.

Figure 2 provides a complementary perspective on the nature of survey under-

coverage. It focuses on 1996 and 2007; the full series for all years is shown in Appendix A. I

show densities derived from a histogram for the full distribution of log(income) in the survey

data and for the tax data for each year. (I use the logarithmic scale in order to focus on the

upper tail.) There are three plots for each year. The leftmost one shows densities plotted for

log(income) greater than 10 (i.e. income > £22,026), and the vertical dotted lines mark p90,

p95, p99, and p99.5 for the relevant year. The other two graphs provide more detailed views

on the upper tail by plotting the same densities by plotted only for log(income) greater than

11 (i.e. income > £59,874; middle graph) and log(income) greater than 12 (i.e. income >

£162,755; rightmost graph). Histogram areas reflect survivor function proportions, and so

comparisons of areas provide information about under-coverage in the sense of how much of

top income being captured by the survey data. The histograms also provide information about

sparsity and ‘outlierness’ in top income ranges. Sensitivity issues are likely to be more

important, the more that the histograms do not approximate a continuous function and show

clumping of density mass.

<Figure 2 near here>

The leftmost plots suggest that the concentration of incomes in the tax and survey data

is quite similar for most of the income range if one focuses on the top 5% to 10% of the

distribution as a whole. Coverage, summarised by differences in histogram areas, is not so

different – though it is clearly worse in 2007 than 1996. Both survey and tax densities appear

quite smooth and continuous, though the tax data distribution has a long tail that is not

present in the survey data, especially in 2007.

However, differences in income concentration across data sources are much more

apparent if one focuses on the extreme top: look at the middle and rightmost plots. In 1996,

both densities are discontinuous: extreme incomes are spread sparsely across the top income

range, and this range is much greater for tax data. There are greater proportions at the very

top in the tax data than in the survey data (the total area of the dark bars is greater than the

total area of the light bars). By 2007, and with the secular growth of incomes over the
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previous decade (Table 1), the survey data are even more clumpy and the proportion with

extremely high incomes is more markedly less than for the tax data. In the tax data, the

density is relatively continuous up to extremely high incomes.

Overall, Figure 2 suggests that, from the point of view of survey undercoverage of top

incomes, the cut-off used to implement Approach C (or A) should lie at around p95 or higher,

depending on the year. In addition, the sparse spread of incomes along the very top income

range means that there are potentially ‘high leverage’ outliers (Cowell and Flachaire 2007)

even in the tax data, which could bias estimation of Pareto model parameters. I address this

issue below.

4. Fitting Pareto models to top incomes

An integral part of inequality estimation using Approaches A and C is to fit a parametric

model to top income data, but there are implementation issues concerning the choice of

model and the top income range over which they are fitted. There is also a prior question of

whether top incomes are described better by a model other than a Pareto one. This issue has

rarely been addressed though one exception is Harrison (1979, 1981) who compares the fit to

UK men’s top earnings data of Pareto I, lognormal, and sech2 distributions. Addressing all

these issues is complicated by a chicken and egg problem: most methods for choosing the

appropriate model are conditional on a given threshold; and most methods for choosing the

threshold have been applied to a single model. One can use multiple models and thresholds

but there can be an information overload, and this is and potentially worsened by having 15

years of data covering a period when the income distribution changed. What is appropriate

for one year’s data may not be appropriate for another. To address the implementation issues,

I have had to make some judicious choices regarding empirical strategy and what I report. A

full set of estimates is provided in appendices.

My analysis focuses on comparisons of Pareto I and Pareto II models fitted to SPI tax

data. In this section, first I explain the model properties and different parameter estimation

methods. (Important references on Pareto distributions include Arnold 2008, 2015, Coles

2001, Cowell 2011, 2015, and Kleiber and Kotz 2003.) Next, I report on tests checking

whether Paretianity is an appropriate assumption, and whether answers depend on the income

threshold used. Then I consider the relative goodness of fit of Pareto I and II models using

two methods and multiple thresholds. Finally, I address the choice of threshold issue using
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both rule-of-thumb and more formal statistical methods. Overall, I demonstrate that the

choice of model and threshold is not as clear cut as typical practice might suggest.

Pareto Type I and Type II models

If income x is characterised by a Pareto Type I model, the survivor function showing the

fraction of the population with incomes greater than x, S(x), i.e. one minus the cumulative

distribution function, F(x), is:

�(�) = 1 − �(�) = �
�

��
�
��

(1)

where x ≥ xm > 0, and xm > 0 is the lower bound on incomes. Parameter α is the shape

parameter (‘tail index’) describing the heaviness of the right tail of the distribution, with

smaller values corresponding to greater tail heaviness. The kth moment exists only if k < α.

The survivor function for the Pareto Type II model is:

�(�) = �1 + � �
� − �

�
��
�
�
�

, � > 0 (2)

where x > µ (a location parameter), and σ > 0 is a scale parameter. Parameter ξ is the shape

parameter. In principle, ξ can take on any real value (including the limiting case of ξ = 0,

which implies an exponential distribution), but the restriction ξ > 0 yields heavy-tailed

distributions of the ‘Pareto’ kind. The kth moment exists only if k < 1/ξ. The Pareto Type II

model is equivalent to a Pareto Type I model when ξ = 1/α, µ = xm, and σ = xm/α. With one

additional parameter, the Pareto Type II model has the potential to fit real-world top incomes

better. But the improvement in goodness-of-fit may be negligible and this has be balanced

against the greater simplicity of the Pareto I model.

To implement Approaches A and C, we need formulae for the mean and inequality for

the top income group (those with incomes greater than xm or, equivalently, µ) expressed in

terms of the model parameters. I display the formulae for these statistics in Table 2, and

clearly they are simpler for the Pareto I model.

<Table 2 near here>

Estimation

Estimation of the two Pareto models proceeds by assuming xm or µ is a threshold pre-

specified by the researcher (not estimated) with its choice determined by a simple rule-of-

thumb (such as the 95th or 99th percentile) or other means. I return to this issue below.
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There are two methods commonly used to estimate the Pareto I shape parameter α.

The first is an Ordinary Least Squares (OLS) regression of the log of empirical survivor

function on the log of income and a constant term. The idea is that, if eq. (1) holds, then the

Zipf plot – a plot of the log of the survivor function against logarithms of income (for

incomes in ascending order and greater than xm) – is a straight line with slope equal to –α.

Atkinson (2016) explains that α may be estimated by OLS in two other ways. (The Zipf

approach uses data on income and the survivor function; the other two approaches utilize

information about the total income received by income units.) I have estimated α using all

three methods, but find that the Zipf method performed best, and so report only estimates

from this in the main text. For the full set of estimates for all years, see Appendix B.

The OLS estimate of α is consistent (Quandt 1966) but the standard error is incorrect

because no account is taken of the positive autocorrelation in the residuals introduced by the

ranking of incomes. In contrast, the Maximum Likelihood (ML) estimator of α and its

standard error is consistent, efficient, and asymptotically normal (Hill 1975, Quandt 1966). I

implement the ML estimator using software by Jenkins and Van Kerm (2015). Both OLS and

ML estimators are potentially biased in small samples, but the sample sizes in the tax return

data employed in this paper are never ‘small’ – an advantage of using this source.

The ML estimator of α is susceptible to bias when there are a few high outlier

incomes, the values of which may be potentially genuine or may reflect error and data

contamination in the sense of Cowell and Victoria-Feser (1996, 2007) and Cowell and

Flachaire (2007). The influence function for the ML estimator is unbounded in this situation.

Figure 2 (and Appendix A) suggest that this issue may be relevant, even for tax data. I

address this potential problem by using the ML ‘Optimal b-robust estimator’ (ML-OBRE) of

Ronchetti and Victoria-Feser (1994). (The software implementation is by Van Kerm 2007.)

The idea is to use the ML score function for most of the data (and exploit the efficiency of the

ML estimator) but to place an upper limit c on the score function for high values in the

interests of robustness. Ronchetti and Victoria-Feser (1994) show that, with 95% efficiency,

the optimal value in the Pareto case is c = 3, and this is what I use. I use both ML and ML-

OBRE estimators because only the former can be used for likelihood ratio tests of Pareto I

versus Pareto II models. Differences between their estimates are indicative of the empirical

importance of the robustness problem.

There are several estimators of the Pareto Type II model: see e.g. Singh and Guo

(2009) for a review. However, ML is the most commonly used and provides consistent,
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efficient and asymptotically normal estimates. The software implementation is by Roodman

(2015); software for an ML-OBRE estimator is not available.

Are top incomes Pareto distributed?

Researchers commonly check for Pareto properties by inspecting whether Zipf plots are

linear above some income threshold (while perhaps discounting apparent non-linearity in the

very highest income range given the sparsity of observations there). However, Cirillo (2013)

argues persuasively that we should not check Paretianity in this way: our eyes are unreliable

detectors of linearity, and what we see as linearity is also consistent with non-Pareto

distributions including lognormal distributions that do not have a heavy tail. As it happens,

Zipf plots for each year of SPI data do appear roughly linear above a threshold (with the

exception of 1995 – see below). However, given Cirillo’s critique, I relegate these plots to

Appendix C.

Mean excess plots are another tool used for checking Pareto properties. They plot

mean income above a threshold against a series of thresholds. For Pareto distributions, the

graph is a positively-sloped straight line above some minimum income; deviations from

linearity are evidence of non-Paretianity. I show mean excess plots for selected years in

Figure 3, using thresholds ranging from £10,000 per year to £600,000 per year. The graphs

also show pointwise 95% confidence bands. The estimates for all years are shown in

Appendix D.

<Figure 3 near here>

It is difficult to draw definitive conclusions from the mean excess plots. On the one

hand, the plots are roughly linear at thresholds above approximately £50,000 per year though

perhaps accompanied by some small decrease in slope at extremely high thresholds. On the

other hand, in every plot, confidence intervals (CIs) become very wide as the income

threshold increases (there are few observations at extremely high incomes), and so it is

difficult to cite non-linearities with confidence. The plot for 1995 is an exception because

non-linearity is much clearer. However, this is no doubt due to the SPI discontinuities cited in

the previous section. The non-linearity in the 1996 plot arises at thresholds of £300,000 or

more and hence relates to a tiny number of incomes.

Cirillo (2013: 5983) also points out that mean excess plots provide a reliable means of

differentiating between Pareto distributions and lognormal distributions only if the number of

observations is very large (he mentions 10,000). The most reliable conclusion that we can
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draw from the mean excess plots (and Zipf plots) is that there is no decisive rejection of

Paretianity.

Zenga curves provide a much better means for discriminating between different types

of model (Cirillo 2013). A Zenga curve, Z(u), is a transformation of the Lorenz curve:

�(�) =
� − �(�)

�[1 − �(�)]
, 0 < � < 1,

(3)

where L(u) is the Lorenz curve for the distribution of incomes above a pre-specified

threshold. For Pareto distributions, the Zenga curve is positively-sloped and rises as u → 1

and, the higher the curve, the more heavy-tailed the distribution is. By contrast, for a

lognormal distribution, the Zenga curve is horizontal. Figure 4 shows plots for 1996 and 2007

for thresholds of £60,000 and £120,000 (the higher threshold provides greater resolution over

the top income range). See Appendix E for other years and thresholds.

The Zenga plots provide strong evidence in favour of Paretianity for all years (with

the exception of 1995 for the reasons cited earlier.) At the same time, the location and precise

shape of the curves changes over time and with threshold. This suggests that not only do

Pareto tail indexes vary from year to year but also with the threshold chosen. I return to these

issues below.

<Figure 4 near here>

Which distributional model for top incomes? Pareto I or Pareto II?

We cannot reliably differentiate between Pareto Type I and Type II models with these

graphical checks. To do this, I use two approaches. The first is a straightforward likelihood

ratio test. The second is comparisons of probability plots, specifically ‘PP’ plots graphing

values of p = F(x) predicted from each model against the values of p in the data, with a

different plot for each threshold. Plots that lie wholly along the 45° line from the origin

indicate perfect goodness of fit. The better fitting model is the one with less deviation from

the 45° line.

Figure 5 summarizes likelihood ratio test statistics – equal to twice the difference in

estimated log-likelihoods of ML-estimated Pareto I and II models – for thresholds up to

£300,000 for 1996, 2001, 2007, and 2010. I cap the test statistics at 100 for plotting purposes.

The dotted lines show critical values of the χ2(1) distribution at significance levels 0.05, 0.01,

and 0.001. (Plots for other years are in Appendix F.) Regardless of the critical value chosen,

the findings are clear. Using a likelihood criterion, we should choose the Pareto I model over

Pareto II only if the threshold used to fit the models is extremely high. For 1996, the balance
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in favour of Pareto II is at all thresholds below around £100,000, which lies between p99 and

p99.5. For the other three years shown in Figure 5, the cut-off threshold is at the same high

level or even higher, and hence above the income level at which survey non-coverage starts

(Table 1, Figure 2). The plots for other years confirm this general finding.

<Figure 5 near here>

The PP plots shown in Figure 6 compare model goodness of fit over the full range of

incomes above the pre-specified threshold. Plots for the Pareto I model are on the left and for

the Pareto II model on the right. For brevity, I show results only for 2007 and thresholds of

£60,000 and £80,000 (between p95 and p99 in 2007), with plots for other years and

thresholds in Appendix G. The fit of each model is good: the curves shown are closer to the

45° line than most textbook illustrations of PP plots. However, there is evidence that the

Pareto II model fits better than Pareto I at the lower of the two thresholds (consistent with the

likelihood ratio test findings). Below the median of the left-truncated distribution, Pareto I

under-predicts empirical probabilities. More evidence in favour of Pareto II is apparent for

other years and thresholds (see Appendix G). Overall, probability plots provide evidence in

favour of the Pareto II model over the Pareto I model, but the differences in goodness of fit

are generally not large.

<Figure 6 near here>

The results from the two types of goodness of fit check suggest that the choice

between Pareto models is threshold-contingent. What, then, is the optimal threshold?

What is the optimal high income threshold?

Clauset et al. (2009) and Coles (2001) review methods for determining the threshold. The

most commonly-used approaches are reviews of Zipf plots or minimum excess plots, as

discussed above. Another intuitively attractive approach is to plot estimated parameters

against thresholds and to choose as optimal threshold, the minimum income above which the

plot is horizontal. For the Pareto I model the plot is of fitted α against threshold t; for the

Pareto II model, the plots are of fitted ξ and ‘modified scale parameter’ σ* = σξ–t against t

(Coles 2001: 83).

Clauset et al. argue against these ‘subjective’ approaches and in favour of a ‘more

objective and principled approach based on minimizing the “distance” between the power-

law model and the empirical data’ (2009: 670). After reviewing alternatives, they favour

measuring distance between fitted and empirical distributions using the Kolmogorov-
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Smirnov (KS) statistic, i.e. the maximum distance between their cumulative distribution

functions, D:

� = max
����

[�(�) − �(�)] (3)

where F(x) is the empirical CDF for incomes at the threshold xm or above and P(x) is the

model-predicted CDF over the same range. (D is thus a numerical summary of information

shown in a PP plot.) The optimal threshold is the value of xm that minimizes D.

Figure 7 displays plots of estimated parameters against thresholds for both models, for

1996 and 2007. (Plots for other years are in Appendix H.) The vertical dashed lines show,

from left to right, the percentiles p90, p95, p99, and p99.5 in the SPI data.

The figure shows that the choice of estimator matters when fitting a Pareto I model.

On the one hand, the OLS estimator produces estimates of α that are distinctly smaller than

those derived from ML and ML-OBRE estimators, except at extremely high thresholds. On

the other hand, the ML and ML-OBRE estimates are remarkably similar.

<Figure 7 near here>

Regardless of estimator, the choice of threshold for the Pareto I model is not clear cut

if the information in Figure 7 and Appendix H is used as the guide. The graphs are relatively

flat only at extremely high thresholds, though the flattening out occurs at thresholds that are

lower in later years – but they are very high nonetheless. The pattern for 2007 is also apparent

from the start of the 2000s (Appendix H). Put differently, if we restrict the range of

thresholds to between p95 and p99.5, i.e. in the range commonly used, then in 1996 the

estimate of α varies between around 2.5 and 2. This is a wide range: it corresponds to Gini

coefficients between 0.25 and 0.33 (according to the formula in Table 1). For 2007 and over

the same range, the α estimates vary between 2.2 and 1.8, and hence Gini coefficients

between 0.29 and 0.38.

In contrast, this sensitivity of parameter estimates is not apparent for the Pareto II

model for thresholds in the range of p95 and p99.5. The curves are relatively flat and there is

evidence for an optimal threshold lying between p95 and p99, with the precise range

depending on the year.

Figure 8 displays optimal thresholds derived using the KS minimum distance criterion

for both Pareto models. For the Pareto I case, the optimal thresholds are very similar for each

year for ML and ML-OBRE estimators, with the exception of 1996 and 2004. It is striking

that the optimal thresholds for the Pareto I model are typically much larger than those for the

Pareto II model (except in 2007). For the Pareto I model, the optima are at around p99.5 or
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higher; for the Pareto II model, they are at about £50,000 which corresponds to around p99 in

the mid- to late-1990s or p95 in 2000. Although there is variation in the estimated optimal

threshold from year to year, there is much less variability in the optima derived for the Pareto

II model than for those derived for the Pareto I model.

<Figure 8 near here>

The general lesson of this analysis is that Pareto I model estimates from top income

data are sensitive to the choice of threshold, and perhaps more so than has been appreciated

by researchers to date. Put differently, the range of thresholds for which the Pareto I model

estimates are stable is well above the thresholds commonly used. Pareto II model estimates

are more robust to the choice of threshold.

The specific lesson for applications of Approach C to determining total inequality is

that estimates may be sensitive to choice of both the model of top incomes and the threshold.

The criterion regarding threshold choice discussed earlier – that it should be in the income

range at which survey under-coverage becomes apparent – further complicates matters. For

the period considered here, this criterion implies a threshold somewhere between p95 and

p99, with the former more appropriate in later years, the latter more appropriate in earlier

years. This income range is broadly consistent with optimal thresholds derived for the Pareto

II model but not those for the Pareto I model. In the light of these results, and in order to

check the robustness of findings about overall inequality, my implementation of Approach C

uses both Pareto models and multiple thresholds.

5. UK income inequality: estimates from combining estimates and combining trends

To implement Approaches C and A, we exploit the properties of inequality indices that are

additively decomposable by population subgroup. For all such indices, we may write:

Total inequality = inequality among the top incomes group

+ inequality among the non-top incomes group (4)

+ between-group inequality

where between-group inequality is the inequality that would arise if each individual is

attributed the mean of his or her income group. Additively decomposable indices include all

members of the generalized entropy class Ia, including the mean logarithmic deviation (I0 or

‘L’), the Theil index (I1, ‘T’), and half the squared coefficient of variation (I2, HSCV), that

were cited in Table 2. The larger that a is, the more sensitive is Ia to income differences at the
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top of the distribution compared to the bottom. HSCV is particularly top-sensitive. Because

the incomes of the top income group and the non-top income group do not overlap (by

construction), the Gini coefficient is also additively decomposable in this context. For further

discussion of decomposable inequality indices, see inter alia, Cowell (1980) and Cowell and

Kuga (1981).

The decomposition formula for the Gini coefficient, G, derived by Atkinson (2007)

and Alvaredo (2011), is also set out clearly by Cowell (2013: 43):

G = PR SR GR + PN SN GN + GB. (5)

PR is the proportion of the population in the top income group (‘Rich’) in a given year; PN =

1–PR is the proportion of the population in the non-rich group; SR = PR µR /µ and SN =

PN µN /µ are the shares in total income of each group; µR and µN are the group mean incomes;

and µ = PR µR + PN µN is the overall mean. Between-group inequality GB = SR – PR.

Pareto I and Pareto II models fitted using the same threshold and data provide

different estimates of total inequality G in a given year because they imply different estimates

of GR and µR. (GR and µR may also be estimated non-parametrically: see below.) A higher

estimate of µR from one model implies larger SR and GB. That model’s estimate of G will be

greater as well unless the higher µR coincides with a sufficiently lower value of GR. For either

model, what happens to estimates of G when one changes the threshold (and thence PR) is

less clear cut because there are changes in GN and µN as well as in GR and µR.

The researcher has to choose the value of PR. In the light of the analysis in previous

sections, I use three thresholds for each year, p99, p95, and p90, estimating them non-

parametrically from the survey data. (Although p90 is substantially below the thresholds

discussed earlier, I include it as a robustness check; it has been used by Ruiz and Woloszko

2015.) Because the survey estimates differ from their tax data counterparts (Table 1), PR in

the tax data is close to but not exactly equal to 1%, 5%, or 10% respectively (see Appendix I

for the values for each year). I also estimate µN and GN non-parametrically from the survey

data, and µR and GR, LR, and TR from the estimates of the two Pareto models using the

formulae shown in Table 1. (I report estimates for Pareto I derived using the ML-OBRE

estimator.)

I calculate the combined estimate G using the formula in (5) and employ analogous

steps to calculate estimates of L and T. I could not derive T for the Pareto II model (there

were numerical integration problems) and I did not calculate HSCV because of its strong top-

sensitivity and because the requisite moments of the fitted Pareto distribution do not always



19

exist (Figure 7, Appendix H). Appendix I contains the estimates derived from the SPI data of

the Pareto model parameters and their standard errors; µR, GR, LR, TR and their standard errors

(derived from the Pareto parameters using Table 2 formulae; and also calculated non-

parametrically), plus µN and GN, LN, and TN (derived non-parametrically from HBAI data).

Appendix I also contains the combined estimates G, L and T, for all years, and for each of the

three sets of estimates of mean income and inequality among the Rich. I focus discussion

initially on the Pareto model-based estimates for the Gini coefficient, and later compare them

with the fully non-parametric estimates, together with corresponding estimates for L and T.

Figure 9 charts the Pareto-based estimates of mean income among the Rich (µR), the

share of total income held by the Rich (SR), inequality among the Rich (GR), and the overall

combined estimate (G), for each of the three percentile thresholds. The Pareto I estimates are

on the left; the Pareto II estimates are on the right.

The headline finding is that income inequality summarized by the Gini coefficient

distinctly increased between the mid-1990s and 2007: see panel (a). It then fell back to late-

1990s levels by 2010, though assessment of the fall is complicated by the forestalling issues

mentioned earlier. Most of the inequality increase occurred between 2004 and 2007. These

conclusions hold regardless of which Pareto model and threshold is used.

<Figure 9 near here>

Using a higher threshold leads to higher estimates of µR, SR, and GR in each year, for

both Pareto models, and especially going from PR = 5% to PR = 1%. The SR estimates closely

track those shown in the World Top Incomes Database for the UK (based exclusively on SPI

data), though there are some differences in levels (the SR depend also on survey data).

However, when looking at overall inequality summarised by G, the Pareto II estimates

are less sensitive to the choice of threshold than are the Pareto I estimates: see panel (a). Each

yearly Pareto II estimate of G differs by at most one percentage point across series for the

three thresholds (in the mid-1990s), and the series for PR = 5% and PR = 10% are virtually

identical up to 2006. For the Pareto I model, the corresponding range is larger, reaching a

maximum of around 2.5 percentage points (2009). Otherwise, again, the largest differences

are between the series for PR = 1% on the one hand, and PR = 5% or 10% on the other hand.

The variation in estimates relates back to the earlier findings regarding choice of the optimal

threshold. The thresholds used in this section correspond to range of optimal thresholds for

the Pareto II model, but well below those for the Pareto I model.
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I now contrast my estimates of inequality trends derived using Approach C with

estimates derived using other approaches. For brevity, I show only the results for PR = 5%:

see Figure 10. Conclusions are largely insensitive to choice of threshold in any case: for the

corresponding graphs for the other two thresholds, see Appendix I.

The three series of Approach C estimates (‘HBAI & SPI’ variants) differ according to

whether top incomes are summarised using the Pareto I or Pareto II models or non-

parametrically. There are two HBAI series showing trends in inequality for the poorest 95%

and the poorest 100% of the survey data, i.e. not including any information from the tax data.

The HBAI-SPI series uses the estimates in the UK official income statistics derived using a

variant of Approach B (the DWP’s SPI adjustment, cited earlier). It is important to note that

the HBAI-SPI series uses a different income definition and refer to a different population

than all of the other series shown in the figure. It refers to inequality of equivalized household

net income among all individuals (adults and children) rather than to individual gross income

among adults. Estimates of inequality levels based on HBAI-SPI definitions are substantially

smaller than estimates based on the tax data definition, but the differences in definitions have

little effect on estimates of inequality trends (Burkhauser et al. 2016). The HBAI-SPI2 series

is from Burkhauser et al. (2016) and uses a different variant of Approach B (see earlier). I

summarise inequality not only using the Gini coefficient (panel a), but also using L and T

(panels b and c). The DWP does not publish estimates for L or T: I derived them non-

parametrically from public use HBAI unit record data.

<Figure 10 near here>

Figure 10 shows that if one restricts attention to the poorest 95% in the survey data

each year, all three indices show a marked decline in inequality over the period as a whole,

with the greatest fall being between 1998 and 1999. (These estimates are unlikely to be

contaminated by the ‘forestalling’ issue.) Inequality also appears to be falling according to

the series that uses 100% of the survey data observations (the Gini fell by around 5% between

1996 and 2007), but another distinctive feature of the series is its volatility. This is

particularly acute for the Theil index, which is unsurprising because it is the most top-

sensitive of the three indices. Thus Figure 10 illustrates well the sensitivity problems

analysed by Cowell and Flachaire (2007) and also their conclusion that in terms of

performance in finite samples there is little to choose between the Gini coefficient and the

mean logarithmic deviation (L). But what happens if one utilizes information about top

incomes from tax data?
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According to all three Approach C variants, and all three inequality indices, inequality

increased between 1996 and 2007. The Gini coefficient increased by around 5% according to

the Pareto I estimates, by around 8% according to the Pareto II estimates, and by around 7%

according to the non-parametric ones. For L, the corresponding increases are 1%, 5%, and

4%. For T, the increase in the Pareto I estimate is 24% and 33% for the non-parametric

estimate. These results indicate that using a Pareto II model for top incomes leads to larger

estimates of the rise in inequality over this period than does a Pareto I model, not only

according to the Gini coefficient (Figure 9) but also according to L. In addition, the Pareto II

estimates of trends in G and L are quite similar to the non-parametric ones. This is reassuring

evidence for analysts that the Pareto II model provides a parsimonious but good description

of distributions of top incomes. Using a more top-sensitive index (T rather than L) leads to a

greater estimated increase in inequality, reflecting the marked increase is top income shares

over the period.

Figure 10 also shows how the three Approach C estimates of inequality trends

compare with the two Approach B series. The Burkhauser et al. (2016) HBAI-SPI2 series is

very similar to the Pareto I-based Approach C series for all three inequality indices.

By contrast, trends in the DWP’s official statistics series (HBAI-SPI) appear at first

sight to differ markedly from those of all three Approach C estimates and for all three

inequality indices. However, closer inspection of the figure reveals that the differences in

trends arise almost entirely between 1996 and 1998. The official series shows a sharp

increase in inequality over those two years; trends are much more similar across series in

subsequent years. It is difficult to explain the sub-period inconsistency across series. One

possible source is the way in which the DWP’s SPI adjustment derives the cell mean

estimates for top income groups. According to Department for Work and Pensions (2015a:

11), values to be used in year t of the HBAI data are derived by HMRC statisticians by

‘projections’ from SPI data for year t–1. (because year t’s SPI data are not yet available). No

further details of the projection method are given. By contrast, all my Approach C estimates

and Burkhauser et al.’s (2016) Approach B estimates combine information HBAI data for

year t and SPI data for year t. I conjecture that a larger than usual difference between

projected cell-means and actual out-turns for 1996–1998 are the source of the inconsistency

observed for that period. The public-use SPI data do not contain the variables that would

allow me to check if this is the case.

In sum, apart from the exceptional and short sub-period just discussed, there is

substantial consistency across the different methods for combining survey data and tax data
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about top incomes. Compared to the estimates that are wholly survey-based, all show a rise in

income inequality over the decade prior to the onset of the Great Recession, whereas the

estimates that are wholly survey-based show no increase in inequality.

6. Summary and conclusions

Statistical agencies and other researchers typically estimate income inequality levels and

trends from either survey data or tax return data, but rarely combine the information in the

two types of data source. The result is that very different impressions about how inequality is

changing over time may arise, as the examples for the UK and the USA in the Introduction

show. Research users may reasonably ask what the ‘true’ picture of inequality trends is.

There is a good case for providing them with answers using methods that combine

information from survey and tax data in order to take advantage of the strengths of each

source. In particular, tax return data provide better coverage of top incomes than do survey

data; and survey data provide the ability to create income variables with the same definitions,

so that combination is done on a like-for-like basis.

I have analysed income inequality levels and trends for the UK by combining

inequality estimates from survey and tax data (Approach C), contrasting these estimates with

those derived by combining data per se (Approach B). As part of this analysis, I have also

provided new findings about survey under-coverage of top incomes in UK survey data

(Section 3). The problem becomes apparent at around the 99th percentile in the 1990s but at

around the 95th percentile in the 2000s.

I have found that that conclusions about aggregate UK inequality trends since the

mid-1990s are broadly robust to the way in which tax data are employed in Approach C. One

may conclude for example that the Gini coefficient for gross individual income rose by

around 7% to 8% between 1996/97 and 2007/08, with most of the increase occurring after

2003/04. When I use only survey data, with tax data not exploited at all, the Gini is estimated

to decrease by around 5% over the same period.

The result that combining information about top incomes from tax data with

information about the rest of the distribution in survey data leads to an estimated increase in

inequality is unsurprising given knowledge of survey under-coverage of top incomes and the

marked rise in top income shares in the UK over the last two decades. But I have shown how
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we may go beyond the qualitative conjecture and provide specific quantitative estimates of

inequality trends, and for a range of inequality indices.

Indeed, the analysis highlights the continuing importance of normative judgements for

inequality analysis. Different inequality indices incorporate different assumptions about how

to evaluate income differences in different parts of the income distribution (Cowell 1977,

2011). A focus on the income share of the top 1% measure means that zero weight is placed

on income differences among the poorest 99% or on differences between the rich and non-

rich groups. This paper has considered inequality indices that give a non-zero weight to

everyone. It is because of this, and because the rich are assumed to form such small

proportion of the population, that I estimate the increase in UK income inequality over the

last two decades to be substantially smaller than the rise in the income share of the top 1%

whether shown by the tax data alone or by the combined estimate (Figure 9).

The portfolio of inequality indices is also constrained by practical considerations: the

indices used cannot be too top-sensitive. Application of the semiparametric Approach C is

problematic if the distribution of top incomes is particularly heavy-tailed. Various moments

of the fitted Pareto distributions do not exist in this case, and hence nor do many top-sensitive

inequality indices (Figure 7; Appendix H). Cowell and Flachaire (2007) make this argument

in the context of Approach A; I have shown that it also applies even if one uses tax data to

describe top incomes. One might instead consider implementing Approach C using non-

parametric estimates of top-sensitive inequality measures for the top income group, but I have

found that such estimates are non-robust and volatile in the sense described in the

Introduction, even using SPI tax data rather than HBAI survey data. (See the nonparametric

estimates of the HSCV for the rich that are reported in Appendix I.)

In this paper, I have focused on inequality estimation issues related to data quality and

ignored issues of statistical significance (as has virtually all previous work using Approaches

B and C). It is relatively straightforward to estimate standard errors or the various elements in

the inequality decomposition equation (1) using standard asymptotic formulae (these

estimates are provided in Appendix I). However, there are non-trivial challenges to overcome

in providing reliable inference for the overall inequality estimate. Cowell and Flachaire

(2007, especially Section 3.3) discuss these issues with reference to generalised entropy

inequality indices. The case of the Gini coefficient appears not to have been discussed in the

literature to date.

As part of deriving the substantive results about inequality levels and trends, this

paper has also provided new evidence about which Pareto model to fit to the upper tail of a
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heavy-tailed distribution, and which threshold to use when doing this. Although the

application has been to income, the analysis should be of broad interest because Pareto

distributions are commonly used in many other contexts,. In his recent review of power laws

in economics and finance, Gabaix argued that ‘the Pareto law has survived the test of time: It

fits still quite well. The extra degree of freedom allowed by a lognormal might be a

distraction from the essence of the phenomenon’ (2009: 285). He might have substituted

‘Pareto II’ for ‘lognormal’. My analysis has shown that there is a good case for exploiting the

extra degree of freedom provided by the Pareto II model, especially given the top income

thresholds that are typically used (p99 or less). Put differently, the Pareto I model is as good

as Pareto II only at extremely high incomes, beyond the range of thresholds usually

considered. My conclusions refer to income rather than other variables such as wealth or city

and firm size, and to the UK rather than to other countries, so checking the robustness of my

findings in other contexts would be a useful topic for future research.
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Table 1. Percentiles of individual gross income (£ p.a., 2012/13 prices), survey and tax data estimates

Year p90 p95 p99 p99.5
HBAI SPI Ratio HBAI SPI Ratio HBAI SPI Ratio HBAI SPI Ratio

1995 35,551 30,964 115 45,602 40,056 114 83,362 78,340 106 107,080 105,630 101
1996 37,028 31,209 119 47,623 41,043 116 85,141 80,869 105 109,948 113,469 97
1997 37,317 32,381 115 48,084 42,133 114 89,995 86,330 104 122,952 122,466 100
1998 38,285 33,595 114 50,485 44,541 113 95,853 92,694 103 127,830 131,499 97
1999 39,075 35,333 111 51,065 46,776 109 96,053 98,250 98 126,214 138,335 91
2000 40,371 37,273 108 53,048 49,786 107 106,413 105,722 101 142,586 150,871 95
2001 41,854 38,370 109 54,721 51,117 107 105,741 108,620 97 140,193 153,585 91
2002 41,360 38,498 107 54,401 51,370 106 103,532 108,742 95 136,152 153,379 89
2003 41,932 38,174 110 54,644 50,860 107 100,354 108,587 92 135,495 153,474 88
2004 42,460 40,575 105 55,847 53,533 104 107,367 114,855 93 144,244 165,249 87
2005 42,691 42,191 101 56,158 56,172 100 108,183 125,574 86 140,916 183,723 77
2006 43,335 42,885 101 56,101 57,369 98 109,910 131,012 84 157,894 193,230 82
2007 42,735 43,994 97 56,007 59,149 95 111,282 136,392 82 156,536 201,972 78
2008 43,312 56,703 109,812 143,624
2009 42,564 41,917 102 56,839 55,782 102 113,420 124,753 91 156,384 183,777 85
2010 41,036 40,690 101 54,377 53,777 101 106,812 114,368 93 147,956 163,524 90

Notes. Author’s estimates from HBAI (survey) and SPI (tax) data. Years refer to fiscal years (‘1995’ means 1995/96, and so on). No SPI unit record data have been released
for 2008. Ratio: ratio of HBAI estimate to SPI estimate, in percent.
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Table 2. Pareto Type I and Type II models: means and inequality indices

Statistic Pareto Type I Pareto Type II

Mean
���
� − 1

,� > 1 � + �
�

1 − �
� , � < 1

Gini coefficient
(G)

1

2� − 1
,� > 1 1 − �

� + 2 �
�
��
�� �

2 − �
�

, 2�

� + �
�
��
�� �

1 − �
�

, 2�
� , � < 1

Mean logarithmic
deviation (L) log �

�

� − 1
�− �

1

�
� ,� > 1 No closed form expression

Theil index (T) �
1

� − 1
�− log �

�

� − 1
� ,� > 1 No closed form expression

Half the coefficient
of variation
squared (HSCV)

1

2�(� − 2)
,� > 2

��

2(1 − 2�)[�(1 − �) + �]�
, � <

�

�

Notes. For the formulae for the survivor functions of the Pareto I and II models, see the main text. B(.) is the
Beta distribution. Sources for formulae: Arnold (2008), Cowell (2007), Kleiber and Kotz (2003), and Singh and
Guo (1995). L, T, and HSCV are members of the generalized entropy family of inequality indices, I(a), with a =
0, 1, and 2 respectively. Values of the L and T for the Pareto II distribution may be derived by numerical
integration using the formulae for generalized moments in Cowell (1989), if the relevant moments exist.



31

Figure 1. Estimating inequality: approaches to addressing top income issues in survey
data

Approach Survey data Tax data Examples

A. Semi-
parametric:
combine
summary
measures
derived from
within the
survey data

Gini (& other
measures) for poorest

(1–p)%

Not used Alfons et al. (2013),
Burkhauser et al. (2012),
Cowell and Flachaire
(2007), Ruiz and
Woloszko (2015)

+
Pareto-estimated Gini
(& other measures) for

richest p%
↓ 

Combined Gini & other
measures

B. Non-
parametric:
tax data cell-
means replace
top incomes
in survey data

Survey

←

Tax data Bach et al. (2009),
Burkhauser et al. (2016),
Department for Work
and Pensions (2015)

↓ 
Gini & other measures

C. Semi-
parametric:
combine
inequality
indices
derived from
survey and
tax data

Survey data Tax data Atkinson (2007),
Atkinson et al. (2011),
Alvaredo (2011),
Alvaredo and Londoño
Vélez (2015), Diaz-
Bazan (2015), Anand
and Segal (2016),
Lakner and Milanovic
(2016), this paper

↓ ↓ 
Gini (& other

measures) for poorest
(1–p)%

Pareto-estimated
Gini (& other
measures) for

richest p%
↓ ↓ 

Combined Gini (& other measures)

Note. Approach C may also be implemented using non-parametric estimates from tax data: see main
text.
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Figure 2. The concentration of income in high and extremely high income ranges: survey and tax return data compared, 1996 and 2007

1996

2007

Notes. Author’s estimates from SPI (tax) and HBAI (survey) data. Income is in £ per year, 2012/13 prices. Vertical dashed lines show (from left to right) p90, p95, p99, p99.5. For plots for
other years, see Appendix A.
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Figure 3. Mean excess plots for top incomes, tax return data, by year

Notes. Author’s estimates from SPI data. For plots for other years, see Appendix C. The shaded areas represent
pointwise 95% confidence bands. Thresholds are in £ per year, 2012/13 prices. Plots estimated at intervals of
£5,000 for thresholds between £10,000 and £200,000, £10,000 between £210,000 and £300,000, and £100,000
thereafter.
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Figure 4. Zenga plots for top incomes, tax return data, by threshold and year

Threshold = £60,000 p.a. Threshold = £120,000 p.a.
1996

2007

Notes. Author’s estimates from SPI data. For plots for other years and thresholds, see Appendix D. On the
Zenga plot, see the main text and Cirillo (2013).
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Figure 5. Likelihood ratio test statistics (Pareto I versus Pareto II), by threshold: tax
return data for 1996, 2001, 2007, and 2010

1996 2001

2007 2010

Notes. Author’s estimates from SPI data. The figures plot twice the difference in log-likelihood for Pareto I and
II models (each fitted using ML). Test statistics are capped at 100 for plotting purposes. Dotted horizontal lines
show critical values of the χ2(1) distribution at significance levels 0.05, 0.01, and 0.001. Vertical dashed lines
show (from left to right) p90, p95, p99, p99.5. For plots for other years, see Appendix E.
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Figure 6. PP plots for top incomes, by threshold: tax return data for 2007

Pareto I Pareto II
Threshold = £60,000 p.a.

Threshold = £80,000 p.a.

Notes. Author’s estimates from SPI data. The charts plot modelled (cumulative) probabilities against empirical
probabilities: see text. For plots for other years and thresholds, see the Appendix F. ML estimator used for both
models.
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Figure 7. Pareto I and II parameter estimates, by threshold, tax return data for 1996
and 2007

1996 2007
Pareto I model, shape parameter α

Pareto II model, shape parameter ξ

Pareto II model, modified scale parameter σ* = σ – ξt

Notes. Author’s estimates from SPI data. Vertical dashed lines show (from left to right) p90, p95, p99, p99.5.
For plots for other years, see Appendix G.

1.0

1.5

2.0

2.5

a
lp

h
a

0 50 100 150 200 250 300
Income threshold (£'000)

OLS ML ML-OBRE

1.0

1.5

2.0

2.5

a
lp

h
a

0 50 100 150 200 250 300
Income threshold (£'000)

OLS ML ML-OBRE

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x
i

0 50 100 150 200 250 300
Income threshold ('000)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x
i

0 50 100 150 200 250 300
Income threshold ('000)

-30

-20

-10

0

10

20

30

40

50

60

70

s
ig

m
a

-
xi

*t
h
re

sh
o

ld
('
0

0
0

)

0 50 100 150 200 250 300
Income threshold ('000)

-30

-20

-10

0

10

20

30

40

50

60

70

s
ig

m
a

-
x
i*

th
re

s
h
o
ld

('
0
0
0
)

0 50 100 150 200 250 300
Income threshold ('000)



38

Figure 8. Optimal Pareto threshold (KS criterion), tax return data, by estimator and
year

Notes. Author’s estimates from SPI data. The figure plots the thresholds selected using the Kolmogorov-
Smirnov criterion described in eq. (3) and main text.
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Figure 9. Combined data estimates (Approach C): Gini coefficient overall, mean income, income
share, and Gini coefficient of the Rich, by Pareto model and high-income threshold

Pareto I estimates Pareto II estimates
(a) Gini coefficient (all adults, Rich and Non-rich), G

(b) Mean income of the Rich,  µR

(c) Share of total income held by the Rich, SR (%)

(d) Gini coefficient among the Rich, GR

Notes. Author’s derivations from SPI and HBAI data using eqn. (5). Pareto I (ML-OBRE) and II models fitted
using each of three thresholds to define the Rich group: PR = 1%, 5%, and 10% (cut-offs derived from survey
data – see text for further explanation). All series refer to distributions of individual gross income among adults.
Estimates of µR, µN, SR, SN, GR, and GN are listed in Appendix H.
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Figure 10. UK inequality (indexed 1996 = 100), by series and inequality index
(a) Gini coefficient (G)

(b) Mean logarithmic deviation (L)

(c) Theil index (T)

Notes. Author’s derivations from SPI, HBAI, HBAI-SPI (Department for Work and Pensions 2015), and HBAI-
SPI2 data (Burkhauser et al. 2016). All series shown are based on the distribution of individual gross income
among adults, with the exception of the HBAI-SPI series which refers to equivalized household net income
among all individuals (see main text). There are no Pareto II estimates for the Theil index. Threshold: p95 in the
HBAI data (see main text). The corresponding graphs for the other two percentile thresholds are shown in
Appendix I.

95

100

105

110

115

G
in

i
co

e
ff
ic

ie
n
t
(i
n

d
e
xe

d
1
9
9
6
-9

7
=

1
0
0

)

1995 1997 1999 2001 2003 2005 2007 2009

HBAI (poorest 95%) & SPI (richest 5%), Pareto I (ML-OBRE)

HBAI (poorest 95%) & SPI (richest 5%), Pareto II (ML)

HBAI (poorest 95%) & SPI (richest 5%), non-parametric

HBAI (poorest 100%)

HBAI (poorest 95%)

HBAI-SPI2 (adults, individual gross income)

HBAI-SPI (all persons, equivalized household net income)

80

85

90

95

100

105

110

115

120

125

130

135

140

M
L
D

(i
n
d
e
xe

d
1
9
9
6
-9

7
=

1
0
0
)

1995 1997 1999 2001 2003 2005 2007 2009

HBAI (poorest 95%) & SPI (richest 5%), Pareto I (ML-OBRE)

HBAI (poorest 95%) & SPI (richest 5%), Pareto II (ML)

HBAI (poorest 95%) & SPI (richest 5%), non-parametric

HBAI (poorest 100%)

HBAI (poorest 95%)

HBAI-SPI2 (adults, individual gross income)

HBAI-SPI (all persons, equivalized household net income)

90

95

100

105

110

115

120

125

130

135

140

145

150

T
h

e
il

in
d
e

x
(i

n
d

e
x
e

d
1
9

9
6

-9
7

=
1

0
0

)

1995 1997 1999 2001 2003 2005 2007 2009

HBAI (poorest 95%) & SPI (richest 5%), Pareto I (ML-OBRE)

HBAI (poorest 95%) & SPI (richest 5%), non-parametric

HBAI (poorest 100%)

HBAI (poorest 95%)

HBAI-SPI2 (adults, individual gross income)

HBAI-SPI (all persons, equivalized household net income)


