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Abstract 

Open source software is everywhere, both as specialized applications nurtured by devoted user 
communities, and as digital infrastructure underlying platforms used by millions daily.  This type of 
software is developed, maintained, and extended both within the private sector and outside of it, through 
the contribution of people from businesses, universities, government research institutions, nonprofits, and 
as individuals. This paper proposes and prototypes a method  to document the scope and impact of open 
source software created by these sectors, thereby extending existing measures of publicly-funded research 
output. We estimate the cost of developing packages for the open source software languages R, Python, 
Julia, and JavaScript, as well as re-use statistics for R packages. These reuse statistics are measures of 
relative value.  We estimate that the resource cost for developing R, Python, Julia, and JavaScript exceeds 
$3 billion dollars, based on 2017 costs.  

Key words:  Open Source Software, Intangibles, Innovation, Network Analysis  

 

Introduction and Contribution 

Beginning in the early 1980s, open source software (OSS) projects have provided users with zero 

dollar cost and freely modifiable software tools.  These range from the LaTeX typesetting 

program introduced initially in 1983, to Linux, Apache, Mozilla Firefox web browser, and the 

WordPress content management system.   As OSS has continued to grow, estimates of its market 

penetration have emerged in areas including operating systems, servers, and specialized 
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languages. The most widely used operating system on the internet globally is the Linux-based 

Android operating system (GlobalStats statcounter 2018). As of July 2018, Apache is the most 

frequently used server on the internet (W3Techs, 2018).   Based on the cost of the nearest 

available substitute, Greenstein and Nagle (2013) estimated the value of capital stock of Apache 

software in use in 2013 at between $2 and $12 billion. 

OSS is increasingly developed and used by businesses; the top institutional contributors 

to the code repository GitHub in 2017 are Microsoft and Google. Nonbusiness contributors are 

active as well on GitHub, with Stanford University, the Massachusetts Institute of Technology, 

The Broad Institute, and University of California at Berkeley among the top contributors. 

Additionally, substantial contributors from the U.S. Federal Government include Sandia National 

Laboratory and the General Services Administration (Hoffa 2017).  Recent policies of the U.S. 

Federal government now promote the posting and sharing of software source code developed by 

or for the Federal Government (Scott and Rung. 2016).  

 While this particular policy to promote reusing and sharing of software created with 

public funding is relatively new, public funding has an important and not fully accounted role in 

the creation of open source software (OSS). How much of the OSS currently downloaded and 

used has been created with public funding, in the U.S. or in other nations?  We currently don’t 

know. We do know that many of the most widely used OSS tools available have been developed 

in universities and other publicly-funded institutions.  Apache is open source server software 

developed with federal and state funds at the National Center for Supercomputing Applications 

in Illinois. Linux was developed at the University of Finland. The R language was developed at 

the University of Auckland in New Zealand by professors for use in their teaching laboratory, 

with extended development by Hadley Wickham, including at Rice and Stanford Universities  
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(Ihaka, 1998, Wickham, n.d.). Independent nonprofit institutions have also played an important 

role in OSS, assuming the management and coordination of OSS projects; examples include the 

Apache Software Foundation, the Mozilla Foundation, and the Linux Foundation.   

 The work of OSS developers across sectors of the economy also highlights the role of 

non-business activities that result in important innovations.  As the OECD’s relevant 

measurement manual defines innovation: “the implementation of a new or significantly improved 

product (good or service) or process, a new marketing method, or a new organization method in 

business practices, workplace organization, or external relations” (OECD and Eurostat, 2005).  

The creation of new software products and their significant improvement through version 

upgrades and package extensions that are systematically shared with potential users fit well 

within this definition. As policy-makers seek better information to identify innovations and the 

systems that create them, OSS provides a window into innovation in all sectors of the economy. 

This is an aspect of innovation that has been relatively under-explored (Gault, 2018).   

The contribution of this paper is two-fold. First, we present a framework for the 

presentation of statistics about OSS, categorizing it as a subcomponent of a recognized 

investment category in national economic accounts: own-account software. Second, we present 

and implement a prototype methodology for resource cost estimation for OSS investment that is 

conceptually consistent with current measurement of own-account investment. Our “bottom-up” 

methodology uses data collected from within OSS package code and data about OSS packages; 

we estimate that R, Python, Julia, and JavaScript packages currently available to users have a 

cumulative resource cost in the order of magnitude of $3 billion dollars. This method can be 

replicated with other OSS packages to better account for investment in these software tools.  We 

also show how network analysis using these same data can be used to measure the relative 
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impact of OSS packages.  Linkages between OSS packages show how one package may depend 

upon another. Linkages are represented with outdegrees and are measures of the relative impact 

of frequently-used packages. This bottom-up approach will make it possible to identify the sector 

of contributors. Together, the cost and impact measures can provide indicators of research dollar 

outcomes, currently shown primarily with patents and bibliometric indicators.  

Literature Review 

A decade ago, interest in OSS centered around understanding the motivations for 

participation in OSS projects and evaluations of its growth potential. Surveys conducted in the 

early 2000s described the contributor community (Ghosh, et al. 2002; Boston Consulting Group 

2002; David, Waterman, Arora 2003).  While the motivations described for participation include 

skill development, creativity, and interest in the open source community, user-need and 

functionality consistently rate as critically important. A Boston Consulting Group survey (2002) 

probed the motivations for participating in OSS projects; over 60% reporting either work or non-

work functionality.  

For many academics and researchers, software tools and databases are by-products of 

their own work that can also be used by other academics as well (Gambardella and Hall 2005).  

Advantages of OSS include the ability to scale customization projects and to resolve program 

bugs quickly through many users (Lerner and Tirole. 2005).  OSS communities can also be 

viewed as user innovation networks, where contributors more successfully develop solutions to 

their own software needs through the OSS community (von Hippel 2005).  

Interest in better measurement of the economic impact of computer software and the 

increased digitization of knowledge led to parallel development in national economic accounting 

in many countries. For example, Gross Domestic Product (GDP) statistics for the US have 
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treated computer software as investment since 1999, extending this treatment to research and 

development expenditures and entertainment and literary originals in 2013 (BEA 2013). Beyond 

these three categories, Corrado, Hulten, and Sichel (2005) provide a framework for consistent 

accounting for expenditures on intangibles that generate future benefits. Arguing that public 

expenditures yielding long-lived returns should be understood as investment, Corrado, Haskell, 

and Jona-Lasinio (2015) propose a public investment category, information, scientific, and 

cultural assets, which includes software and databases along with R&D, mineral exploration and 

cultural products.  They argue that better accounting of public investment in intangibles would 

provide a more complete picture of economic growth (CSL, 2015).  

[Figure 1 about here] 

Figure 1 shows software investment in the US for 2016 (in current dollars) from the 

Bureau of Economic Analysis.  Overall, software accounts for more than $400 billion dollars a 

year in fixed investment in 2016.  Less than $100 billion of this was for public sector investment 

(federal labs and facilities, public universities, state and local government entities).  Most 

investment accounted for, more than $300 billion dollars, is for private sector investment in 

software. For comparison, BEA reports investment in R&D on the same set of tables. Private 

sector R&D investment is $320 billion and the public sector (government)’s investment was 

$170 billion in 2016.1 

                                                           
1 This paper was prepared prior to the release of BEA’s comprehensive revision on July 27. The treatment was 
changed for R&D expenditures that overlap with own-account software expenditures, and thus data revised. 
[https://blog.bea.gov/2018/07/03/coming-july-27-gdp-statistics-updated-to-keep-pace-with-ever-changing-
economy/]  Overlap between R&D and software is accounted for within software prior to the revision, and after the 
revision is accounted for within R&D.  
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Software as investment has three types, based on data sources. These are prepackaged, 

custom, and own-account.  Prepackaged and custom software are purchased inputs, and in 

national economic accounts industry receipts data are used for these estimates. Own-account 

software is not purchased or sold.  For measurement purposes, it is new, or significantly-

enhanced software created by business enterprises or government units for their own use and its 

value is estimated based on in-house expenditures for its creation (Parker and Grimm 2000).  

From a classification perspective, this category of own-account software is where OSS 

belongs. OSS fits the definition of own-account software as laid out in BEA (2000) and OECD 

(2010) methodologies:  OSS is original software that provides benefits by using the software 

directly, and these benefits are expected to last for years.   The key to its treatment as intangible 

investment is that resources shift from consumption to creating something that provides value in 

use over a long period of time to its creator.  Open source software is a component of own 

account software.  We expect to find measurable amounts in universities, both private and 

public, in institutions run by state and local governments, and in Federal investment.   Private 

university-created OSS would be within the private estimates, as would any created by private 

nonprofit institutions.     
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Empirical Framework 
 

Counts and Linkages: The production and delivery of open source software through publicly 

accessible websites provide harvestable count and linkage data for software languages and 

OSS and Related Definitions 

Commits: With respect to OSS development, a commit is a submitted proposal for improvement to existing 
code. 

Dependencies: The other packages that a particular package needs to use or install to function. In network 
analysis a dependency link between two packages i and j can be formulated as a directed edge from i to j ( i 
→ j) such that that the package j requires i to be installed to function. 

Innovation: The implementation of a new or significantly improved product (good or service) or process, a 
new marketing method, or a new organizational method in business practices, workplace organization, or 
external relations. This definition is based on the Oslo Manual, which provides guidance for internationally 
comparable measurement (OECD and Eurostat 2005). 

Intangible capital: As a subcategory of capital investment, intangible capital includes economically useful 
ideas, creations, or plans that can be reused repeatedly in production over a long period of time.  Research 
and development expenditures, computer software and databases, and entertainment and literary 
originals are counted as intangible capital in national economic accounts. Additional categories of 
intangibles that have similar features are economic competencies, made up of brand equity, firm-specific 
human capital, and resources devoted to organizational development (Corrado, Hulten, and Sichel,2005). 

Open source software: Computer software with its source code made available with a license in which the 
copyright holder provides the rights to study, change, and distribute the software to anyone and for any 
purpose.  For this paper, we treat as open source any software language or package with an Open Source 
Initiative (OSI)-approved license. 

Own account software: A category of software investment in national economic accounts. Own-account 
software is long-lasting software created for internal use, rather than as a market product. 

Production Ready Release: A software package that is ready for production in its current ecosystem 

Registry: A location that hosts, manages, and distributes OSS.  The Comprehensive R Archive Network 
(CRAN) and PyPi for Python are examples. 

Repository: A location that hosts and maintains different versions of software programs.  GitHub is an 
example. 
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packages.  These data can be analyzed with methods developed for bibliometrics and patent 

analysis.  Indicators of research activity and impact are calculated from databases covering 

scientific article publications and their citations.  Many well-developed methodologies and 

extensions exist, and a research community continues to grow, invigorated by improved 

computing power and algorithms.  For patents, an intersecting literature thrives around the use of  

data sets from patent offices.   For software code, Ghosh (2002) describes methods of extraction, 

interpretation and analysis of empirical data from software source code that we apply and extend 

in this paper.    

Cost of production:  Investment in own-account software, created for internal use, is estimated 

for national investment statistics based on its cost of production. This approach is the same one 

used for other types of products not sold in the market. BEA researchers have proposed a similar 

methodology to measure advertising-supported products: when bundled with advertising, free 

content created in the business sector can be valued based on its production cost (Nakamura, 

Samuels, and Soloveichik 2018).   

Production costs for own account software include those for analysis, design, 

programming and testing, and exclude maintenance and repair (Parker and Grimm, 2000).  As 

originally described, cost of production is the sum of: labor costs and intermediate inputs (such 

as materials and supplies and overhead).  In US economic statistics these costs are estimated with 

the mean wage rate for computer programmers and system analysts, adjusted for compensation 

costs, and multiplied by the number of these workers in each industry.  Wage, employment and 

compensation are from the U.S. Bureau of Labor Statistics data. To account for time spent on 

tasks other than software development, BEA uses an adjustment ratio from a survey of software 
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developers time spent on different tasks of 487 businesses (Boehm,1981).  Non-labor costs for 

OSS development are estimated with industry production ratios (Parker and Grimm 2000).   

 Data Collection and Preparation 
 

Keller et al (2018) describes the overall approach used here to explore data sources 

beyond surveys to improve and extend indicators of science and engineering activity and of 

innovation. This approach includes structured processes to discover, acquire, profile, clean, link, 

explore the fitness-for-use, and statistically analyze the data.  Here we gather and use publicly 

available metadata about individual packages and their contributors, as well as information 

within the code.  

The natural way to obtain the information about the development of an OSS project that 

is shared as packages is to inspect the repository that hosts the code for that language or 

application. The first step is to catalog all projects available to the programming language or 

application. Package managers are the tools used to discover, retrieve, and bring added 

functionality to users and developers. A package manager obtains the list of available packages 

and repository locations through a registry. A registry contains basic information such as a 

unique identifier (usually the package name), a release version to identify what version of the 

package should be retrieved, and the repository location (where to find the actual code). 

Registries collect this information from the package manifest file which in turn holds the 

project's metadata: name, author, maintainer, license, description, dependencies, project status, 

etc. 

Our data collection strategy is illustrated in Figure 2. Based on our definition of OSS, we 

focus on projects that have an Open Source Initiative (OSI)-approved license and that are 
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production ready, i.e., not in development stage. This definition determines the data to be 

collected.  

[Figure 2 about here] 

We use four registries for the analysis: (1) The Comprehensive R Archive Network 

(CRAN) at  https://cran.r-project.org/web/packages/available_packages_by_name.html , (2) The 

Python Package Index (PyPI) at  https://pypi.org/search/ , (3) METADATA.jl (the official registry 

for the Julia language) at https://pkg.julialang.org/, and (4) CDNJS (one of the most commonly 

used JavaScript content delivery systems) at https://cdnjs.com/.  

Registries differ in multiple aspects that affect coverage and data duplication.  For example, 

CRAN and CDNJS use a mirror system such that the registry itself hosts the repository. This makes 

it permanent and self-contained, but prone to duplication of information (e.g., multiple packages 

having the same repository in its metadata). In contrast, METADATA.jl only gives the package 

manager the location to obtain the repository. This allows the registry to synchronize the package 

metadata and history directly with the "truth" (based on the repository).  

This feature comes at the cost of potentially purged data, in cases when repositories are no 

longer accessible. Registries such as CRAN and PyPi display dependencies, license, and 

continuous integration information from the manifest file. In contrast, CDNJS and METADATA.jl 

use a detached repository-oriented tracking system and do not contain this information. 

Data collection starts with a unique identifier and the repository location of each package. 

For repositories hosted using Git version control on GitHub, the GitHub API provides access to 

additional relevant information. Two examples are identification of the package license in cases 

where it is not specified in the manifest file and, where applicable, the presence of continuous 

https://cran.r-project.org/web/packages/available_packages_by_name.html
https://pypi.org/search/
https://pkg.julialang.org/
https://cdnjs.com/
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integration of small code changes. The latter helps identify production-ready packages. For some 

repositories, production-ready packages are straight-forward to identify. CRAN submissions 

include only production ready packages while other registries allow for developing stage projects 

or potentially fully depreciated and outdated packages (e.g., uncurated registries such as 

METADATA.jl). 

For those packages that are identified as OSI-approved and have a current production ready 

registered release, we obtained the contributions for the top 100 contributors.  This set of 

contributors is determined by weekly counts of lines added, lines deleted, total number of commits. 

We treat lines of code as a first order proxy for effort, though it can be quite noisy under certain 

scenarios. For example, this method in its current version does not distinguish between lines of 

code, documentation, generated output, data files, etc.  

[Table 1 about here] 

Data Description 

Table 1 shows the number of packages we collected from GitHub for the four major open 

source software programming languages: R, Python, Julia and JavaScript. The number of 

packages collected for each language is given in the final column of Table 1. For the latest 

release of the package, we collected development information including the number of 

contributors, the lines of code (added and deleted), number and time of commits (suggested code 

edits from contributors), and profile of contributors.  

The data demonstrate overall a power-law distribution for each language; most of the 

packages are developed with a small number of contributors (a core-team).  Figure 3 illustrates 

the distribution of the number (in logs) of contributors of each package for each language.  

[Figure 3 about here] 
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Next, we collect the lines of code for the top 100 contributors on GitHub. The 

distribution of the total lines of code for each language is given by boxplots in Figure 4. 

[Figure 4 about here] 

Finally, we compute the contributions to the packages by each developer (the top 100 

contributors based on the number of commits made).  We observe that most of the contributions 

are made by a small number of developers, as illustrated in Figure 5.  

[Figure 5 about here] 

For these four OSS languages we observe the same kind of power-law distribution found 

in other kinds of count-based distributions.  The skew shows up in the findings that most 

contributions to packages are made by a small number of contributors. Articles and patents share 

features of skewed count-based distributions, where only a small number of articles or patents 

generate measurable impact, and those that have impact can be blockbusters.  For bibliometrics 

for example, Bornmann and Leydesdorff found in an analysis of 2010 papers that nearly half of 

the citation impact is accounted for by the top 10% most-frequently cited papers (2017). 

Similarly, for patents only a small number of patents have high valuations, based on the market 

valuation of owner-firms (Hall, et al, 2000). This skewness for patents and papers also emerges 

in the analysis of OSS packages themselves.  In an analysis of R packages, Korkmaz et al (2018) 

find 1) that while the median number of downloads for R packages is 8.5, the mean number is 

45,775 and 2) for R packages that have citations, the median value is 0, while the average is 8.  

Implementation 

Dependency Network: When an OSS package requires the code of another package to do its 

work, that package is dependent on the other. We use reverse dependencies (reuse) of packages 
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as a measure the impact and value. The greater the reuse, the greater the value. The dependency 

information is obtained from the manifest files described earlier. Outdegree, as described below, 

is a measure of this value. However, taken together, network analysis provides a fuller picture of 

impact.  

We use the dependency interactions to study the connection between the structural 

features and the cost of the OSS projects. We generate the dependency network where a directed 

edge i → j indicates that the package j requires i to be installed to function. Packages with no 

edges (i.e., dependency links) are removed from the network. The main characteristics of the 

dependency network for all languages are given in Table 2, and the features are defined in the 

table caption.2 

We observe that the R dependency network has a high number of connected components 

and communities compared to the other packages; it also has a higher number of packages. 

Figure 6 presents a subgraph of the R dependency network; this is the largest component after 

removing the small-size communities with less than 5% of the nodes. The size of the node is 

proportional to the out-degree, i.e., number of packages that reuses the package, and the different 

colors indicate communities (different uses of R) identified using the modularity algorithm 

implemented in Gephi (Bastian, Heymann, and Jacomy, 2009).  As seen in the figure, ggplot2, 

which is one of the main R packages used for visualization,  has a high outdegree. This high 

outdegree means that many packages use ggplot2. In fact, it is the package with the highest 

outdegree of 925, followed by Rcpp with an outdegree of 838. 

                                                           
2 Note that the number of nodes (packages) for the languages are different than in Table 1. This is because the 
dependency information is collected from the manifest files that have information about more packages than those 
on GitHub. 
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[Figure 6 about here]  

Cost of Creation: The creation cost of complete packages is estimated using data that we can 

collect from the R package code itself, and from registries and repositories, summed across 

completed packages. Our unit of analysis is a completed and released OSS package.  We use cost 

model approaches from software engineering to estimate the input of OSS contributors to 

completed packages in person-months.  We assume that the cost of contributors’ time is roughly 

equivalent to the average wage for computer programmers plus additional intermediate input and 

capital services costs.   

Cost estimation for software projects is a recurring topic in software engineering 

literature, motivated by the challenge of keeping large software projects on schedule and within 

budget (Sharma, Bhardwaj, Sharma, 2011).  Estimation models emerged first in the 1960s and 

evolved from a linear function of the number of instructions.  However, as software projects 

grow, experience shows that effort increases nonlinearly.  Cost estimation models have evolved 

that account for complexity, reliability, and scale in a variety of ways based on characteristics of 

the product, the platform, the contributors, and the project.  Examples of these estimation models 

include Constructive Cost model COCOMO II, the Putnam Software Life Cycle Management 

model, and models based on function points (Boehm and Valerdi, 2008). 

The logic of the constructive cost model is that: 
 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑖𝑖𝑖𝑖 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑠𝑠 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑥𝑥 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑥𝑥 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  

The calibration factor represents the person months needed for a set number of lines of 

code, unadjusted for effort factors.  The effort multipliers account for complexity, reliability, and 

scale for these models; they lead to increased cost. In COCOMO II for example, the effort 
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factors are based on qualitative assessments for each attribute with ratings from very low to extra 

high.  

Translating this approach to our data on OSS, the package specific data we collected 

provides lines of code (added and deleted by each contributor) for each completed package. We 

use the COCOMO II calibration factor (Boehm, et. al, 2000) to estimate person-hours per 

package. The formula below shows the parameters we used, selected for the organic software 

class which consists of software dealing with a well-known programming language and a small, 

but experienced team of contributors. 

 

KLOC stands for kilo (thousand) lines of code. With these person-month calculations per 

OSS package, we estimate a resource cost by multiplying by monthly wages for programming 

occupations plus additional costs.  Table 4 shows the steps and data sources for the estimation. 

To summarize our method, we assume that the input time of contributors is roughly equivalent to 

the average wage for computer programmers (from Bureau of Labor Statistics (BLS) 2017 

Occupational Employment Survey data) plus additional intermediate input and capital services 

costs (from Bureau of Economic Analysis (BEA) 2007 Input Output table data). The per person 

month cost for OSS contribution is obtained as $18,096, which is the amount used in our cost 

calculations. 

[Table 4 about here]  

Results 
  

With our estimates of the cost of all packages that use R, Python, Julia and JavaScript, we 
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obtain power-law distributions for all languages.  The density plots and the boxplots are given in 

Figure 7.  We view these as order of magnitude estimates. The total costs of all packages for 

each language are as follows: R ($854 million for 3,396 packages), Python ($747 million for 

3,804 packages), Julia ($239 million for 1,324 packages), and JavaScript ($1,199 million for 

3,213 packages). Summing costs for these four languages yields over $3 billion dollars in total 

costs, based on 2017 wage rates. We view this as a lower bound because not all JavaScript 

packages are on CDNJS.  Further, while this amount represents costs based on U.S. wages, not 

all of this development took place in the U.S.   

We report the top packages with the highest total cost in Table 4. Many of these packages 

are those used for web-development (e.g., googleAnalyticsR, Django-workon, Selenium, 

Webkit.js). We add the node properties of these packages from the dependency network to the 

creation cost to understand whether there is a connection between the cost and the value. Table 4 

presents the top packages with the highest out-degree, i.e., the number of other packages that 

depend on the package, and other network features (defined in the table caption) together with 

the creation cost of these packages. 

We do not observe a consistent pattern between cost and value based on the dependency 

network features. This is also illustrated with the correlation heatmap in Figure 6, which shows 

that the correlation between the log(cost) of packages and network characteristics is low and 

positive for most of the features. The heatmap illustrates the Pearson coefficients (the color scale 

given in the legend) between the network features of the packages/nodes (centrality measures) 

and their cost.3 We observe that there is a positive correlation (given in blue) between most of 

                                                           
3 Correlation coefficients takes values between -1 and 1, a value of 1 (and -1, respectively) indicates a perfect 
positive (negative) linear correlation, and a value of zero indicates that there is no linear relationship between the 
variables of interest. 
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the centrality measures and the cost, however the correlation coefficients are lower than 0.4 

indicating a low correlation between these variables. The highest positive correlation (a 

coefficient of 0.36) is between the cost and indegree of the nodes, implying that the cost of the 

packages that depend on more packages are likely to be higher. In-degree (the number of used 

packages) has the highest positive correlation with cost for all the languages.  

 

Further Work 
 

To illustrate the contribution to OSS from public spending, more detailed breakdown by 

sector is needed, both for relative measures based on counts and uses, and for dollar-

denominated cost measures. That level of detail would show the contributions of public sector 

institutions, households, businesses, academia, and other nonprofits.  

We will also need to validate or understand differences between our prototype estimates 

and existing statistics.  One way to validate the estimates would be in comparison with national 

accounts statistics for own-account software at the economic sector level. Figure 9 shows the 

categories of investment in national income accounts that include OSS. 

Our prototype estimates used one simple set of parameters in the conversion of lines of 

code to person-months.  We can explore ways to use characteristics of the contributors, the 

languages, and the packages to create bounds around the costs that better account for 

heterogeneity and our blunt assumptions. 

 Beyond  the cost estimates, we have these questions to address:  
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• Flow Measures: How much is created each year? 
• Categories: What types can be identified? 
• Sectors and collaborators: Who creates it? 
• Users: Beyond the developers of OSS, who benefits from its development? 

 

The resource cost estimates we present here include contributions over multiple years, 

estimated based on costs as though they had all occurred in 2017. Next steps will be to use 

information about the date when a package is made available to create year-by-year flow 

estimates, using cost deflators. Repositories and registries also include information about 

functions and use of each package that allow us to categorize the packages. For example, the 

open source resource SourceForge provides categories for projects that include communications, 

system administration, games, audio and video, business and enterprise, and security and 

utilities.  (Keller et. al. 2018).  Contributor-specific information on business, government, and 

university affiliations will allow us to develop preliminary sector measures.  As yet, we have not 

identified a non-survey method to determine how much open source software is used by entities 

in each sector of the economy who have not participated in its development.   

 

Conclusion  
 

In this paper we have described a methodology to use freely-harvestable data about OSS 

packages to develop statistics on the scope and use of OSS languages.  These non-survey data 

provide characteristics of OSS packages and their contributors that are used in two different 

ways.  With lines of code to estimate effort, we use a method derived from the measurement of 

own account software in national economic accounts to estimate an order of magnitude resource 

cost.  We estimate the resource cost of producing R, Python, Julia, and JavaScript exceeds $3 

billion dollars, based on 2017 costs.  Network analysis provides a framework for estimating 



19 

relative impact.  Outdegrees, a measure of package reuse, provide an indicator of impact or value 

and we find it is not highly correlated with cost.  However, a more complete picture of impact 

results from a fuller set of network parameters.  
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Figure 1 US Investment in Computer Software, 2016 
 

 

 

Figure 2. The Data Collection Strategy 
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Figure 3. Distribution of the Number of Contributors to Each Language’s Packages 
(Log scale)  
 

 

Figure 4. Distribution of the Total Lines of Code in Each Language’s Packages (Log 
Scale) 
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Figure 5. The Cumulative Contributions by Top Developers Based on the Number 
of Commits. 

 
Figure 6. A subgraph of the R dependency network. 

The size of the node is proportional to the out-degree, i.e., number of packages that reuses the package, 
and the different colors indicate communities (different uses of R) identified using the modularity 
algorithm (Blondel, et al. 2008) implemented in Gephi (Bastian, Heymann, and Jacomy (2009). The small 
communities (less than 5%) are removed for illustrative purposes. 
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Figure 7. The Distribution of Total Cost of Packages for each Language, Density 
and Boxplots. 
 

 

 

Figure 8. Heatmap of the Pearson Correlation between the log(cost) and network 
characteristics of packages.  
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Figure 9. Open Source Software is a Subcomponent of Own Account 
Software Investment          

  

Notes NPISH: Nonprofit institutions serving businesses NPISB: Nonprofit institutions serving households 
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Table 1. Number of Packages for Four Major OSS programming languages: R, 
Python, Julia and JavaScript  
 

 

Table 2. Characteristics of the dependency network for all languages of the study  
Notes: Average degree (indegree and outdegree) indicates the average number of packages that 
they depend on (and are used by). Diameter is the shortest distance between the two most distant 
nodes in the network. (Weakly) Connected components are subgraphs such that there is an 
undirected path from every pair of nodes in the subgraph. Communities are detected using 
modularity algorithm [4] that identifies densely connected subgraphs of the network. *R 
dependency network includes both dependencies and imports. Standard libraries that are supplied 
with R  (e.g., stats, utils, graphics) are removed from the network. 
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Cost Component Data Source Cost in Dollars Cost Factor 

    per person year   

Labor Compensation Cost   136,909   
Applied to 

wages 

Wage and Salary Rate 

Mean Annual Wage for Software 
Developers and Applications, 2017, 
BLS   106,710   

Non-wage compensation  

Estimated based on the inverse ratio 
of wages and salaries to total 
compensation for professional and 
technical services industries; Four 
quarter average for 2017, BLS   

       
30,199  28% 

          

        
Applied to 

compensation 

Intermediate input cost 

Intermediate input ratio to 
compensation for computer systems 
design and related services from the 
2007 Use Table, BEA    

       
80,249  59% 

          

Capital services (GOS) 

 Ratio to compensation for computer 
systems design and related services 
from the 2007 Use Table, BEA    

       
22,405  16% 

         
Estimated resource cost          

  without gross operating surplus   
  
217,157.69     

  with gross operating surplus   
  
239,562.62     

      per person month   

  without gross operating surplus   
     
18,096.47     

  with gross operating surplus   
     
19,963.55     

 
Table 3. Source Data for OSS Contributor’s per Month Resource Cost 
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Table 4. Top 5 Packages Based on Total Cost for Each Language 

 
Table 5. Network Features and Costs of Top Packages with Highest Out-Degree 
The network features of the top packages with the highest out-degree. Definitions: Outdegree (indegree, 
respectively) is the total number of outgoing (incoming) links, .i.e., the number of packages that depend on (are 
required by) the package. Closeness centrality measures how close a node is to every other node. Betweenness is a 
measure of being connected to other nodes that are not connected to each other (as a bridge). PageRank depends 
on (i) the number of links the node receives, (ii) the number of links given out by its neighbors, (iii) the centrality of 
its neighbors. Clustering coefficient quantifies the degree to which a node’s neighbors are connected. 
Eigencentrality of a node considers the centrality of its neighbors. 
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