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Abstract

Grouped data in form of income shares have been conventionally used to estimate

income inequality due to the lack of availability of individual records. Most prior

research on economic inequality relies on lower bounds of inequality measures in or-

der to avoid the need to impose a parametric functional form to describe the income

distribution. These estimates neglect income differences within shares, introducing,

therefore, a potential source of measurement error. The aim of this paper is to explore

a nuanced alternative to estimate income inequality, which leads to a reliable repre-

sentation of the income distribution within shares. We examine the performance of

the generalized beta distribution of the second kind and related models to estimate

different inequality measures and compare the accuracy of these estimates with the

nonparametric lower bound in more than 5000 datasets covering 182 countries over

the period 1867-2015. We deploy two different econometric strategies to estimate

the parametric distributions, non-linear least squares and generalised method of mo-

ments, both implemented in R and conveniently available in the package GB2group.

Despite its popularity, even the simplest two-parameter models outperform the non-

parametric approach. Our results confirm the excellent performance of the GB2

distribution to represent income data for a heterogeneous sample of countries, which

provides highly reliable estimates of several inequality measures. This strong result

and the access to an easy tool to implement the estimation of this family of distri-

butions, we believe, will incentivize its use, thus contributing to the development of

reliable estimates of inequality trends.
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1 Introduction

The analysis of the income distribution has a venerable history within social sciences.

Its evolution has been considered essential to explain not only the causes but also the

potential consequences of inequality and poverty. The role of changes in the income

distribution on different socio-economic aspects, such as growth, consumption or human

capital formation, is widely documented in the literature (see e.g Barro, 2000; Krueger

et al. 2006). Much empirical research has also been directed at examining the temporal

evolution and the geographical differences in poverty and inequality, considering as po-

tential determinants of these two phenomena the family structure, medical progress or

technological change, to mention a few (Deaton, 2013; McLanahan and Percheski, 2008).

When individual records on personal or household income data were available, the

estimation of the income distribution would be relatively simple, using the empirical

distribution function. However, much of the existing scholarship on economic inequality

has been plagued by a lack of individual data. This potential limitation is particularly

severe for studies with large geographic coverage, which involve several countries at

different points in time. Nevertheless, the periodic release of certain summary statistics of

the income distribution has become increasingly common. The World Income Inequality

Database (WIID), World Bank’s PovcalNet or the World Wealth and Income Database

(WID) are the largest cross-country databases that store grouped income/consumption

data, typically including information on few income and population shares. This type of

grouped data depicts sparse points of the Lorenz curve and hence, to estimate inequality

measures, it is essential to define a method to link such points.

Much of the academic literature on the estimation of income inequality from grouped

data deploy nonparametric techniques to approximate the shape of the Lorenz curve.

Linear interpolation of the income shares is the most common approach to construct

the so-called empirical Lorenz curve from which relative inequality measures are ob-

tained. With very few exceptions, the extant scholarship in the global distribution of

income presents inequality trends based on this method (Bourguignon and Morrison

2002; Milanovic, 2011; Lakner and Milanovic, 2016; Niño-Zarazua et al., 2017; Dowrick

and Akmal, 2005). The broad popularity of this methodology is not only due to its

simplicity, but also because it is argued that there is no need to impose any particular

model to fit the empirical data. However, despite not explicitly, this approach rests on

a predefined distributional model. Indeed, it assumes that all individuals within a par-

ticular quantile have the same level of income, which obviously does not represent the

income distribution accurately. As a result, the actual level of inequality is underesti-

mated and, consequently, relative inequality measures estimated within this framework

are lower bound estimates (see, e.g., Kakwani, 1980).

Therefore, to obtain reliable estimates of inequality measures, we need to rely on

a model which allows us to define more plausible assumptions on the income distribu-
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tion within income shares. Due to its flexibility, some authors opted for kernel estima-

tion because it avoids imposing a particular functional form for the income distribution

(Sala-i-Martin, 2006). However, the performance of this approach seems to be extremely

sensitive to the selection of the bandwidth parameter, which might lead to significant

biases on the estimates of poverty and inequality measures (Minoiu and Reddy, 2014).

Although parametric models seem to be a suitable alternative to nonparametric tech-

niques for estimating income distributions (Dhongde and Minoiu, 2013), this approach

has been barely used to estimate income inequality. The reason seems to be the need to

make ex-ante assumptions on the shape of the distribution. If our choice is not a valid

candidate to represent the income distribution, our estimates on inequality measures

might be severely be affected by misspecification bias.

Despite this potential limitation, prior research suggests that the parametric ap-

proach outperforms other nonparametric techniques to estimate poverty indicators from

grouped data (Dhongde and Minoiu, 2013; Bresson, 2009). However, systematic empir-

ical research on the effectiveness of parametric models to estimate inequality measures

is surprisingly scarce. Although prior research points towards an excellent performance

of parametric models to estimate inequality measures (Cowell and Metha, 1982; Minoiu

and Reddy, 2014), these evaluations rely on single case studies and a limited range of

distributions, meaning that the findings should be treated with great caution. Robust

empirical evidence on the reliability of parametric estimates would, therefore, cast valu-

able light on the relative merits of this approach to estimate income inequality from

grouped data.

In this paper, we explore the implications of using parametric models to estimate

income inequality from grouped data for 5570 datasets, which cover more than 180 coun-

tries over the period 1867-2015. Among the whole range parametric distributions, we

direct our attention to the generalised beta distribution of the second kind (GB2) and

its particular and limiting cases. Several distributions that belong to this family have

been commonly used to estimate the income distribution from grouped data (Chotika-

panich et al., 2007; Jorda et al., 2014; Pinkovskiy and Sala-i-Martin, 2014) because it

is acknowledged to provide an excellent fit to income data across different periods and

countries (Feng et al., 2006, Hajargasht et al., 2012; Bandourian et al., 2002). We have

compared the accuracy of the parametric estimates of different inequality measures to

their corresponding lower bounds to examine whether the preference of this method over

the parametric approach, traditionally observed in the literature, is justified on the em-

pirical ground. Our results show that the nonparametric approach performs very poorly

on the estimation of income inequality. The GB2 distribution is confirmed as the best

candidate to estimate income distributions, although the special cases of this family also

lead to accurate estimates, being, in virtually all cases, more reliable than the lower

bound estimates. Even for bimodal income distributions, which are clearly misrepre-

sented by the GB2 distribution, we do not find evidence that supports the preference of
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the lower bound approximation of inequality measures over parametric models.

This analysis confirms, therefore, that a common failure in much of the research on

global inequality is the tendency to avoid using parametric functional forms. Of those

studies that consider parametric models, most rely on simple two- or three-parameter

distributions. Jorda and Niño-Zarzua (2016) is the only study that considered the GB2

distribution to estimate the global distribution of income. Country-specific applications

are more common, but still scarce (see Burkhauser et al., 2012; Jenkins et al., 2011;

Feng et al. 2006). The lack of interest in this distribution, we believe, might be largely

attributed to the fact that the efficient estimation of this model is far from straightfor-

ward. With the aim to make the GB2 distribution approachable and to incentivize its

use, our estimation procedure implemented in R (R Development Core Team, 2013) is

conveniently available in the R package GB2group.

In the following section, we introduce the notation and describe how the grouped

data have been generated before presenting a summary of the GB2 distribution and

its related models. The subsequent section discusses the estimation strategy based on

nonlinear least squares (NLS) and the generalised method of moments (GMM) in a

context of limited information. Thereafter, we compare the survey Gini index with

both the so-called lower bound of inequality and the estimates based on parametric

functional forms. We also present some results for model competition among different

functional forms of the GB2 family to assess their performance to estimate the Gini

coefficient. We make use of individual records to examine the robustness of the results

to inequality measures that are more sensitive to the lower part of the distribution. We

use Monte Carlo simulation to compare the performance of the parametric approach and

the lower bound estimates to evaluate inequality levels of bimodal income distributions.

We conclude the paper by considering the practical implications of our study.

2 Estimation of income inequality from grouped data

The use of grouped data to estimate income inequality has become increasingly a popular

because individual records from surveys are not usually accessible for long periods of time,

especially in developing countries. The public availability of large cross-country datasets,

such as the WIID (UNU-WIDER, 2017) and PovcalNet, has motivated the use of this

kind of data for the analysis of distributional issues. These databases gather information

on summary statistics of the income distribution, typically the mean and few income

shares.

Before going any further, it is crucial to understand how the grouped data has been

generated. Let x be an i.i.d. random sample of size N from a continuous income distribu-

tion f(x; Λ) with vector of parameters Λ, defined over the support H = [0,∞). Assume

that H is divided into J mutually exclusive intervals Hj = (hj−1, hj ], j = 1, . . . , J .

We denote by cj =
∑N

i=1 1(hj−1,hj ](xi)xi/
∑N

i=1 xi, j = 1, . . . , J the proportion of to-
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tal income held by individuals in the jth interval and the cumulative proportion by

sj =
∑j

k=1 ck. Let pj , j = 1, . . . , J denote the frequency of the sample x in the jth

interval and uj =
∑j

k=1 pk the cumulative frequency. According to this scheme, income

shares (sj , j = 1, . . . , J) are ordinates of the Lorenz curve corresponding to the abscissae

uj , j = 1, . . . , J .

The Lorenz curve informs about the proportion of income accruing to each cumu-

lative share of the population, once incomes are arranged in increasing order. This curve

is scale independent, hence changes the unit of measurement of the income variable, for

instance, from dollars to thousand dollars, have no impact on the shape of the curve.

Minimum inequality is observed when sj = uj , j = 1, . . . , J , so that the Lorenz curve

corresponds to the diagonal from the origin to the point (1, 1), which is known as the

egalitarian line. The Lorenz curve is a powerful tool to compare and order distributions

according to their inequality levels. If the Lorenz curve of one distribution lies nowhere

below and somewhere above the curve of another distribution, the former distribution

would be declared as less unequal than the later.

To construct the Lorenz curve with the available information on income shares, we

should define a method to link the pairs of points (uj , sj), j = 1, . . . , J . An intuitive

approximation would be to interpolate the observed income shares linearly. One major

drawbacks of using linear interpolation is that these comparisons would be somewhat

crude in that we assume that all the individuals classified in a given population group

have the same income. Moreover, the Lorenz ordering is partial in the sense that not

all distributions can be ranked. In these cases, we need to use inequality measures that

provide a complete ranking of distributions. The Gini index has been the main indicator

used to measure income inequality mainly due to its intuitive interpretation in terms of

the area between the Lorenz curve and the egalitarian line. A nonparametric estimation

of the Gini index is defined as twice the area between the egalitarian line and the Lorenz

curve obtained by linear interpolation:

G(sj , uj) ≈
J∑
j=1

(sj − sj−1)(uj + uj−1). (1)

The main limitation of computing the Gini index with the previous formula is

that it yields biased estimates of inequality because its construction is based on the

assumption that all individuals in a given population group get the same income. Hence,

this formula is interpreted as the lower bound of the Gini coefficient, which neglects the

variation within income shares (Cowell, 2011).

Although this kind of analysis would yield biased estimates on inequality, it is

expected to provide valuable information. Indeed, it is deemed to be useful because

if an upward trend is observed, we could ensure that the overall disparities would also

show an ascending pattern. Moreover, with optimal grouping, the bias is expected to be

relatively small for observations with more than five data points (Davies and Shorrocks,
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Figure 1: Estimates of the Gini coefficient using different estimation techniques in Lux-

embourg and the Philippines
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Note: Black lines depict the evolution of the survey Gini index, red lines correspond to the evolution of

lower bound of the Gini index .

1989). Nevertheless, the empirical evidence based on this methodology is problematic in

several ways. Firstly, the groups are not often optimally selected and, more importantly,

the previous result has been obtained for the particular distribution of Canada. This

finding might not necessarily match the distributional dynamics of other countries and,

hence, the bias may be considerably higher than expected. Secondly, since the size of

the bias might vary over time, it is not possible to obtain conclusions about the global

evolution of income inequality, not even in those cases that exhibit an ascending trend.

We illustrate this in Figure 2, which shows the evolution of the survey Gini coefficient in

Luxembourg and the Philippines along with the lower bound of this measure, computed

using Eq. (1). In the Philippines, the lower bound of the Gini index point towards

an increase in income inequality from 1991 to 1994, but the survey Gini index show a

downward trend during the same period. In Luxembourg, the survey Gini index rose one

point from 2000 to 2001. The lower bound, however, fell from 0.256 to 0.253.

Parametric models are a sound statistical method to estimate inequality from

grouped data. The use of a parametric model aims at defining a more reliable ap-

proximation of the shape of the Lorenz curve between the observed income shares than

a rough linear interpolation.1 However, it is key to chose a functional form that models

accurately the income distribution. Among the whole range of alternatives, the GB2

family of distributions seems to be the most appealing option.2

1The nonparametric kernel density method has been also used to estimate income inequality (see, e.g.

Sala-i-Martin, 2006). However, Minoiu and Reddy (2014) already demonstrated the supremacy of the

parametric models over the nonparametric techniques to estimate the income distribution. Hence, we do

not focus on this statistical methodology in this paper.
2For a comprehensive review on this topic, we refer the reader to Kleiber and Kotz (2003).
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2.1 The Generalized functions for the size distribution of income

The generalized functions for the size distribution of income proposed by McDonald

(1984) include as special cases three well-known parametric models: the generalized

beta of the first and the second kind (GB1 and GB2 respectively) and the generalized

gamma (GG). Among them, the GB2 distribution seems to be particularly suitable to

model income distributions. It is a general class of distributions that is acknowledged

to provide an accurate fit to income data (Jenkins, 2009; McDonald and Xu, 1995;

McDonald and Mantrala,1995). The GB2 can be expressed in terms of the cumulative

distribution function (CDF) as follows:

F (x; a, b, p, q) = B(v; p, q), , x ≥ 0,

where a, b, p, q > 0 and v = (x/b)a/[1 + (x/b)a]. B(p, q) =
∫ 1
0 t

p−1(1− t)q−1dt is the beta

function and B(v; p, q) =
∫ u
0 t

p−1(1 − t)q−1dt/B(p, q) is the incomplete beta function

ratio.

Following Sarabia and Jorda (2014), the Lorenz curve can be generally expressed

as,

L(u) = FX(1)
(F−1X (u)), (2)

where F−1Y (u) denotes the quantile function and FX(1)
(x) = (1/E(X))

∫ x
0 tf(t)dt is the

distribution of the first incomplete moment. To obtain the Lorenz curve we need, there-

fore, closed expressions for the cumulative distribution function and the distribution of

the kth incomplete moment. These functions along with the kth moment and the Gini

index are presented in Table 1.

Following Chotikapanich et al. (2018) and Arnold and Sarabia (2018), the Lorenz

curve of the GB2 family is given by,

LGB2(u; a, p, q) = B

(
B−1(u; p, q); p+

1

a
, q − 1

a

)
, 0 ≤ u ≤ 1,

where q > 1/a and B−1(x; p, q) is the inverse of the incomplete beta function ratio.

This model nests most of the functional forms used to model income distributions

including the beta of the second kind (Beta 2) when a = 1, used by Chotikapanich

et al. (2012) to estimate the global distribution of income; the Singh-Maddala (2008)

(p = 1) and the Dagum (1977) (q = 1) distributions, used by Hajargasht et al., (2012)

and Bresson (2009). The Lorenz curves of these distributions can obtained using Eq.(2).

The Lorenz curve of the Second Kind Beta distribution can be expressed as follows:

LB2(u; p, q) = B
(
B−1(u; p, q); p+ 1, q − 1

)
, 0 ≤ u ≤ 1, q > 1. (3)
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Table 1: Cumulative distribution function, kth moment distribution, kth moment and Gini index for a selection of distributions of the

GB2 family

Distribution CDF kth moment distribution E(Xk) Gini Index

GB2 B

(
(x/b)a

1 + (x/b)a
; p, q

)
GB2

(
a, p+

k

a
, q − k

a

)
bkB(p+ k

a , q −
k
a )

B(p, q)
, q > k/a see Eq.(6)

Second kind beta B

(
x/b

1 + x/b
; p, q

)
B2(p+ k, q − k)

bkB(p+ k, q − k)

B(p, q)
, q > k

2B(2p, 2q − 1)

pB2(p, q)
, q > 1.

Singh-Maddala 1−
(

1 +
(x
b

)a)−q

GB2

(
a, 1 +

k

a
, q − k

a

)
bkΓ(1 + k

a )Γ(q − k
a )

Γ(q)
, q > k/a 1−

Γ(q)Γ(2q − 1
a )

Γ(q − 1
a )Γ(2q)

, q > 1/a.

Dagum

(
1 +

(x
b

)−a
)−p

GB2

(
a, p+

k

a
, 1− k

a

)
bkΓ(p+ k

a )Γ(1− k
a )

Γ(p)
, k/a < 1

Γ(p)Γ(2p+ 1
a )

Γ(2p)Γ(p+ 1
a )
− 1, a > 1.

Lognormal Φ

(
log x− µ

σ

)
LN(µ+ kσ2, σ) exp

(
kµ+ k2σ2/2

)
2Φ

(
σ√
2

)
− 1.

Fisk 1−
(

1 +
(x
b

)a)−1

GB2

(
a, 1 +

k

a
, 1− k

a

)
, k/a < 1 bkΓ(1 + k)Γ(1− k), k < 1

1

a
, a > 1.

Weibull 1− e−(x/b)a GG

(
a, 1 +

k

a

)
bkΓ

(
1 +

k

a

)
1− 1

21/a
, a > 1.

Source: Arnold and Sarabia (2018), Kleiber and Kotz (2003) and McDonald (1984).

Note: The existence of kth moment distribution requires the same constraints about the parameters than the kth moment. B(x; a, b) denotes

the incomplete beta function.

8



For the Singh-Maddala distribution, the Lorenz curve is given by the following

equation:

LSM (u; a, q) = B

(
1− (1− u)1/q; 1 +

1

a
, q − 1

a

)
, 0 ≤ u ≤ 1, q > 1/a, (4)

and for the Dagum distribution it can be written as:

LD(u; a, p) = B

(
u1/p; p+

1

a
, 1− 1

a

)
, 0 ≤ u ≤ 1, a > 1. (5)

We also consider in this study two-parameter distributions, including the Fisk

(1961), which is a particular case of the GB2 making p = q = 1, and the Weibull

distribution, which is a special case of the GG distribution. We have also included the

lognormal distribution as a limiting case of the GB2 distribution, which is one of the

most popular candidates to model income variables (see e.g. Chotikapanich et al., 1997;

Jorda et al., 2014; Bresson 2009).

Using Eq.(2), we obtain the Lorenz curve of the lognormal distribution as:

LLN (u;σ) = Φ(Φ−1(u)− σ), 0 ≤ u ≤ 1,

where Φ(·) represents the CDF of the standard normal distribution. For the Fisk distri-

bution, the Lorenz curve is given by

LF (u; a) = B

(
u; 1 +

1

a
, 1− 1

a

)
, 0 ≤ u ≤ 1, a > 1.

Finally, for the Weibull distribution, the Lorenz curve is of the form

LW (u; a) = G

(
− log(1− u);

1

a
+ 1

)
, 0 ≤ u ≤ 1,

where G(x; ν) =
∫ x
0 t

ν−1 exp(−t)dt/Γ(ν) is the incomplete gamma function ratio.

Closed expressions of the Gini index for some special cases of the GB2 family are

summarized in Table 1. For the GB2 distribution, the Gini coefficient was provided by

McDonald (1984) and is given by,

GGB2 =
B(2q − 1/a, 2p+ 1/a)

B(p, q)B(p+ 1/a, q − 1/a)

(
1

p
J (1) − 1

p+ 1/a
J (2)

)
, (6)

where

J (1) = 3F2

(
1, p+ q, 2p+

1

a
; p+ 1, 2(p+ q); 1

)
,

J (2) = 3F2

(
1, p+ q, 2p+

1

a
; p+

1

a
+ 1, 2(p+ q); 1

)
,

if q > 1/a, where 3F2(a1, a2, a2; b1, b2;x) is a special case of the generalized hypergeo-

metric function defined by

pFq(a1, . . . , ap; b1, . . . , bq;x) =
∞∑
k=0

(a1)k · · · (ap)k
(b1)k · · · (bq)k

xk

k!
,

where (a)k represent the Pochhammer symbol defined by (a)k = a(a+ 1) · · · (a+ k− 1).
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2.2 Estimation methods

To define a suitable estimation method, it is key to consider the manner in which the

groupings have been generated. Hajargasht and Griffiths (2016) recognise two different

data generating process (DGP) that yield different methods for grouping observations.

In the first process, the proportion of observations in each group is specified before

sampling, so that the population proportions (pj) are fixed, whereas income shares (cj)

are random variables. The second type of DGP assumes pre-specified group boundaries

(gj) and, hence, generates random population proportions in each interval. We focus on

the first type of DGP because it fits the structure of the largest datasets of grouped data,

including the WIID and PovcalNet.

Traditionally, NLS has been used to estimate the vector of parameters of interest,

regressing the income shares against the functional form of the Lorenz curve under the

parametric assumptions made on the distribution of income. Assuming that our sample

is drawn from a population with CDF F (x; Λ), the estimation problem is expressed as

min
λ

J−1∑
j=1

(L(uj ;λ)− sj)2, (7)

where sj is the income share held by the j− th group and uj is its associated population

proportion and L(uj ;λ) is the parametric Lorenz curve. The functional form of this

curve for the distributions belonging to the GB2 family has been presented in Section

2.1.

As discussed before, the Lorenz curve is scale independent hence, using Eq. (7),

we are only able to estimate the subset of Λ corresponding to the shape parameters

(λ).3 The fact that we are only able to obtain estimates on shape parameters with this

estimation procedure should not be interpreted as a limitation. Scale parameters are not

needed to estimate relative inequality measures consistent with the Lorenz ordering, such

as the Gini index or the Atkinson index. Therefore, if our interest resides in measuring

relative inequality, this estimation strategy avoids the need to collect information on

mean income. An additional advantage of this estimation strategy relative to the methods

proposed in previous studies (see Hajargasht et al., 2012) is that the income limits of the

groups (hj) are not estimated. Thus the dimensionality of the optimisation function is

substantially reduced, which makes numerical optimisation simpler, especially when the

number of moments is large (Chen, 2017).

Non-linear least squares, however, overlook the fact that the sum of the income

shares is, by definition, equal to one, thus introducing dependence between the income

shares used in Eq.(7). NLS yields, therefore, inefficient although still consistent estimates

3Hajargasht and Griffiths (2016) proposed to use the generalised Lorenz curve to define the moment

conditions. The generalised Lorenz curve is the result of scaling upward the ordinates of Lorenz curve

by mean income. With their approach, both scale and shape parameters can be estimated because the

mean introduces the scale in the model.
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of λ and hence of the functions that depend on this set of parameters, including relative

inequality measures. To gain efficiency, we also deploy a GMM estimator of the following

form:

λ̂ = argmin
λ

M(λ)′Ω−1M(λ), (8)

where M ′(λ) = [m1(λ), . . . ,mJ−1(λ)] is the vector of moments conditions, which takes

the form

M(λ) = L(u;λ)− s, (9)

being s′ = (s1, . . . , sJ−1) a vector of cumulative income shares associated with the popu-

lation proportions u′ = (u1, . . . , uJ−1) and L(u;λ) the theoretical Lorenz curve evaluated

at u.

It should be noted that Eqs. (7) and (8) are equivalent if Ω = IJ−1. However, the

identity matrix is not the optimal choice for Ω, which is why NLS yields less efficient

estimates than GMM. The optimal choice of the weighting matrix Ω is the variance

and covariance matrix of the moment conditions. Results from Beach and Davison

(1983) and Hajargasht and Griffiths (2016) characterise the asymptotic distribution of√
N(L(u;λ)− s) as a multivariate normal with zero mean and variance and covariance

matrix of the form:

Ω = ΨWΨ′, (10)

where

Ψ =


1/µ . . . 0 −s1/µ

...
. . .

...
...

0 . . . 1/µ −sJ−1/µ

 ,
with µ =

∫∞
0 xf(x)dx. W is a symmetric matrix whose elements are

[W ]i,j = µ
(2)
i + (uihi − µsi)(hj − ujhj + µsj)− hiµsi, for i ≤ j

with

µ
(2)
i =

∫ gi

0
x2f(x)dx.

Because we only have access to grouped data on income shares, it is not possible

to compute the variance and covariance matrix of the moment conditions. In order to

obtain an efficient estimator of λ from (8), we consider a two-step GMM estimator that

uses the consistent estimates of NLS (Eq. (7)) to compute a first stage estimate of Ω,

which is used in the second stage to estimate Eq.(8).

The estimation of Eq.(7) involves the definition of starting values for the optimiza-

tion algorithm.4 For the two-parameter distributions presented, which only have one

4We use the package optim in R to find the minimum of Eq.(9). BFGS algorithm is implemented by

default and L-BFGS is used when this method reports an error. The computation of the gradient is done

numerically.
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shape parameter, we propose to solve the following equation to obtain an initial value of

λ:

g = G(λ),

where g is the sample Gini index, usually reported in the largest datasets of grouped in-

come data, and G(λ) is the expression of the Gini index of the two-parameter distribution

under consideration (see Table 1).

The distributions Singh-Maddala, Beta 2 and Dagum are characterised by two

shape parameters, which complicates the definition of the non-arbitrary initial values.

Conventionally, the estimates of a restricted model are taken as initial values. A potential

limitation of this method is that, as the dimensionality of the parameter space increases,

it is more difficult to achieve global convergence. Although it seems quite intuitive

that the moment estimates of the restricted model might be a good starting point, the

optimization of the non-linear function in (7) could converge to a local minima, which

might lead to inaccurate estimates of the parameters and, hence, of inequality measures.

The approach presented above for the two-parameter distributions is not feasible for

these models in most cases because no other information besides the Gini index and

the income shares is reported. To provide several non-arbitrary combinations of starting

values, we propose to use the following procedure:

1. Rewrite Eq.(7) using the Lorenz curve of the model to be estimated L(u;λ1, λ2),

which is given in Eq.(3) for the B2 distribution, in Eq.(4) for the Singh-Maddala

distribution and in Eq. (5) for the Dagum distribution.

2. Define a grid of integer numbers for the starting values of λ1, λ
(s)
1 ∈ [1, 20].

3. Solve g = G(λ
(s)
1 , λ2) for λ2, to obtain λ

(s)
2 .

4. Estimate the Eq.(7) using (λ
(s)
1 , λ

(s)
2 ), as initial values.

5. Keep the parameter estimates with the lowest residual sum of squares (RSS).

The routine described above allows us to obtain the moment estimates of one of the

parameters assuming that the other one is equal to the grid value. These 20 combinations

of initial values are used to undertake 20 different regressions using Eq. (7). Although

we cannot ensure that our estimates belong to the global minima our proposed procedure

covers a larger proportion of the parametric space than just using the moment estimates

of a particular sub-model.

For the GB2 distribution, which has three shape parameters and one scale param-

eter, we make use of the estimates obtained for the three-parameter distributions. We

perform the estimation of Eq.(7) using as initial values the 20 combinations of parameters

from the Beta 2 distribution, setting a = 1; the 20 initial values of the Singh-Maddala

distribution with p = 1; and the ones obtained for the Dagum distribution, assuming

q = 1. We save the estimation that reports the best fit.
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For the estimation Ω, we also need to compute the mean (µ), the second order

moment (µ
(2)
j ) and the income limits of each group(hj). Therefore, even though we are

interested in scale independent inequality measures, we need to estimate consistently the

scale parameter. Let η denote the scale parameter of the distribution so that, Λ = (η,λ)′.

We propose to estimate η by solving the following equation:

X̄ = µ(η,λ), (11)

where X̄ is the sample mean and µ(η,λ) =
∫
R+
xf(x; Λ)dx, whose expressions for the

distributions belonging to the GB2 family are presented in Table 1.

Let Λ∗ = (η∗,λ∗)′ be the consistent estimator of the parameters of the model

obtained from Eqs.(7) and (11) used to obtain a first-stage estimator of the weighting

matrix (Ω∗ = Ω(Λ∗)). Substituting Ω∗ in (8), we obtain the second-stage estimator of

λ as:

λ̂ = argmin
λ

M(λ)′Ω∗−1M(λ). (12)

Because the first stage estimator (Λ∗) from Eq. (7) is consistent, so is the weighting

matrix Ω∗. The replacement of Ω by a consistent estimate of this matrix does not

affect to the asymptotic properties of the GMM estimator. It affects, however, to the

small-sample behavior of this estimator, which is generally biased (Altonji and Segal,

1996). Prior research based on Monte Carlo simulation suggest that the size of the

bias depends on the underlying distribution of the data, being particularly large for

heavy-tailed distributions (Altonji and Segal, 1996). The size of the bias increases with

the number of overidentifying restrictions (Clark, 1996). Although this limitation is

overcome as the sample size gets large (Hansen, 1982), information on the sample size

used to construct the grouped data is not often available. It is, therefore, recommended

to deploy both estimators and, if the parameter estimates differ substantially, opt for

NLS results.

3 Results

3.1 Estimation of the Gini coefficient using grouped data

In this section, we explore some practical issues in the estimation of economic inequality

from grouped data. To consider a diverse set of observations, we use the most compre-

hensive and up-to-date source of grouped income data: the latest version WIID, released

in January 2017. This database collects information for more than 8817 datasets for 182

countries over the period 1867-2015. Each dataset might report different types of infor-

mation: the Gini index is generally provided (99.6% of the observations); less frequently

we can find information on five to ten income shares (63.2%); finally, it is less common

to report data on mean income (50.1%).
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Before going any further, it should be mentioned that the WIID3.4 stores a hetero-

geneous collection of datasets in terms of welfare concept, unit of analysis, equivalence

scale, quality of the data and population and area coverage. For this reason, the WIID

also includes additional data about these concepts along with information on the source

from which the data was taken. Therefore, even though the WIID is notable in terms of

their geographical and time coverage, the lack fo data comparability is often recognised as

a potential limitation. In this study, however, we take advantage of such heterogeneity to

illustrate whether these data issues affect to the performance of the different estimation

methods in order to bring them to the attention of potential users.

The first question that arises when deploying the parametric approach is: given that

we expect that grouped data collected by the WIID comes from surveys of reasonable

sample size, is the asymptotically efficient GMM a superior method than the unbiased

NLS to estimate income inequality? To answer this question we estimate the different

parametric distributions belonging to the GB2 family using both econometric strategies.

For the two sets of parameter estimates obtained from Eqs. (7) and (12), we compute

the Gini coefficient using the expressions presented in Table 1. These two estimates are

compared with the observed Gini index reported by the survey. Because our interest

resides in measuring income inequality, we opt for the method that yields more accurate

estimates of the Gini coefficient.5

Since the optimisation function in Eq.(7) depends only on shape parameters, NLS

can be deployed in the 5570 country/year datasets which present information on, at least,

5 income shares. Because the Gini coefficient is scale-independent, the estimation of the

shape parameters is enough to estimate this inequality measure. To obtain the GMM

estimates in Eq.(12), we need besides data on income shares, information about the mean

of the income distribution to estimate the scale parameter, which is used to construct a

consistent estimate of Ω (Eq.10). As a result, this method can be implemented only in

3286 country/year datasets of the WIID. Table 2 presents the proportion of observations

for which GMM dominates NLS in the estimation of the Gini index.

Our estimates for the GB2 distribution suggest that GMM reports more accurate

estimates than NLS only for 25% of the datasets. This proportion tends to decrease with

the number of parameters of the distributions. On the contrary, we observe that the

GMM estimator presents higher dominance rates when fewer income shares are consid-

ered. Therefore, in line with the findings presented by different simulation studies, these

two results confirm that the size of the bias increases with the number of overidentifying

restrictions (Clark, 1996). In sum, our results suggest that NLS is generally preferred

5The fact that one method provides more accurate estimates of the Gini index does not mean that

it is the most suitable econometric strategy to model relative inequality. To provide strong evidence in

this regard, we should examine the robustness of this result to the consideration of different inequality

measures. Unfortunately, other measures besides the Gini coefficient are rarely reported. However, we

further explore this issue in Section 3.2 with individual records.
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Table 2: Comparison of the performance of the GMM and the NLS estimators of the

Gini coefficient

GB2 Beta 2 Singh-Maddala Dagum Lognormal Fisk Weibull

Total 25.26% 24.33% 14.87% 8.99% 12.05% 10.91% 0.76%

5 income shares 37.66% 52.50% 34.86% 32.46% 23.31% 25.65% 3.06%

10 income shares 25.66% 22.93% 13.84% 7.73% 11.44% 10.01% 0.66%

Note: Results based on the 3286 datasets of the WIID, of which 154 presented information on

5 income shares and 3132 data on 10 income shares. For all parametric distributions except the

GB2, the Gini coefficient has been estimated using the formulas in Table 1. The Gini index of the

GB2 distribution has been estimated by Monte Carlo simulation using samples of size N = 106.

over GMM to estimate the Gini coefficient. Hence, researchers may be willing to sacrifice

asymptotic efficiency if the priority is placed on obtaining unbiased parameter estimates.

In that case, NLS would be preferred over GMM, even in situations where GMM is by

far superior in asymptotic efficiency (Aljoni and Segal, 1996).

The second question of interest when examining inequality from grouped data is

whether parametric functional forms provide better approximations of the Lorenz curve

than the nonparametric method of linear interpolation. The relevance of this question

resides in the overwhelming number of studies that have opted for linear interpolation

to construct the Lorenz curves and its associated inequality measures (see Anand and

Segal (2008) for a review). The popularity of this approach seems to be explained by

its simplicity and supported by the extended argument that parametric functional forms

might lead to misspecification bias because their implementation requires making ex-ante

assumptions about the shape of the income distribution and/or the Lorenz curve. To

compare the performance of the GB2 distribution and the related sub-models to estimate

income inequality with the nonparametric approach, conventional measures of goodness

of fit (GOF), such as the residual sum of squares, are not informative because linear

interpolation is designed to perfectly match the income shares. Hence, as a measure of

GOF, we consider the gap between the survey Gini coefficient and the estimated Gini

indices using both the nonparametric lower bound (Eq.1) and the different parametric

functional forms (Table 1).

For the estimation of the parametric models, we focus on NLS estimates because

this method seems to yield more accurate estimates of the Gini index.6 An additional

advantage of analysing NLS estimates is that it allows us to examine a larger number of

observations. We have reformulated Eq.(7) to estimate seven parametric distributions

that belong to the GB2 family for the 5570 country/year datasets with at least five

6We present the results for the GMM estimates in the Appendix, which seem to confirm the outper-

formance of the parametric models in general, and the GB2 distribution in particular.

15



income shares available. The estimated Gini indices have been computed using the

closed formulas presented in Table 1 except for the GB2 distribution, for which the Gini

coefficient has been estimated by Monte Carlo simulation. We have also calculated the

lower bound of the Gini index derived from linear interpolation of the Lorenz curve. This

approximation of the Gini index assumes equality of incomes within shares. Hence, its

value must be lower than the survey Gini index computed with individual records because

it considers the existing variation within income shares. We found, however, that this

relation was violated in 355 datasets. This incongruent result might have two potential

explanations. Because Eq.(1) is an approximation of the lower bound, it has an inherent

error that may lead to such inconsistencies. It could be also explained by measurement

errors in the Gini index or the income shares included in the WIID database. Hence, we

opt for removing those cases to facilitate the discussion of the results.7

Table 3 presents the difference between the survey Gini index and the parametric

and nonparametric estimates. To facilitate the comparison of these two methodologies,

we report the results in absolute value. Our results reveal that the lower bound yields

a very poor approximation of the Gini index. The gap with the observed Gini index

is above 0.01 in 56% of the cases. The parametric approach, instead, provides much

more accurate results, with substantially lower differences between the estimated and

the observed Gini index. On average, lower bound estimates report an error three to

four times larger than most parametric models. Among the parametric models, the

GB2 seems to outperform the other sub-models, with estimation errors lower than 0.01

for 92% of observations. As regards the particular cases of this family, even the two-

parameter distributions report fairly accurate Gini indices, which differ in less than 0.02

in 95% of the cases. Estimations of the Gini index with errors larger than 0.1 are more

frequent for the nonparametric approach. All parametric specifications report the same

proportion of estimates with differences larger than 0.1, the 0.6%, corresponding to three

datasets: Mauritius in 1980, Zambia in 2004, rural and urban. In these three cases, the

parametric and the nonparametric approaches report very similar estimates of the Gini

index. For instance, in rural Zambia the lower bound is 0.189 and the estimate for the

GB2 distribution is 0.188, but the WIID reports a survey Gini coefficient of 0.55. Hence,

we believe, that the survey data of these datasets may present some kind of measurement

error.

Although the previous results point towards a better performance of the paramet-

ric models over the nonparametric approach, only 16% of the observations show large

deviances (higher than 0.05) between the lower bound and the observed Gini index.

Therefore, it could be argued that the nonparametric approach provides the researchers

with an intuitive and fairly accurate tool to assess inequality in most cases. However,

since our sample includes Gini coefficients of very different magnitude, the error should

7Overall, the estimates for the whole sample with 5570 country/year datasets point out the same

conclusions as for the restricted sample (results available upon request).
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Table 3: Absolute error in the estimation of the Gini index using linear interpolation

and different parametric distributions of the GB2 family

Distribution Mean [0, 0.01) [0.01, 0.02) [0.02, 0.05) [0.05, 0.1) [0.1, )

Lower bound 0.0140 44.28% 39.5% 14.57% 1.42% 0.23%

GB2 0.0034 92.20% 4.60% 2.36% 0.79% 0.06%

B2 0.0040 91.68% 4.99% 2.53% 0.75% 0.06%

SM 0.0040 91.47% 5.25% 2.49% 0.73% 0.06%

Dagum 0.0041 91.24% 5.48% 2.49% 0.73% 0.06%

Log-normal 0.0043 91.26% 5.64% 2.24% 0.81% 0.06%

Fisk 0.0043 91.18% 5.45% 2.61% 0.71% 0.06%

Weibull 0.0062 85.64% 10.78% 2.82% 0.71% 0.06%

Note: Results based on 5215 datasets of the WIID. Parametric models have been

estimated by NLS. The lower bound of the Gini index has been obtained using Eq.

(1). For the parametric distributions except the GB2, the Gini coefficient has been

estimated using the formulas in Table 1. The Gini index of the GB2 distribution

has been estimated by Monte Carlo simulation using samples of size N = 106.

be evaluated in relative terms. Table 4 shows the absolute difference between the ob-

served and the estimated Gini coefficient, relative to the value reported by survey. These

results strongly suggest that the lower bound yields considerably inaccurate estimates of

the Gini index, which is underestimated by more than 2% in the 73% of the country/year

observations of the WIID.

These estimates reflect not only that linear interpolation is a poor approximation of

the Lorenz curve, but also that parametric distributions lead to highly reliable estimates

of the Gini index. The GB2 distribution seems to offer the best estimates, with 84%

of estimations providing Gini coefficients that deviate less than 1% from the survey

Gini index; for the three-parameter functional forms, this proportion goes down to 80%.

The two-parameter functional forms also present fairly accurate results for the 70% of

observations, except for the Weibull distribution.

Due to the inherent heterogeneity of the WIID in terms of welfare definition and

data quality, another relevant question is whether these data characteristics affect ac-

curacy of the previous estimates. More importantly, does the estimation error decrease

with the number of income shares? The answer to the last question is quite obvious for

the nonparamtetric approach: the larger the number of income shares, the better the

approximation of the Lorenz curve, hence the more reliable the estimate of the Gini coef-

ficient. For parametric models, however, five income shares might be enough to represent

the shape of the Lorenz curve as rigorously as with 10 data points.

Table 5 presents a summary of the absolute error in the estimation of the Gini

index using the GB2 distribution, as the best parametric approximation of the Lorenz
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Table 4: Relative error in the estimation of the Gini index using linear interpolation

and different parametric distributions of the GB2 family

Distribution [0%, 1%) [1%, 2%) [2%, 5%) [5%, 10%) [10%, )

Lower bound 3.16% 10.11% 72.66% 11.01% 3.07%

GB2 84.7% 5.66% 6.27% 2.15% 1.23%

B2 77.01% 12.54% 6.98% 2.24% 1.23%

SM 80.36% 9.11% 7.11% 2.19% 1.23%

Dagum 80.19% 9.03% 7.5% 2.11% 1.17%

Lognormal 72.58% 16.03% 7.96% 2.21% 1.23%

Fisk 74.96% 14.06% 7.54% 2.26% 1.19%

Weibull 48.9% 35.92% 11.95% 2.11% 1.13%

Note: Results based on 5215 datasets of the WIID. Parametric models

have been estimated by NLS. The lower bound of the Gini index has

been obtained using Eq. (1). For the parametric distributions except

the GB2, the Gini coefficient has been estimated using the formulas in

Table 1. The Gini index of the GB2 distribution has been estimated

by Monte Carlo simulation using samples of size N = 106.

curve, and linear interpolation. We present the mean and the standard deviation (in

parenthesis) of the difference in absolute terms between the survey and the estimated

Gini coefficient for the four new welfare categories introduced in the last version of

the WIID: consumption, disposable income, gross income and others;8 and for different

data quality levels: high, average, low and not known. To examine the effect of using

a larger number of moments, we present these results disaggregated by five and ten

income shares. In this regard, our results suggest that, using linear interpolation, the

error in the estimation of the Gini with only five income shares index is twice to three

times higher than in datasets with ten data points. In the parametric framework, this

pattern is not so obvious. Overall, we find the estimates performed with a larger number

of income shares lead to more accurate estimates. The difference in the estimation

error might be considerable in some categories, such as disposable income or high data

quality, with estimation errors four to five times larger when five income shares are

used. In other categories, however, the accuracy of the estimates does not seem to be

affected by the number of moments. Low-quality datasets show, on average, estimation

errors of the same magnitude, but with higher variation for the estimation with ten data

points. Hence, we might find larger estimation errors in datasets with ten income points

than with five, for this particular category. This result should not be interpreted as a

8This new classification is a simplified version of the previous classification by welfare definition, which

combines categories that are close to each other. See https://www.wider.unu.edu/sites/default/

files/Data/WIID3.4 for a detailed description of the new labels.
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Table 5: Absolute error in the estimation of the Gini index using the GB2 distribution

and linear interpolation

GB2 distribution Linear interpolation

10 shares 5 shares 10 shares 5 shares

Consumption 0.0048 0.0158 0.0111 0.0292

(857, 124) (0.0139) (0.0330) (0.0097) (0.0264)

Welfare Income, disposable 0.0032 0.0118 0.0124 0.0312

definition (2686, 112) (0.0081) (0.0185) (0.0085) (0.0206)

Income, gross 0.0110 0.0125 0.0116 0.0272

(384, 325) (0.0155) (0.0153) (0.0120) (0.0162)

Other 0.0031 0.0082 0.0132 0.0329

(1031, 51) (0.0147) (0.0152) (0.0157) (0.0158)

Average 0.0031 0.0076 0.0108 0.0268

(1645, 139) (0.009) (0.0136) (0.0076) (0.0159)

Data High 0.0026 0.0135 0.0122 0.0324

quality (2559, 167) (0.0079) (0.0298) (0.0086) (0.0243)

Low 0.0125 0.0130 0.0159 0.0265

(642, 261) (0.0226) (0.0161) (0.0210) (0.0167)

Not known 0.0022 0.0236 0.0131 0.0352

(112, 45) (0.0025) (0.0164) (0.0076) (0.0224)

Note: The number of datasets used to compute the mean and the standard

deviation of the error in the estimation of the Gini index are presented in

parenthesis below the label of the corresponding category, for ten and five

income shares respectively. The GB2 distribution has been estimated by

NLS and the Gini index has been computed by Monte Carlo simulation using

samples of size N = 106.

recommendation to use five income shares for the estimation of parametric models with

datasets of poor quality. Instead, this should be seen as an argument in favor of the

parametric approach, which even with very few points of the Lorenz curve might yield

reliable estimates.

Despite the fact that we are primarily interested in assessing income inequality, only

comparing Gini indices we are not able to assert the supremacy of any parametric model.

To provide a complete picture of the GOF of the different parametric models, we turn now

our attention to measures that evaluate the performance of nested models considering

not only the accuracy, but also the parsimony of the model by penalizing for the number

of parameters.9 Table 6 presents the proportion of observations for which the models

9The results for the Schwartz Bayesian Information Criteria and weighted sum of the residuals can

be found in the Appendix, Tables 11 and 12 respectively.

19



Table 6: GOF dominance matrix based on the AIC

GB2 Beta 2 Singh-Maddala Dagum Lognormal Fisk Weibull

GB2 100% 87% 85% 88% 98% 98% 99%

Beta 2 13% 100% 43% 48% 96% 84% 98%

Singh-Maddala 15% 57% 100% 62% 93% 89% 99%

Dagum 12% 52% 38% 100% 87% 89% 99%

Lognormal 2% 4% 7% 13% 100% 45% 95%

Fisk 2% 16% 11% 11% 55% 100% 91%

Weibull 1% 2% 1% 1% 5% 9% 100%

Note: Results based on 5215 datasets of the WIID. Parametric models have been estimated

by NLS.

in rows outperform the distributions in columns according to the Akaike Information

Criterion(AIC). Our results suggest again the GB2 distribution is a more suitable model

for income and consumption variables, although the three-parameter models seem to be

preferred in about 15 percent of the cases when penalizing by the number of parameters.

As regards the three-parameter distributions, the Beta 2 and the Dagum distributions

seem to perform equally well, but the Singh-Maddala distribution seems to yield more

accurate estimates in most cases. As expected, the two-parameter models rarely improve

the GOF of the GB2 and the three-parameter functional forms. These figures show

similar dominance rates are observed for the lognormal and the Fisk distributions and

confirm that the Weibull distribution is the least suitable model to represent income

distributions.

These figures corroborate the results of previous studies (McDonald, 1984; Butler

and McDonald, 1986; Hajargasht et al., 2012) about the excellent performance of the

GB2 distribution to describe income data. To our knowledge, this is the first study that

analyzes the suitability of this functional form and its related sub-models for a large

number of countries and for such a long period of time, thus generalizing the result as

regards the flexibility of this family to represent income data for a heterogeneous sample

of countries.

3.2 Simulation of grouped data from individual records: a robustness

check

So far, our analysis suggests that the GB2 family includes excellent models to obtain

reliable estimates of the Gini index. However, the analysis of income inequality rarely

relies on just one measure. Depending on the properties of the inequality measures and

their sensitivity to different parts of the distribution inequality indices may reflect differ-

ent evolutions. Hence, the evaluation of the performance of different models to estimate
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Figure 2: Lorenz curve of Argentina (1961): Singh-Maddala (red) and lognormal (black)

distributions
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income inequality should not be based solely on the Gini coefficient. Because this index

is constructed as a function of the area between the Lorenz curve and the egalitarian

line, differences below the observed income shares can be offset by overestimated income

shares. This case is illustrated in Figure 2, which presents the survey income shares

(black points) of Argentina in 1961 and the fits of the Singh-Maddala (red line) and the

lognormal (black line) distributions. This graph reveals that the Singh-Maddala distri-

bution provides a highly accurate fit and clearly outperforms the lognormal distribution.

However, a comparison of the survey and the estimated Gini coefficients suggests a better

performance of the lognormal distribution to estimate income inequality: the survey Gini

index is 0.531 and the estimated Gini indices of the Singh-Maddala and the lognormal

distributions are 0.516 and and the 0.522 respectively.

The apparent outperformance of the lognormal distribution is, therefore, a statisti-

cal artifact caused by the manner in which the Gini coefficient is defined. If we compared

the observed and the estimated values of inequality measures more sensitive to the left

tail, the Singh-Maddala distribution would be declared as a superior model. For this kind

of measures, the lognormal distribution would overestimate inequality levels because its

Lorenz curve of lies far below the sample income shares at the bottom of the distribution.

Unfortunately, other measures besides the Gini coefficient are not reported in the WIID.

To extend the insights about the estimation of income inequality from grouped

data, we rely on data from the Luxembourg Income Study (LIS). The LIS database

gathers harmonised microdata on disposable income collected from nearly 50 countries,
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which cover the period from 1980 to 2016. Using the 278 datasets of individual records

available in the ten waves of the LIS database, we reconstruct grouped data with the same

structure as the WIID: five and ten income shares, the mean and the Gini coefficient.

These statistics have been obtained following the methodological guidelines of LIS.10 We

consider equivalised disposable income which is equal to household income divided by the

square root of the household size. We exclude all missing observations and records with

zero disposable income. To the remaining sample, LIS proposes to apply top and bottom

coding. Equivalised income is bottom-coded at 1% of equivalised mean and top-coded

at 10 times the median household income.11 Finally, household weights are multiplied

by the household size to obtain person-adjusted weights.

The advantage of working now with individual data is that we do not have to restrict

the analysis to the Gini coefficient. To examine the reliability of the parametric models

to estimate different inequality measures, we have also calculated the Atkinson index of

the surveys using the following expression:

Aε = 1−

(
1

N

N∑
i=1

(
xi
µ

)1−ε
) 1

1−ε

, ε 6= 1,

Aε = 1− 1

µ

N∏
i=1

x
1/N
i , ε = 1,

where ε is an inequality aversion parameter, which makes this measure more sensitive to

the left tail of the income distribution as it increases.

The income shares from LIS are used to replicate the analysis of Section 3.1, com-

paring estimated and survey inequality measures. Tables 7 and 8 present the absolute

error in the estimation of the Gini coefficient and the Atkinson indices from grouped

data in form of 10 and 5 income shares respectively. The parameters of the parametric

models have been estimated by NLS following the procedure presented in Section 2.2.12

10A detailed description of these guidelines can be obtained from http://www.lisdatacenter.

org/data-access/key-figures/methods/ and the R code used for the computation of inequal-

ity measures can be downloaded from http://www.lisdatacenter.org/wp-content/uploads/files/

access-key-programs-r-ineq.txt
11The aim of this section is to expand the results presented in Section 3.1. To do so, it is essential

to replicate as accurately as possible the context of limited information under which those results were

obtained. Hence, although bottom and top coding applied the income variable might be debatable,

we apply this procedure not only because of LIS recommendations but because WIID data from LIS

is reported with censoring. For this reason, even though we are deliberately introducing some kind of

measurement error, we do not consider the double censoring in the estimation of the parametric models

because we do not have this kind of information when using grouped data.
12Results based on the estimation of parametric distributions by GMM are presented in Tables 13

and 14 in the Appendix. Our result suggest that the accuracy does not seem to be strongly affected by

the estimation method in the case of the GB2 distribution. However, as observed above, the size of the

error increases with the number of overidentifying restrictions. Indeed, GMM estimates of the lognormal

distribution seem to present much larger estimation errors than NLS.
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Table 7: Absolute difference between estimated and observed inequality measures: 10

income shares

Lower bound GB2 Beta 2 Singh-Maddala Dagum Log-normal

Mean 0.0071 0.0007 0.0018 0.0012 0.0014 0.0022

[0, 0.01) 85.97% 99.64% 99.28% 98.92% 98.92% 100%

Gini [0.01, 0.02) 14.03% 0.36% 0.72% 1.08% 1.08% 0%

Index [0.02, 0.05) 0% 0% 0% 0% 0% 0%

[0.05, 0.1) 0% 0% 0% 0% 0% 0%

[0.1, ) 0% 0% 0% 0% 0% 0%

Mean 0.0066 0.0020 0.0040 0.0031 0.0038 0.0045

[0, 0.01) 98.56% 98.92% 98.2% 94.96% 88.13% 96.4%

Atkinson [0.01, 0.02) 1.44% 1.08% 1.08% 3.96% 10.79% 3.6%

index (ε = 0.5) [0.02, 0.05) 0% 0% 0.72% 1.08% 1.08% 0%

[0.05, 0.1) 0% 0% 0% 0% 0% 0%

[0.1, ) 0% 0% 0% 0% 0% 0%

Mean 0.0131 0.0049 0.0095 0.0065 0.0072 0.0119

[0, 0.01) 27.7% 89.93% 59.71% 80.94% 75.18% 47.48%

Atkinson [0.01, 0.02) 67.63% 8.99% 35.61% 17.27% 19.78% 38.13%

index (ε = 1) [0.02, 0.05) 4.68% 1.08% 4.68% 1.08% 3.96% 14.03%

[0.05, 0.1) 0% 0% 0% 0.72% 1.08% 0.36%

[0.1, ) 0% 0% 0% 0% 0% 0%

Mean 0.0294 0.0161 0.0246 0.0173 0.0183 0.0297

[0, 0.01) 3.96% 44.24% 20.14% 38.49% 42.45% 20.5%

Atkinson [0.01, 0.02) 27.7% 23.74% 28.78% 28.78% 25.54% 20.5%

index (ε = 1.5) [0.02, 0.05) 59.71% 30.58% 43.88% 28.42% 25.9% 40.65%

[0.05, 0.1) 8.63% 1.44% 7.19% 3.6% 5.04% 17.27%

[0.1, ) 0% 0% 0% 0.72% 1.08% 1.08%

Note: Results based on 278 datasets of the LIS database. Parametric models have been estimated by NLS.

All inequality measures have been estimated by Monte Carlo simulation using samples of size N = 106.

Since the two-parameter distributions seem to lead to less reliable estimates of inequality

measures, we have only included the results of the lognormal distribution because this

model has been conventionally employed to estimate the size distribution of income.13

Both the Gini coefficient and the Atkinson index have been estimated by Monte Carlo

simulation, from samples of size N = 106.

Our results suggest that all functional forms seem to lead to very accurate estimates

of the Gini coefficient, with estimates that differ from the observed value in less than

0.02. For the Atkinson index, the accuracy of the estimates seems to depend on the

value of the inequality aversion parameter. Our results suggest that the estimates of

the Atkinson index become less reliable as the value of the parameter increases. The

13We have also computed the absolute error in the estimation of different inequality measures for the

Fisk and the Weibull distributions. These results are available upon request.
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Table 8: Absolute difference between estimated and observed inequality measures: 5

income shares

Lower bound GB2 Beta 2 Singh-Maddala Dagum Log-normal

Mean 0.0225 0.0013 0.0023 0.0017 0.0019 0.0027

[0, 0.01) 0% 98.92% 98.92% 98.92% 98.92% 98.92%

Gini [0.01, 0.02) 46.76% 1.08% 0.72% 0.72% 0% 1.08%

Index [0.02, 0.05) 53.24% 0% 0.36% 0.36% 1.08% 0%

[0.05, 0.1) 0% 0% 0% 0% 0% 0%

[0.1, ) 0% 0% 0% 0% 0% 0%

Mean 0.0133 0.0028 0.0043 0.0036 0.0041 0.0048

Atkinson [0, 0.01) 26.26% 97.84% 97.84% 92.45% 87.05% 96.76%

index (ε = 0.5) [0.01, 0.02) 58.99% 1.8% 1.08% 6.47% 11.87% 2.88%

[0.02, 0.05) 14.75% 0.36% 1.08% 1.08% 1.08% 0.36%

[0.05, 0.1) 0% 0% 0% 0% 0% 0%

[0.1, ) 0% 0% 0% 0% 0% 0%

Mean 0.0247 0.0055 0.0092 0.0063 0.0064 0.0124

[0, 0.01) 0% 86.69% 60.07% 82.37% 78.42% 43.53%

Atkinson [0.01, 0.02) 32.37% 12.59% 34.89% 15.83% 17.27% 42.09%

index (ε = 1) [0.02, 0.05) 67.63% 0.72% 5.04% 1.8% 4.32% 14.03%

[0.05, 0.1) 0% 0% 0% 0% 0% 0.36%

[0.1, ) 0% 0% 0% 0% 0% 0%

Mean 0.0458 0.0166 0.0234 0.0163 0.0159 0.0302

[0, 0.01) 0% 43.53% 20.5% 40.65% 45.68% 17.99%

Atkinson [0.01, 0.02) 4.32% 21.58% 28.42% 27.7% 28.06% 21.22%

index (ε = 1.5) [0.02, 0.05) 56.47% 33.09% 45.32% 28.06% 21.22% 42.09%

[0.05, 0.1) 38.49% 1.8% 5.76% 3.6% 5.04% 17.63%

[0.1, ) 0.72% 0% 0% 0% 0% 1.08%

Note: Results based on 278 datasets of the LIS database. Parametric models have been estimated by NLS.

All inequality measures have been estimated by Monte Carlo simulation using samples of size N = 106.

GB2, the Singh-Maddala and the Dagum distributions show accurate estimates of the

Atkinson measure for parameter values lower than one. When the sensitivity parameter

is larger than 1, the measure is considerably sensitive to the lower end of the distribution,

meaning that the value of this inequality measure is largely influenced by the left tail

of the distribution. Hence, even if the bulk of the distribution is adequately modeled,

relatively small errors in the representation of the left tail might bias the estimates of

the Atkinson index. Although the reliability of the estimates is inversely associated with

the inequality aversion parameter, the GB2 and the Singh-Madala distributions report

relatively accurate estimates of the Atkinson index (ε = 1.5), which differ in less than

0.05 in the 98% of the datasets.

The comparison of figures in Tables 7 and 8 reveals that the error in the estimation

of inequality measures is slightly larger if the estimates are obtained from 5 data points.
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However, even with 5 income shares, the GB2 family of income distributions yields

reliable estimates of inequality measures, which confirms the results presented in Section

3.1 that these models provide us with an excellent methodological framework to estimate

income inequality from grouped data, even when only a few points of the Lorenz curve

are available.

3.3 Estimation of income inequality in bimodal distributions

A great deal of the criticism directed at the use of parametric models to estimate the

Lorenz curve from grouped data is the misspecification error that may arise as a con-

sequence of imposing of a particular functional form. Although the GB2 family is ac-

knowledged to be an outstanding candidate to model income variables, it is only able

to represent one- and zero-mode distributions. These are the expected shapes of the

income distribution in most countries: one mode is conventionally observed in devel-

oped countries with a well-established middle class, while zero mode distributions are

characteristic of developing countries, which present high poverty rates. However, the

conjunction of these two factors leads to bimodal distributions, which are typically ob-

served in economies in transition.

Although bimodal distributions are the exception rather than the rule, prior re-

search has repeatedly emphasaised the potential consequences of using parametric mod-

els in these cases, thus justifying the use of the lower bound on grounds of reliability and

practicability. The parametric approach requires defining ex-ante the functional form of

the distribution, but grouped data on few points of the Lorenz curve are not informative

enough to ascertain the number of modes of the distribution.14 Hence, a conservative

strategy is to estimate a general model that fits the regular features of the income distri-

bution, typically unimodal or zeromodal, because it is not possible to determine where to

deploy alternative parametric models to better capture the bimodality of income data. In

those cases, the GB2 family would approximate the bimodality by unimodal/zeromodal

functional forms, thus leading to inaccurate estimates.

In this section, we examine the size of the error in the estimation of inequality

measures using the GB2 family when the income distribution presents a bimodal density

function. We use Monte Carlo simulation to obtain synthetic samples from a mixture of

a Weibull and a truncated normal distribution with a probability density function of the

following form:

f(x1;β, α, ω, µ, σ) = ω
β

αβ
xβ−1i exp

[(
−xi
α

)β]
+ (1− ω)

φ(xi;µ, σ
2)

Φ(µ/σ)
, (13)

where ω represents the mixing proportion of the Weibull distribution with scale param-

eter α and shape parameter β; φ(x, µ, σ2) is the probability density function of a normal

14Krause (2014) developed a method to determine whether a distribution is unimodal or zeromodal,

but gives no insights on the potential bimodality of the income distribution.
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distribution with mean µ and variance σ2 and Φ() represents the cumulative distribution

function of the standard normal distribution.

This functional form has been used by Paap and van Dijk (1998) to estimate the

cross-sectional distribution of income in 120 countries at six periods of time from 1960

to 1989. We rely on their estimates because they are expected to depict bimodal shapes

which are particularly representative of income variables. Figure 3.3 presents the his-

tograms and the kernel density functions of the simulated samples (N = 10000) for

different parameter values. The simulated samples show a variety of shapes of the den-

sity function, going from a unimodal distribution with a heavy right tail to a bimodal

distribution where the two components of the mixture are clearly identified.

To illustrate the situation in which only grouped data is available, we obtain five and

ten income shares from the simulated samples of bimodal distributions to have limited

information with the same structure as the WIID. We also compute the Gini index and

the Atkinson measure setting ε = 0.5, 1, 1.5. These values of the inequality measures are

taken as a benchmark to evaluate the performance of the GB2 family to estimate income

inequality in bimodal distributions. The simulated grouped data is used to estimate

different models of the GB2 family by NLS, deploying the estimation techniques described

in Section 2.2. The corresponding Gini index and Atkinson measures are estimated by

Monte Carlo simulation.

To evaluate the size of the error in the estimation of relative inequality measures,

we calculate the absolute difference between estimated measures with the ones obtained

from the bimodal distributions. A summary of this information is presented in Table 9,

which presents the average error in the estimation of the Gini coefficient and the Atkinson

index for different models of the GB2 family. We have also computed the corresponding

lower bound of these measures to analyse whether the nonparametric approach leads to

more accurate estimates when the underlying income distribution presents two modes.

Our estimates reveal that the gap between the estimation errors of the paramet-

ric and the nonparametric approaches has narrowed substantially with respect to the

previous results (Tables 3, 7 and 8) which are mostly based on unimodal distributions.

As expected, the GB2 seems to provide more accurate estimates of inequality measures

than the three-parameter models. Our results also suggest that this model yields, on

average, more accurate estimates of the Gini index than the lower bound. This result

is also observed for the Atkinson measures that are very sensitive to the left tail of the

distribution. In contrast, when the value of the inequality aversion parameter is low, the

lower bound presents more reliable estimates than the GB2 distribution. It should be

worth mentioning, however, that any of the estimation techniques leads systematically

to more reliable estimates of the inequality measures.15

As previously observed, the size of the estimation error using the nonparametric

approach increases substantially if the estimation is based on five instead of ten income

15The complete results for the six simulated samples are available upon request.
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Figure 3: Histograms and kernel density functions of simulated samples from a mixture

of a Weibull and a truncated normal distribution for different parameter values
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Note: The histograms have been normalised so that the area under the bars is equal to one, making

them comparable with the kernel density functions
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Table 9: Average absolute difference between estimated and observed inequality mea-

sures: ten and five income shares

10 income shares

Lower bound GB2 Beta 2 Singh-Maddala Dagum Lognormal

Gini index 0.0085 0.0071 0.0082 0.0092 0.0110 0.0057

Atkinson index (ε = 0.5) 0.0053 0.0109 0.0153 0.0180 0.0261 0.0093

Atkinson index (ε = 1) 0.0132 0.0162 0.0268 0.0349 0.0535 0.0291

Atkinson index (ε = 1.5) 0.0331 0.0260 0.0532 0.0739 0.1332 0.0576

5 income shares

Gini index 0.0308 0.0181 0.0177 0.0199 0.0213 0.0149

Atkinson index (ε = 0.5) 0.0160 0.0276 0.0258 0.0327 0.0359 0.0148

Atkinson index (ε = 1) 0.0315 0.0119 0.0117 0.0210 0.0285 0.0293

Atkinson index (ε = 1.5) 0.0610 0.0081 0.0109 0.0148 0.0392 0.0571

Note: Results based on simulated samples of size 10000 of mixtures of a Weibull and a normal

distribution with the following parameter values: (β, µ, α, σ, ω)= (2.02, 5.24, 1.4, 6.27, 0.7), (1.79,

6.68, 1.68, 6.5, 0.73), (1.63, 8.29, 2.03, 7.05, 0.73), (1.38, 10.66, 2.76, 3.13, 0.82), (1.35, 11.77, 2.95,

2.18, 0.82), (1.25, 13.32, 3.15, 3.02, 0.84). All inequality measures have been estimated by Monte

Carlo simulation using samples of size N = 106.

shares. It is, therefore, surprising that, on average, it still leads to a better approximation

of the Atkinson index with ε = 0.5 than the GB2 distribution. The estimation of the

parametric models is dominated by the first mode, thus providing an accurate fit for the

bottom part of the distribution at expense of a relatively poor fit at the right tail of the

distribution. Hence, the GB2 tends to yield more accurate estimates to the measures

that are particularly sensitive to the left tail of the distribution.

4 Conclusions

Over the past decades, there has been a growing interest in the distributional patterns

of income in both, the economic literature and the international policy arena. The in-

troduction of the Sustainable Development Goals has highlighted the relevance of this

topic since Goal 10 calls for reducing inequalities in income, thus positioning disparities

as a key concern, not only because wellbeing is a prerogative of all citizens, but also be-

cause sustained development itself is impeded by high inequalities. Although addressing

inequality trends has become essential, individual data on income or consumption is not

often available. Instead, group data from nationally representative surveys are, in most

cases, used to assess the evolution of inequality levels.

In this context of limited information, most prior research on global inequality relies

on lower bounds of inequality measures, constructed under the assumption of equality of
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incomes within each income group. While being an intuitive method, it obviously leads

to biased estimates of inequality measures. To provide reliable results, we must define

more plausible assumptions on income dynamics within incomes shares. In this paper,

we explore the practical implications of using the GB2 family of distributions to esti-

mate income inequality from grouped data. We first focused on the estimation method

by comparing the performance of conventional NLS and optimally-weighted GMM. Our

estimates reveal that NLS yields more accurate estimates of the Gini index than GMM

in most cases. Therefore, when the priority is to obtain unbiased estimates of inequal-

ity measures, NLS should be preferred over GMM, even though it means to sacrifice

asymptotic efficiency.

A potential limitation of using parametric models is the requirement to impose a

particular functional form to describe the income distribution that could lead to biased

estimates in case that the model is not able to represent adequately income dynamics.

Indeed, misspecification bias has been the central argument in favor of using the lower

bound to estimate inequality from grouped data. To address this issue, we have com-

pared the performance of the GB2 family to estimate different inequality measures to

the nonparametric lower bound estimates. Our results suggest that the parametric ap-

proach provides much more accurate results than the conventionally used lower bound,

which seems to notably underestimate inequality measures in most cases. Even the two-

parameter distributions yield more reliable estimates of inequality measures than the

lower bound, although more complex models are generally preferred over the simplest

ones. Only for bimodal distributions, the lower bound and the parametric approach

report estimates of similar precision.

Our estimates suggest, therefore, that much of the research on economic inequality

relies on severely biased estimates. We show that the GB2 distribution provides an

excellent approximation of the income distribution, which yields reliable estimates of

relative inequality measures in virtually all cases. We expect that this strong result

along with the development of the convenient R package GB2group, which deploys the

estimation of this model from grouped data in form of income shares by NLS and GMM,

might contribute to incentivize the use of this model and to obtain improved estimates

on income inequality.
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Appendix

Table 10: Absolute error in the estimation of the Gini index using linear interpolation

and different parametric distributions of the GB2 family

Distribution [0, 0.01) [0.01, 0.02) [0.02, 0.05) [0.05, 0.1) [0.1, )

Lower bound 70.94% 21.54% 6.12% 1.03% 0.37%

GB2 91.4% 5.5% 2.19% 0.79% 0.12%

B2 81.36% 11.91% 5.5% 1.12% 0.12%

SM 77.39% 10.79% 9.55% 2.07% 0.21%

Dagum 67.22% 17.36% 13.35% 1.94% 0.12%

Lognormal 34.23% 23.07% 34.44% 6.82% 1.45%

Fisk 40.55% 25.8% 28.19% 4.96% 0.5%

Weibull 1.16% 1.57% 24.64% 53.12% 19.51%

Note: Results based on 3286 datasets of the WIID. Parametric models

have been estimated by GMM. For the parametric distributions except

the GB2, the Gini coefficient has been estimated using the formulas in

Table 1. The Gini index of the GB2 distribution has been estimated by

Monte Carlo simulation using samples of size N = 106.

Table 11: GOF matrix: Bayesian information criterion (BIC)

GB2 Beta 2 Singh-Maddala Dagum Lognormal Fisk Weibull

GB2 100% 87% 85% 88% 98% 98% 99%

Beta 2 13% 100% 43% 48% 96% 84% 98%

Singh-Maddala 15% 57% 100% 62% 92% 89% 99%

Dagum 12% 52% 38% 100% 87% 89% 99%

Lognormal 2% 4% 8% 13% 100% 45% 95%

Fisk 2% 16% 11% 11% 55% 100% 91%

Weibull 1% 2% 1% 1% 5% 9% 100%

Note: Results based on 5215 datasets of the WIID. Parametric models have been estimated

by GMM.
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Table 12: GOF matrix: Weighted sum of squared residuals

GB2 Beta 2 Singh-Maddala Dagum Lognormal Fisk Weibull

GB2 100% 98% 97% 98% 100% 100% 100%

Beta 2 2% 100% 43% 49% 98% 88% 98%

Singh-Maddala 3% 57% 100% 61% 94% 97% 99%

Dagum 2% 51% 39% 100% 89% 98% 99%

Lognormal 0% 2% 6% 11% 100% 45% 95%

Fisk 0% 12% 3% 2% 55% 100% 91%

Weibull 0% 2% 1% 1% 5% 9% 100%

Note: Results based on 5215 datasets of the WIID. Parametric models have been estimated

by GMM.

Table 13: Absolute difference between estimated and observed inequality measures: 10

income shares

Inequality measure Absolute difference GB2 Beta 2 Singh-Maddala Dagum Lognormal

[0, 0.01) 99.64% 96.04% 92.09% 79.5% 43.88%

Gini [0.01, 0.02) 0.36% 3.6% 37.41% 8.27% 27.34%

Index [0.02, 0.05) 0% 0.36% 34.53% 11.15% 36.33%

[0.05, 0.1) 0% 0% 32.01% 1.08% 9.35%

[0.1, ) 0% 0% 32.01% 0% 6.12%

Atkinson [0, 0.01) 97.84% 96.4% 88.49% 80.94% 71.22%

index (ε = 0.5) [0.01, 0.02) 2.16% 2.16% 38.13% 5.4% 27.34%

[0.02, 0.05) 0% 1.44% 37.41% 12.23% 11.51%

[0.05, 0.1) 0% 0% 32.01% 0.36% 7.19%

[0.1, ) 0% 0% 32.01% 1.08% 5.76%

[0, 0.01) 90.65% 69.42% 82.37% 73.02% 62.59%

Atkinson [0.01, 0.02) 9.35% 28.78% 46.04% 12.95% 28.06%

index (ε = 1) [0.02, 0.05) 0% 1.8% 35.61% 12.59% 19.42%

[0.05, 0.1) 0% 0% 32.01% 0.72% 7.19%

[0.1, ) 0% 0% 32.01% 0.72% 5.76%

[0, 0.01) 47.12% 27.34% 58.63% 43.17% 53.96%

Atkinson [0.01, 0.02) 25.18% 30.22% 50.72% 25.9% 33.81%

index (ε = 1.5) [0.02, 0.05) 26.26% 39.57% 53.24% 26.98% 23.38%

[0.05, 0.1) 1.44% 2.88% 33.45% 3.96% 6.12%

[0.1, ) 0% 0% 32.01% 0% 5.76%

Note: Results based on 278 datasets of the LIS database. Parametric models have been estimated by

GMM. All inequality measures have been estimated by Monte Carlo simulation using samples of size

N = 106.
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Table 14: Absolute difference between estimated and observed inequality measures: 5

income shares

Inequality measure Absolute difference GB2 Beta 2 Singh-Maddala Dagum Lognormal

[0, 0.01) 98.56% 98.92% 92.45% 83.09% 58.27%

Gini [0.01, 0.02) 1.44% 0.72% 4.68% 10.07% 24.46%

Index [0.02, 0.05) 0% 0.36% 3.24% 8.99% 15.83%

[0.05, 0.1) 0% 0% 0.72% 1.08% 1.44%

[0.1, ) 0% 0% 0.36% 1.08% 0%

Atkinson [0, 0.01) 96.4% 97.84% 88.49% 82.01% 85.97%

index (ε = 0.5) [0.01, 0.02) 2.88% 1.08% 7.55% 7.91% 11.87%

[0.02, 0.05) 0.72% 1.08% 3.96% 11.87% 0.72%

[0.05, 0.1) 0% 0% 1.08% 1.44% 1.44%

[0.1, ) 0% 0% 0.36% 1.08% 0%

[0, 0.01) 84.53% 60.07% 80.22% 74.46% 71.94%

Atkinson [0.01, 0.02) 15.11% 34.89% 14.39% 14.39% 24.1%

index (ε = 1) [0.02, 0.05) 0.36% 5.04% 5.4% 13.31% 2.52%

[0.05, 0.1) 0% 0% 1.08% 1.08% 1.44%

[0.1, ) 0% 0% 0.36% 1.08% 0%

[0, 0.01) 42.81% 20.5% 40.65% 41.37% 28.78%

Atkinson [0.01, 0.02) 23.02% 28.42% 26.62% 31.29% 29.5%

index (ε = 1.5) [0.02, 0.05) 32.37% 45.32% 29.86% 25.54% 40.29%

[0.05, 0.1) 1.8% 5.76% 3.96% 5.04% 1.44%

[0.1, ) 0% 0% 0.36% 1.08% 0%

Note: Results based on 278 datasets of the LIS database. Parametric models have been estimated by

GMM. All inequality measures have been estimated by Monte Carlo simulation using samples of size

N = 106.
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