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Abstract

In this paper we explore the relationship between flooding events and the patterns of dis-

counting of property prices. We develop an estimation and testing strategy to implement a

recently proposed theoretical framework and use a unique natural experiment to demonstrate

how this framework provides a test for myopic and amnesic responses to flooding frequency and

severity in urban property prices. Infrequent floods is where myopic and amnesic perceptions

of risk should dominate. In this regime observed quality adjusted prices are expected to drift

away from a risk-adjusted constant quality property price towards the zero-risk constant qual-

ity property price as the years pass since the last flood. When a flood occurs, actors become

aware of the true flood risk and observed prices quickly adjusts downwards towards the risk

adjusted price. We define empirical versions of the zero-risk threshold (P(ZR)) and the actual

quality adjusted price (P(A)) as functions of hedonic price indices. The risk-adjusted con-

stant quality price (P(RA)) is obtained via hedonic regressions and a difference-in-difference

∗Fletcher and Rambaldi are grateful for the funding provided to the project by the Australian Research Council
- DP120102124.
†Corresponding author.
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estimation. To test the hypothesis of amnesic and myopic behaviour in property prices, we

construct an empirical distribution of P(A) using a bootstrapping approach. We use the con-

fidence interval to test hypotheses of \’no amnesia\’ and \’no myopia\’ in property prices.

If the distribution of the bootstrapped P(A) includes P(ZR) we reject the null hypothesis of

\’no myopia\’ and conclude there is evidence of myopia. Similarly, we reject the null of no

amnesia if following a flood event the bootstrapped distribution goes below the P(RA) and

then recovers to levels above P(RA). The city of Brisbane suffered two major devastating

floods in 1974 and 2011. The construction of a dam with two compartments, flood and water

reservoir, in the mid 1980s lead inhabitants and the market to underestimate the risk of an-

other major event after that of 1974. Our dataset covers property transactions for an inner

Brisbane (Australia) area located 5 km from Brisbane Central Business District(CBD) with

30% of each year\’s sales being properties in the flood plain (defined by the 2011 flood) and

with proximity to a waterway within the tidal reaches of the Brisbane River. While minor

flooding directly impacts only very few properties, the visibility of swollen waterways can

provide reminders of flood risk in between major events. This ideal setting allows us to test

for myopic and amnesic behaviour for this area over the period 1990- 2015. We find strong

support for the behaviour and discuss some of the implications for public policy.

Keywords: risk-adjusted prices, constant quality prices, bootstrapping
JEL: R21, Q51, C43, C15

1 Introduction

Around the world, economic losses due to extreme environmental events, such as flooding, are

estimated to have increased substantially. Although some of this increase is driven by changing

environmental risk profiles , by far the larger part comes from the increased value of infrastructure

developed in risky areas.

Why do we keep building in risky areas? Risky properties are often in high value locations, and

the impacts of risks arise only infrequently. Between flood events these properties provide similar

levels of utility to those of their risk-free neighbours. Continuing to develop risky properties is

rational as long as the long term average loss of utility that occurs due to infrequent floods is
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internalised as a devaluation to the property price.

In order for this to be effective, however, agents in the market must be good at estimating

long-term average risk. There have been a range of studies showing that people, in general, are

very poor at estimating the economic value of long term risk in general, and in terms of floods

and property values specifically (Bin and Landry 2013, Gallagher 2013). Several interpretations

have been proposed: the idea that agents’ behaviour show a large and immediate change in beliefs

after a disaster could be consistent with the common Bayesian learning model (Viscusi and Magat,

1992); that agents may suffer both myopia, in that they underestimate future risks, and amnesia,

in that they forget the past (, Pryce et al 2011, Agarwal et al (2009)); and that agents might be

unaware (Schipper 2014, Bin and Landry 2013).

One outcome consistent with both learning and market myopia and amnesia is that the price

of affected properties fall immediately following a flood to a value that internalises the risk de-

valuation, then recover gradually to the risk-free value. This changing memory and valuation of

risk over time will lead to individual wins and losses as properties change hands before and after

a flood event. These losses can be significant, because in many places the family home is by far

individuals’ largest asset.

The scale and uneven distribution of asset loss risk across communities can lead to severe and

inequitable financial hardship. In practice, the financial impacts of flood events are often shared, at

least partially, across communities though government recovery funds, although these are focussed

on immediate needs rather than property value loss.

Over the longer term, risk costs can be borne individually or shared through the distribution

of insurance premiums. Whether the individual households affected bear the brunt of asset loss or,

alternatively, the costs of inundation or proactive protection are shared across the community, there

will be a distribution of costs and benefits, winners and losers, and perceptions of inequitability.

The only way to make informed decisions about how to equitably and efficiently manage this risk

is to understand it.

To help inform this discussion, this manuscript explores the relationship between flooding events

and the patterns of discounting on property prices. We begin below by establishing the current
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state of understanding in the literature and describing historical and recent flood events in the city

of Brisbane, Australia. We then develop new techniques to obtain estimates of quality adjusted

zero-risk, risk-adjusted and actual price levels for properties exposed to flooding. We propose to

use the estimated distribution of the actual quality adjusted prices to conduct statistical inference

on property price responses following minor and major flooding events. Finally, we consider the

implications of these effects in terms of equitable risk management.

2 Theories of market behaviour and the case of infrequent

floods

Standard Bayesian learning, Knightian or Keynesian uncertainty (Keynes, 1921; Knight, 1921) is

a form of structural uncertainty as supposed to parameter or model uncertainty. Full Bayesian

updating is reflected in agents learning only if enough structural information of the outcome

generating process is provided. Payzan-LeNestour and Bossaerts (2011) study Bayesian learning

in unstable settings and conclude that the ability of participants to distinguish between types

of uncertainties relies on sufficient revelation of the payoff-generating model. Specifically, when

structural uncertainty was induced the participants did not gain awareness of the jumps in the

tasks, and fell back to model-free reinforcement learning.

Unawareness (for a recent survey see Schipper (2014)), extends Knight’s distinction between

risk and ambiguity. Then under risk, the decision maker conceives of the space of all relevant

contingencies and is able to assign probabilities to them. Under ambiguity, the agent still conceives

of the space of all relevant contingencies but has difficulties to evaluate them probabilistically.

Under unawareness, the agent cannot even conceive all relevant contingencies.

In the specific context of studying the response of the housing market to flood danger, Pryce et

al (2011) proposed a framework funded upon myopic, amnesiac risk assessment by housing market

actors. In this framework agents are aware of the contingency (flood), and myopia and amnesia

mean that perceived risk could diverge considerably from actual risk. Myopia is the discounting

of information from anticipated future events, with the discount rising progressively as the event
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becomes less imminent. Amnesia is the discounting of information from past events, with the

discount rising progressively as time elapses, although both under Pryce et al (2011)’s amnesia

and Agarwal et al (2009)’s agents, who learn and forget, the response would be observationally

equivalent. Nevertheless, the Pryce et al (2011) theoretical framework, presented in Figure 1,

provides an economic model from which econometric measurements can be defined. There is a

zero-risk constant quality property price (P (ZR)) i.e. the price of properties which have zero flood

risk, adjusted for hedonic characteristics) and the risk-adjusted constant quality property price

(P (RA) i.e. the price of properties which accurately price actual flood risk, adjusted for hedonic

characteristics). For properties with some flood risk, their actual prices, P (A), tend upwards

toward P (ZR), depending on how recently floods have been observed. With very occasional

flooding, flood-prone property prices approach P (ZR) and periodically drop (top panel of Figure

1). More regular flood will see prices more regularly pulled down around P (RA) (bottom panel of

Figure 1). In this paper we propose an econometric framework that defines measures for P (ZR),

P (RA) and P (A) that can be obtained from data and an empirical distribution of P (A) which can

be obtained by bootstrapping. These are discussed in Section 3.

2.1 An Opportunity to Learn from a Natural Experiment

The city of Brisbane (in the state of Queensland, Australia) has a long history of significant flood

events dating back at least to 1893. It has suffered two major floods more recently, in January

1974 and January 2011 (Bureau of Meteorology (2013)). We focus our analysis on the impacts

of the January 2011 flood due to data availability and the unique historical circumstances that

precede it, which provide a natural test for myopic and amnesic behaviour of real estate markets.

Following the 1974 flood, the Queensland government constructed Wivenhoe Dam for water

storage and flood mitigation. After the new dam was completed in 1985, the inhabitants and the

real estate market of Brisbane grew increasingly confident, over the following 26 years, that the

city was no longer in danger of a major flooding. However, in January 2011 after an extreme

weather event and torrential rain, water from the Wivenhoe Dam had to be released over a short

period of time to preserve its structural integrity, and Brisbane suffered a major flooding event
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Figure 1: Adapted from Pryce et al (2011) - Figures 2 and 3
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(see Bureau of Meteorology (2016) and Appendix A).

Our study covers property transactions over the period 1990 – 2015 for an inner Brisbane

area located 5 km from Brisbane Central Business District (CBD), a prime real estate location.

Brisbane City Council has released updated data since the 2011 event, and thus we have accurate

information on the flood levels suffered by each property in the sample during the 2011 flood. For

a comprehensive paper on the 2011 Brisbane flood see van den Honert and McAneney (2011).

We do not identify the exact location of our case-study as agreed with stakeholders. Around

30% of properties sales in our data/location are for properties in the flood plain. These properties

have a median distance from a waterway of 540 metres (Table 5), compared to 840 metres for

flood-free properties in our dataset (Table 4). These waterways are within the tidal reaches of the

Brisbane River.

The location has some unique characteristics that add interest beyond the natural experiment

that played out around the 2011 Brisbane River floods. While minor flooding directly impacts

only very few houses, the visibility of swollen waterways can provide reminders of flood risk in

between major events, and thus we expect the prices in the study area to show a pattern which

combines these two theoretical scenarios. Figure 2 shows other minor flooding events in addition

to the major flood in 2011. Most interesting for our sample is a 1996 event.

In addition to these quantitative measurements of flood intensity, the Australian Bureau of

Meteorology (2016) records descriptive information of flood events:

1996: "Heavy rainfalls and flooding were reported throughout the Brisbane catchment during

the first week of May [1996] with widespread 7 day rainfall totals of up to 600mm. A tidal surge

caused by the low pressure system and gale force winds caused higher than normal tides in the

Brisbane River which also contributed to flooding in low lying areas".

2011:"Rainfalls in excess of 1000mm were recorded in the Brisbane River catchment during

December [2010] and January [2011] with the vast amount of this rainfall falling in the 96 hours

to 9am on the 13th of January [2011]. The most significant rainfall intensities were well above the

1% Annual Exceedance Probability (100 year Annual Recurrence Interval). Major flooding in the

Bremer and Brisbane Rivers produced the largest flood heights at Brisbane and Ipswich since the
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infamous ’74 flood’ ".

If the behaviours such as myopia, amnesia or learning and forgetting do affect property values

we would expect to see a divergence of the actual price of flood affected properties (P (A)) from

the flood-free level (P (ZR)) in both 2011 and 1996. In addition, we may expect the actual price of

flood-prone properties (P (A)) to fluctuate below the risk-free level (P (ZR)) more generally due to

the high proportion of properties from which regularly flooding waterways are visible. The actual

price of flood-prone properties (P (A)) observed at the risk-free level (P (ZR)) could be, at least

partly, driven by unawareness. From successive Australian census of population data, Table 1, of

the residents of the statistical area (SA2 level) that is used in the empirical part of this manuscript,

we observe that only 45% of those living in the study area in 2011 were there five years prior, and

we note that 10% of residents in the year of last major flood, 2011, reported living overseas five

years prior. The figure is 8% for 2016. It is not unreasonable to think that the residents that

moved from overseas or another state might have not been aware of Brisbane history and the 1974

flood, although it seems more difficult to argue that those that have moved to the area between

2011 and 2016 are likely to be unaware.

3 Proposed Econometric Approach

The aim is to obtain empirical estimates of P (ZR), P (RA) and P (A). We first note these are

quality adjusted prices. To obtain a quality adjusted price using a sample of sold properties, a price

index needs to be constructed. In this study we construct two time-dummy hedonic price indices

(see Bailey et al. (1963), de Haan (2010), Hill (2013)), one for properties in the flood zone and

one for those in the flood free area. These indices are then used to compute empirical estimates

of P (ZR) and P (A). To assess statistical significance and test the behaviour of prices, we use

a bootstrap approach. The level P (RA) is obtained by estimating the per cent of discounting

in property prices due to flooding risk using the 2011 event as the treatment. Details of the

methodology are discussed in the next subsections.
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Figure 2: Brisbane Flood History- Source: Bureau of Meterology (2016)

Table 1: Characteristics of the SA2 Study Area by Census Year
2006 2011 2016

% persons living in detached or semi-detached dwellinga) 53.70 60.70 44.70
% persons renting (all types of dwellings) 42.90 45.30 44.10
% persons lived in the same address five years ago 44.10 44.67 43.26
% persons lived in the same SA2 five years ago 5.20 4.00 5.00
% persons lived in different SA2 five years ago 38.62 34.86 36.65
% persons that lived in different SA2 five years ago but in same state 84 84 88
% persons lived overseas five years ago 6.54 10.00 8.00
a) The sample used in the study excludes units and apartments
Source: Australian Bureau of Statistics - Census by Geography -
http://www.abs.gov.au/websitedbs/D3310114.nsf/home/census
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3.1 Computing Quality Adjusted Price Indices

The quality adjustment is obtained using a hedonic price index approach. The model to obtain a

time-dummy hedonic price index is of the form in (1),

log(priceit) =
T∑
t=1

δtDit +
K∑
k=1

βkxk,it + εit (1)

where x′it is a row vector containing land and structure hedonic characteristics, and location

variables for each property in the sample (see Table 2 in the data section for specifics), and Dit = 1

if i sold in year t, zero otherwise. These variables control for the price trends in the data and the

hedonic adjusted indices are obtained by exponentiating δ̂t and rescaling to set the base period

equal to 100.

The price index obtained from the sample in the flood zone area provides an index denoted

by PF,t, and we denote by PNF,t the quality adjusted price index for period t obtained from

the sample of properties with zero risk of flooding. Properties are sorted into flood/flood-free

samples depending on whether they flooded in the 2011 event (further details provided in the data

section). The assumption here is that both the δt and the βk, k = 1, . . . .K vary across the two

types (flood/flood-free). This is a testable hypothesis which is sample dependent. We formally

test for parameter homogeneity as part of the empirical estimation.

From these two indices we compute estimates of P (ZR) and P (A) as follows,

for each t, t = 1, . . . , T ̂P (ZR)t = 100 (2)

P̂ (A)t =
PF,t
PNF,t

× 100 (3)

These definitions allow us to establish where the actual quality adjusted prices are located at

each period with respect to the risk-free and risk-adjusted quality adjusted price levels.
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3.2 An Estimated Distribution of P (A)

To asses the behaviour of property prices statistically, we propose to construct an empirical dis-

tribution of P (A) using a bootstrapping approach. By (3) we know it is obtained from the price

indices PF,t and PNF,t via estimating model (1), and thus the bootstrap design requires under-

standing of the structure of the underlying data for this model. We first note that the data have a

clear time ordering that needs to be taken into account. However, within each time period, a year

in our case, a number of properties are transacted for each flood type (flood/flood-free) and there

is no natural ordering in this dimension. The proposal is then to use an i.i.d bootstrap within

each time period and type (see Polities (2003) and the many references therein for a discussion

on bootstrapping with dependent data, block sampling and subsampling, and Chapter 3 of Cher-

nick, M. R. (2008) for bootstrapping methodology to construct confidence sets). Our approach is

summarised in the following steps,

• within each time period and flood type, sample with replacement properties that have sold

to create a replication sample, r, of the same size as that of the observed data, i.e. N

transactions over T periods with the same proportion of sales in the flood/flood-free areas

for each time period.

• estimate the models (1) with sample r and construct the corresponding indices (PF,t/PNF,t)

• repeat the above R times. In the empirical implementation we use R = 10, 000

• compute the quantiles, 0.025 and 0.975, from the R bootstrapped price indices of each type

(i.e. PF (0.025), PNF (0.025), PF (0.0975), PNF (0.0975)).

• compute an empirical 95% confidence interval for P (A)t, P (A)(0.0975) and P (A)(0.025),

using equation (3)

We use the confidence interval to test hypotheses that quality adjusted actual prices are ’not at

the zero-risk level’ and ’not at the risk-adjusted level’. If the distribution of the bootstrapped

P (A) includes P (ZR), i.e., 100, we reject the null hypothesis of ”not at the zero-risk level” and

conclude there is evidence of behaviours consistent with both myopia and unawarness. Similarly,

11



if following a flood event the bootstrapped distribution goes below the P (RA) and then recovers

to levels above P (RA), we find this consistent with both amnesia and learning and forgetting.

3.3 The Risk Adjusted Price Level, P (RA)

In order to obtain P (RA), we must find the amount of discount due to flooding (refer to Figure

1). We suggest two alternative empirical estimates can be considered, the first using a difference-

in-difference approach (this is also used by Bin and Landry (2013) to obtain an estimated discount

due to flooding), the second using a hedonic modelling approach.

To obtain the discount via a difference-in-difference approach, we define the flood event as a

treatment, in our case the 2011 flood is the treatment. Using a standard setting we have a pre-

and post treatment period defined by those properties that signed a sale contract after the flooding

event, After = 1. Those properties that did not flood in this event are the control group. The

treatment occurred in mid January 2011, and thus we define a transaction as treated if it was in the

flood plain (Flood = 1) and the sale contract was signed from February 2011 onwards (After = 1).

The difference-in-difference model is estimated as follows,

log(priceit) = β0 +
T∑
t=2

δtDit + γ1Floodi + γ2Afteri + γ3(Floodi × Afteri) + uit (4)

where,

Floodi = 1 if the ith property was flooded in the event, zero otherwise

Afteri = 1 if the sale contract for the ith property was after the flood, zero otherwise

The estimate of 100× γ3 provides a per cent average discount suffered by properties that were

affected by the flood, which we denote by DisDID.

The difference-in-difference result can be compared to what is obtained by estimating a standard

hedonic model with Floodi in the model and estimated over the sample of properties in the treated

group (After = 1). To compute these we estimate (5)

log(priceit) = β0 +
T∑
t=τ

δtDit +
K∑
k=1

βkxk,it + φF loodi + eit (5)
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Estimating the model for the sample of properties for which After = 1, labelled as t = τ, . . . , T

in (5) will provide an alternative estimate of the discount which we denote by DisHED = φ̂× 100.

Thus, two alternative estimates of P (RA) are then given by P (RA)DID = 100 −DisDID and

P (RA)HED = 100−DisHED.

Description of the data and estimation results are presented in the next section.

4 Data and Results

The data in this study is an extension of Rambaldi et al (2013) which originally covered until early

2010. Variables definitions and descriptive statistics for the dataset used in this study, covering the

period 1990 to 2015, including the hedonic characteristics for land, structure, location and flood

status of each property used in the empirical part of the study are presented in the Appendix.

Table 2 provides a summary of the available hedonic characteristics.

Since the 2011 flood, the Brisbane City Council (BCC) has been working on providing accurate

information to residents. On 5 May 2017, it released an online tool "FloodWise Property Reports"

(Brisbane City Council (2017)) based on recently completed studies, providing specific and detailed

data for each parcel, which we use in this study to define which properties were flooded in the 2011

event. The sample contains 4252 transactions, out of which 1250 were flooded in the 2011 event.

4.1 Pre-testing and estimation of price indices

We first test whether the parameters of the model to construct the price indices, PF (Flood) and

PNF (No Flood), given in (1), are common across the two types. Specifically we test H0 : βk, k =

1, . . . , K are common across all properties (i.e. in flood and flood-free areas). The computed

f-statistic is 2.1775 (p-value=0.0297). Thus, we reject the null of common slope coefficients across

the two types and construct the indices by estimating two separate models.

Estimates of PF (Flood) and PNF (No Flood) are presented in Figure 3. The figure shows

prices increased six-fold over the period 1990-2015 in this area of Brisbane. The price index for

those properties in the flood plain, PF , is mostly below that obtained from the flood-free sample;
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however, it would appear they seem to overlap over a number of periods. The indices show prices

grew at a lower rate around the Global Financial Crisis period (2008-2009), and the drop in PF

after the 2011 flood event is visually clear.

Before proceeding to the testing of the Pryce et al (2011) framework, we can consider whether

the apparent recovering of the prices after the 2011 event in Figure (3) is statistically significant.

To test this hypothesis we estimated a simple quadratic model as follows

log(priceit) = β0 + x′itβ + φF loodi + τ1(Trendit × Floodi) + τ2(Trend
2
it × Floodi) + uit (6)

where, βk is a K by 1 vector of parameters, and the model is estimated over the sample which

covers sales in the years 2010 to 2015. Correspondently, Trend takes the values of 1 to 6 depending

on the year of sale (i.e. 2010=1, 2012=2,...). The estimates are β̂0 = 11.5167, φ̂ = 0.1237 (p-val

= 0.1022), τ̂1 = −0.1630 (p-val = 0.0008), and τ̂2 = 0.0242 (p-val = 0.0004). This is depicted in

Figure 4. These results provide some initial evidence that prices have recovered.

4.2 Estimation of risk-adjustment discount

In Section 3.3 we proposed two alternative modelling approaches to obtain an estimate of the size

of the discount due to flooding risk. Here the aim is to try to establish what is the fully risk

adjusted discount. By using alternative approaches we search for the minimum and maximum

range where the discount lies.

Table 3 shows the estimates of the discount due to flood risk obtained from the difference-in-

difference (DID) specification, model (4), and the hedonic alternative, model (5). The average

estimated discount from the DID specification is 7.31%. For the hedonic specification, we esti-

mated the model including all transactions after the flood for three alternative periods, 2011-2013

(478 observations), 2011-2014 (682 observations) and for 2011-2015 (865 observations), with the

estimates using the sample from 2011-2013 providing the largest discount, 9.53%. Bin and Landry

(2013) find after major events (e.g. Hurricane) a significant risk premium ranging between 6.0%
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Table 2: Hedonic Characteristics Available in the Data
Type Variables
Land Lot size (sqMts), Vacant

Distances to: River, Wateway, Industry,
Parks, Bus stop, Schools, City, Shops, Rail station

Structure Footprint (sqMts),
Construction Period (Pre-War, Post War, Late 20th, 21st),

Bedrooms, Bathrooms, Car parks
Flood A property flooded in the January 2011 is in the floodplain

Sample period 1990-2015
After Sale contract signed from February 2011 onwards

Transactions 3002 flood-free, 1250 flood plain, 865 for After=1

Figure 3: Price Indices for Properties Affected/Not Affected by the 2011 Flood Event

Figure 4: Estimated Quadratic Trend in Prices
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and 20.2% for homes sold in the flood zone.

In the next section the estimate of P (RA) is provided as the range between these two values.

Gallagher uses DID also, add here their estimates.

4.3 Putting it All Together - P (ZR), P (RA), P (A)

Figure 5 presents the estimates of P (ZR) (Zero Risk Constant Quality Price Index), the mini-

mum and maximum empirical P (RA) (Risk-Adjusted Constant Quality Price Index) based on the

estimates presented in the previous sections, and the actual Quality Adjusted Price Index, P (A),

labelled "P(A)(Sample)", and the empirical 95% interval for P (A) obtained from the bootstrap

exercise1. As discussed in Section 2, there was a heavy rain event in May 1996 which did not cause

a generalised flood in Brisbane; however, there was localised flooding in low lying level areas of

the city, which would have been visible in the study area due to proximity to waterways. The

January 2011 event was a generalised event as the Brisbane river broke its banks affecting all

suburbs adjacent to the river.

The constructed 95% bootstrapped interval for P (A) is above the P (RA) level and it includes

P (ZR) in a number of instances prior to 1996. A price signal is clear after the localised event

of 1996, when the actual price is at the risk-adjusted price level. This is clear as the empirical

distribution of the actual price contains the P (RA) estimated range. However, prices stay at

the risk-adjusted level for only two years and then the estimated distribution of P (A) returns to

levels that are close or equal to the P (ZR) during the 00’s and until 2010 with the exception of

2002 where the actual price distribution is very close to the P (RA) level again. The Australia

Bureau of Meteorology’s Severe Storms Archive (Bureau of Meteorology (various)) shows rain with

severe flash flooding affected Brisbane suburbs on 30 December 2001 which would have affected

the study area and produced a price signal captured in the 2002 data. The Global Financial Crisis

of 2007-2008 and increasing rainfall in coastal areas close to the city of Brisbane (need to cite here)

appear to have produced some volatility in that PF and PNF separate from each other leading to

an estimate of P (A) which is below the zero-risk level although still above the risk-adjusted price
1note that "P(A)(Sample)" and the 0.5 quantile estimate of the P (A)’s bootstrapped distribution overlap (the

latter not shown).
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Table 3: Estimated Discount due to Flood Risk
Model Difference-in-Difference Hedonic
Sample 1990-2015 2011-2015 2011-2014 2011-2013
Flood -0.0107 -0.0895 -0.0953 -0.0780

(-0.0843) (-3.9221) (-3.6711) (-2.2718)
After -0.1359

(-11.033)
Flood× After -0.0731

(-2.5600)
R-Sq 0.796 0.494 0.504 0.505
N 4252 865 682 478

Controls time dummies time dummies and hedonic characteristics

Figure 5: Estimated Zero-Risk and Adjusted Price Levels and Distribution of (Quality Adjusted)
Actual Prices.
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level. In 2011 the distribution of P (A) goes completely below P (RA) estimates until 2014, but

shows signs of recovering by 2015 when the distribution of the actual price is at the risk-adjusted

price level again (i.e. it includes the P (RA) estimates). This is the expected behaviour from

Pryce et al (2011)’s theoretical framework to the case of an infrequent flood. Bin and Landry

(2013) using hedonic valuation models find flood impacts on prices ranging between 6% and 20%;

however, this effect diminishing over time, essentially disappearing about 5 or 6 years.

Overall, these estimates provide evidence to reject the stated null hypotheses that quality

adjusted prices behaving efficiently in the case of infrequent floods in Brisbane. Following the

2011 flood prices dropped to a level significantly below the risk-adjusted level; however, after five

years the level although above the P (RA), is not close to the zero-risk level. Given a number of

litigations have been filed arguing negligent management of the dam, which are are still ongoing

in 2017, it is unclear weather agents have learned about the flood risk or they do not have enough

information to update their perceptions of the likely effect of another major weather event. Pryce

et al(2001) propose that when the observations moved to the case of more frequent floods, then

P (RA) will no longer be constant, but have a downward trend (shown in Figure 6).

Figure 6: Adapted from Pryce et al (2011) - Figure 4
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5 Discussion and Implications

Our results clearly indicate that properties are significantly devalued immediately following a major

flood event. We found prices were at the zero-risk level for periods preceding flood events, and

recover to that level following a minor storm event (in 1996) prior to the major flood of 2011.

Following the January 2011 event, prices fell up to 26% below the risk-free price level over the next

three years and recovered to the risk-adjusted level (estimated between 7.3 % and 9.5% below the

risk-free level) by the forth year after the event. This is consistent with the results found by Bin

and Landry (2013) of the effect lasting at least five years. Gallagher (2013) studies the take up of

insurance prior and after a major flood and finds a significant take up in flood insurance persisting

into five years after the event. However, the take-up in years before the flood is statistically zero.

Add Atreya et al (2013) here al well.

Our results are consistent with two possible behaviours by agents. The first is that agents were

aware and used all available data to come to the conclusion that no major weather event could

result in a repeat of the 1974 devastation to the areas of the city in the floodplain. Both learning

and forgetting, as well as myopia and amnesia would be consistent with this result. The second is

that they were unaware. The reality is that the market is likely composed of both types. Between

the two major floods of 1974 and 2011 the city of Brisbane underwent a major transformation. Its

population grew by 30% (and the greater Brisbane by 50%) with most new inhabitants arriving

from overseas and interstate. In addition, the dam built in the 1980s to provide flood mitigation

led those that knew the history to conclude there will be no repeat.

Estimating the scale of this result is important because the way the market values the risk of

flooding has important implications for designing effective and equitable ways of managing this risk

for both individual and communities. An ideal market would appropriately value the long-term

average risk of flooding and build an appropriate risk discount into property values. Owners of

risky properties would pay less at the time of purchase to cover the costs they incur when flooding

does occur.

However, the evidence from this and other studies would indicate that there is evidence of

unawareness, forgetting, and myopic and amnesic type of behaviours. Property owners who pur-
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chase properties just before a major flood are at risk of losing significant value on what is likely

their largest single asset. Moreover, due to the localised nature of flooding, adjacent or nearby

properties can face distinctly different levels of flood risk and large devaluation losses may fall on

only a small proportion of the community. Individual property owners may not be able to afford

to protect or recover from damage to their largest asset. On the other hand, to what degree should

an entire community pay to protect the small proportion of properties at risk of flood?

In practice, following a major catastrophic event everyone pays. Recovery usually requires

coordinated and costly responses from government, insurers and individuals affected both directly

and indirectly. The total cost of the major Brisbane flood event in 2010/11 has been estimated at

$XXB. In the year following the flood, those Australian taxpayers not directly impacted contributed

to the costs of recovery via a levy of 0.5% on income above $50,000 and 1% of income above

$100,000. This money was used to pay for immediate recovery needs and infrastructure repair.

For instance, the Premier’s Disaster Relief Appeal distributed payments of $2000 in the days

following the floods, plus up to $250,000 for owners of homes destroyed by the flood and $80,000

for owners of homes with structural damage (cite Premier’s Disaster Relief Appeal Distribution

Committee Report).

These payments were focussed on relieving the immediate impacts of flood events, rather than

compensating property owners for devaluation. On the other hand, the expectation that gov-

ernments will step in to finance recovery following a flood is likely to affect how properties are

devalued in risky areas. This suggests that the devaluation calculated in the current analysis may

underestimate the true devaluation associated with flood risk.

In theory, an efficient private insurance market provides both individualised financial protection

against the risk of flooding and a quantitative estimate of average risk costs across communities

and over time. There is evidence that markets internalise the discounted long-term average costs

of insurance in property values; that is, properties in risky areas with higher insurance costs sell

for proportionally less than equivalent nearby properties with lower premiums. This, however,

requires that risk or premium information is accurate and readily available.

In the case of the 2010/11 flood events in Brisbane, government recovery payments funded
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by the community were necessary partly due to the fact that a large number of households that

believed they were insured had their claims denied because they were not covered for “riverine”

floods. There is evidence that insurance companies and federal regulators were aware of issues

around the definition of “flood” in insurance policies prior to the 2010/11 Brisbane floods (Insur-

ance Council of Australia (2008), Australian Competition and Consumer Commission (2008)). In

response to these issues, a federal government committee produced a report into the operations of

the insurance industry during disaster events in February 2012 (cite Standing Committee on Social

Policy and Legal Affairs of the Parliament of Australia). On the 18th of June 2012 the Federal

Government enacted regulations to give effect to a definition of flood with a two year transition

period.

As a result of these flood events and policy changes, the insurance industry has begun to

incorporate a more nuanced understanding of the spatial distribution of flood risk into its premium

profiles (cite). This may gradually improve the market valuation of risk as the long-term discounted

value of increased premiums are internalised into property values (cite). In turn, this projected

change in market valuation of flood risk would be expected to modify the estimate produced by

the current analysis for future flood events.

However, changes to insurance premiums have led both to complaints that premiums have

unnecessarily risen for properties that face little risk, and that premiums for risky properties

have risen so much they’re unaffordable. This highlights the issue around perceptions of equity

when managing risk. Whatever action is taken to understand and appropriately value flood risk,

including taking no action until a major event occurs, creates winners and losers. The only way

to understand these issues and manage them equitably is to understand how the market current

values risk, in terms of analyses like the one completed here, and how it could manage that risk

better in future.

Accurately understanding the scale and cause of the loss of property value provides an op-

portunity to harness the effect to protect against future events. In addition to the short-term

devaluation effects of flood events, previous analyses and our results here show that at-risk prop-

erties are marginally less valuable that risk-free properties over the long term. Although this effect

21



is small in a relative sense, the significant absolute value of property suggests that reducing risk

could increase the total value of property stock in a community, especially in dense urban areas. In

some places, it may make economic sense for local governments and communities to fund proactive

actions to manage flood risk today, in order to increase the value of protected properties and the

associated property taxes in future.

In the long run reducing the risk of flood damage requires management by government across a

number of areas such as land-use, building codes, and investment in physical mitigation measures.

Clear adaptation strategies must be implemented.

6 Conclusions

Economic losses due to extreme environmental events, such as flooding, continue to rise, largely

because we keep building in high-value but risky areas. This behaviour is rational as long as the

property market accurately reflects the long term discounted value of that risk. Here, the dynamics

of urban property prices in the flood plain to be consistent with buyers that underestimating future

risks and forget the past if they are aware of the non-zero probability of a major flood.

The impacts of this are potentially significant to individuals and the community alike. Property

owners who purchased properties just before one of these major floods suffered significant personal

losses on their largest single asset (cite). Taxpayers not directly affected by the floods were required

to contribute to a levy that helped fund recovery and underinsured properties. Reviews of the

insurance industry have led to refined definitions of flood damage and revised premiums across

areas perceived to be at risk of flood.

Understanding the way flood risk devalues property may provide opportunities for individuals,

industry and communities and governments to make informed decisions about how best to protect

against damage in future. Reducing the risk of flood damage through adaptation and mitigation

efforts will require coordinated effort across industry and all scales of government. Choosing and

funding adaptation equitably will require a detailed understanding of how risk affects prices, as we

provide here.
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Appendix

Table A1: Descriptive Statistics - Whole Sample
min max median mean Std Description/Source

Price (thousands) 9.7 3600 375.5 434.93 318.49 observed sale price (RP)

Age1 0 1 0 0.484 0.500 Pre-war (RP)

Age2 0 1 0 0.093 0.290 War (1942_1947) (RP)

Age3 0 1 0 0.304 0.460 After War (RP)

Age4 0 1 0 0.060 0.237 Late20thC (RP)

Age5 0 1 0 0.060 0.237 contemporary (RP)

NoH 0 1 0 0.023 0.151 Vacant Land

Land area 127.000 2555.000 607.000 605.396 202.350 Sq Mts -RP, BCC

Structure area 0 535.630 172.140 180.551 66.474 Sq Mts -DERM (LiDAR) 2010

Bath 0 4 1.000 1.448 0.721 RP, BCC, or RE

Beds 0 8 3.000 3.112 0.952 RP, BCC, or RE

Cars 0 8 2.000 1.638 0.792 RP, BCC, or RE

dist_river 17.436 3671.676 1703.389 1689.597 922.152 Mts -BCC and geospatial tools

dist_waterway 17.436 2147.959 732.750 750.478 463.513 Mts -BCC and geospatial tools

dist_industry 8.237 1844.367 1057.765 987.405 454.121 Mts -BCC and geospatial tools

dist_parks 0.000 638.425 162.961 189.904 136.166 Mts -BCC and geospatial tools

dist_busStop 3.177 488.568 151.565 174.147 100.820 Mts -BCC and geospatial tools

dist_schools 108.911 3342.636 1299.811 1381.371 702.989 Mts -BCC and geospatial tools

dist_city 4088.482 7899.440 5908.961 5873.433 959.630 Mts -BCC and geospatial tools

dist_Shosp 97.634 2572.540 1243.027 1287.023 596.785 Mts -BCC and geospatial tools

dist_rails 95.311 3661.013 1776.348 1749.646 872.990 Mts -BCC and geospatial tools

dis_hos 1238.348 4089.892 2552.549 2562.484 611.644 Mts -BCC and geospatial tools

Source/notes

RPdata.com (http://www.rpdata.net.au/) (RP) - Currently Corelogic

BCC Planning and Development Online (http://pdonline.brisbane.qld.gov.au/) (BCC)

Google View (GV) or www.realestate.com (RE)
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Table A2. Descriptive Statistics - Flood Plain
min max median mean Std Description/Source

Price (thousands) 9.7 1520 334.750 368.639 228.104 observed sale price (RP)

Age1 0 1 0 0 0 Pre-war (RP)

Age2 0 1 0 0.086 0.280 War (1942_1947) (RP)

Age3 0 1 0 0.308 0.462 After War (RP)

Age4 0 1 0 0.063 0.243 Late20thC (RP)

Age5 0 1 0 0.057 0.232 contemporary (RP)

NoH 0 1 0 0.030 0.172 Vacant Land

Land area 171 2218 556 563.083 181.831 Sq Mts -RP, BCC

Structure area 0 500.89 156.79 162.964 62.632 Sq Mts -DERM (LiDAR) 2010

Bath 0 4 1 1.319 0.637 RP, BCC, or RE

Beds 0 6 3 2.934 0.907 RP, BCC, or RE

Cars 0 6 1 1.550 0.765 RP, BCC, or RE

dist_river 17.436 3538.351 1466.157 1466.063 838.445 Mts -BCC and geospatial tools

dist_waterway 17.436 2069.799 539.733 610.774 450.070 Mts -BCC and geospatial tools

dist_industry 8.237 1844.367 1055.923 977.793 450.070 Mts -BCC and geospatial tools

dist_parks 0.000 638.425 110.504 179.917 164.126 Mts -BCC and geospatial tools

dist_busStop 21.641 475.519 151.142 176.862 102.241 Mts -BCC and geospatial tools

dist_schools 191.961 3157.050 1163.445 1210.189 616.484 Mts -BCC and geospatial tools

dist_city 4088.482 7719.363 5651.909 5636.395 878.824 Mts -BCC and geospatial tools

dist_Shosp 166.964 2401.976 1060.084 1139.883 520.182 Mts -BCC and geospatial tools

dist_rails 124.875 3444.285 1552.928 1524.128 789.524 Mts -BCC and geospatial tools

dis_hos 1379.579 4089.892 2616.100 2585.189 619.701 Mts -BCC and geospatial tools

Sample Size = 1250

Source/notes

RPdata.com (http://www.rpdata.net.au/) (RP) - Currently Corelogic

BCC Planning and Development Online (http://pdonline.brisbane.qld.gov.au/) (BCC)

Google View (GV) or www.realestate.com (RE)
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Table A.3. Descriptive Statistics - Flood Free
min max median mean Std Description/Source

Price (thousands) 26.571 3600 400 462.527 345.604 observed sale price (RP)

Age1 0 1 0 0 0 Pre-war (RP)

Age2 0 1 0 0.096 0.295 War (1942_1947) (RP)

Age3 0 1 0 0.302 0.459 After War (RP)

Age4 0 1 0 0.058 0.234 Late20thC (RP)

Age5 0 1 0 0.061 0.239 contemporary (RP)

NoH 0 1 0 0.020 0.141 Vacant Land

Land area 127 2555 607 623.015 207.807 Sq Mts -RP, BCC

Structure area 0 535.630 180.250 187.874 66.665 Sq Mts -DERM (LiDAR) 2010

Bath 0 4 1 1.502 0.748 RP, BCC, or RE

Beds 0 8 3 3.186 0.960 RP, BCC, or RE

Cars 0 8 2 1.675 0.801 RP, BCC, or RE

dist_river 91.504 3671.676 1831.801 1782.674 939.417 Mts -BCC and geospatial tools

dist_waterway 41.756 2147.959 839.117 808.650 456.631 Mts -BCC and geospatial tools

dist_industry 23.583 1795.832 1059.455 991.408 448.165 Mts -BCC and geospatial tools

dist_parks 5.666 614.282 171.465 194.062 122.450 Mts -BCC and geospatial tools

dist_busStop 3.177 488.568 152.260 173.017 100.218 Mts -BCC and geospatial tools

dist_schools 108.911 3342.636 1392.004 1452.650 724.276 Mts -BCC and geospatial tools

dist_city 4186.145 7899.440 6065.026 5972.133 974.616 Mts -BCC and geospatial tools

dist_Shosp 97.634 2572.540 1308.757 1348.291 615.718 Mts -BCC and geospatial tools

dist_rails 95.311 3661.013 1932.469 1843.549 888.884 Mts -BCC and geospatial tools

dis_hos 1238.348 3980.884 2542.947 2553.029 608.111 Mts -BCC and geospatial tools

Sample Size = 3002

Source/notes

RPdata.com (http://www.rpdata.net.au/) (RP) - Currently Corelogic

BCC Planning and Development Online (http://pdonline.brisbane.qld.gov.au/) (BCC)

Google View (GV) or www.realestate.com (RE)
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