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Abstract 

We examine the use of who-to-whom (w-t-w) matrices to study the local 

propagation dynamics of quantity shocks in investment and financing. To that aim, 

we propose a decomposition of shocks into n-order effects on the basis of an 

“inverse of Leontief” representation of the w-t-w matrices. We further propose an 

eigenvector decomposition of the effects to provide an analytical description of the 

propagation process. This reveals the deep connection between the propagation 

role of economic agents/sectors and their centrality in the w-t-w network. We also 

provide an introduction to the use of the Leontief representation in look-through 

algorithms.        

Keywords: financial accounts, who-to-whom matrices, inverse of Leontief, financial 

networks, eigenvector centrality, shock propagation, look-through, Perron-

Frobenius 
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1. Introduction 

Who-to-whom (w-t-w) matrices extend the standard financial accounts
3
 

presentation of balance-sheets by also tracking counterparty information for both 

assets and liabilities. For instance, the holdings of debt securities by non-financial 

corporations, which are presented within the assets of the sector in the standard 

balance-sheet presentation, are also broken down by sector of the issuer of the 

debt in the w-t-w accounts. A similar breakdown applies to each recorded liability, 

so that e.g. loans received by non-financial corporations are broken down by sector 

of the lender. This applies to all sectors in the system, yielding one matrix of 

creditor/debtor relationships for each financial instrument
4
. 

W-t-w matrices embed information on indirect intersector financing/investment 

patterns and on indirect exposures and risks. Applying appropriate tools, indirect 

exposures and financing dependences between two sectors, say A and B, resulting 

from A’s holdings of liabilities of a third sector C which in turns holds assets on B, 

can be quantified. Likewise, the algebraic structure of the matrices conveys 

information on how assets and liabilities are distributed across the economy via 

direct and indirect links, which can be used to characterise the implicit network of 

financial interrelationships.    

The algebraic properties of the w-t-w matrices can also be seen as providing a 

characterisation of the processes of propagation across sectors of socks affecting 

outstanding amounts of assets and liabilities. Such characterisation can only be 

considered as “local”, implying that no temporal path can be derived from it, but 

rather an analytical, non-time-related decomposition of the shock on the basis of 

the current set of w-t-w interrelationships. 

This paper explores this relationship between the matrix structure and the 

propagation of shocks by using a representation similar to the inverse of Leontief of 

the Input/ Output analysis
5
. The resulting description of the direct and indirect 

propagation effects is further decomposed into contributions by the eigenvectors of 

the “diffusion matrix” (closely related to the inverse of Leontief). This approach 

provides a handle for dimensionality reduction in the description of propagation, 

and a link between the propagation features and the eigenvector centrality score of 

the various sectors in the network of which the diffusion matrix is the matrix 

representation.  

 As indicated, the analytical decomposition proposed does not aim at 

describing the propagation process across time.  Time dynamics would be severely 

affected by the accommodation of the w-t-w algebraic structure to the shocks, an 

issue that it is outside the scope of this paper.     

The annex to this paper also describes the use of the inverse of Leontief 

representation to estimate indirect exposures in a w-t-w framework. This approach 

 

3
 A basic methodological reference for financial accounts and sector accounts is the European System of 

Accounts (Eurostat, 2010). 

4
 See w-t-w tables for the euro area in European Central Bank (2018a). 

5
 See Tsujimura, Mizoshita (2003) for an earlier research on the use of the Leontief framework in the flow 

of funds context. 
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can be used to prepare look-through representations of assets and liabilities. An 

immediate application to households’ portfolios is suggested.    

The rest of the paper is organized as follows. Section 2 introduces a simplified 

w-t-w model with a numerical example and its representation by means of the 

inverse of Leontief. The example will serve to illustrate our approach throughout the 

paper. Section 3 describes how the Leontief representation can be used to express 

the local dynamics of quantity shocks. Section 4 proposes an eigenvector 

decomposition of such dynamics and section 5 discusses its links with eigenvector 

centrality. Section 7 concludes. The annex proposes the use of the inverse of 

Leontief approach for look-through estimates. 

2. Debt diffusion matrices  

Let us assume a simplified economy with four sectors, the non-financial sector (SN 

in Figure 1), a commercial banking sector (S12K), a central bank (S121) and a 

government (S13). We distinguish two kinds of assets, debt, presented on a w-t-w 

basis in Figure 1, and other assets encompassing equity and non-financial assets. 

Figure 1 represents this economy in a tabular form, where elements      denote 

debt assets held by sector i that are liabilities of sector j , i,j indexed from 1 to 4 as 

ordinal numerals of sectors SN, S12K, S121, S13. Elements    are the assets other 

than debt held by sector i , and    the total assets held by sector i.    

Without loss of generality, we further assume that government does not hold 

any asset (       , but does issue debt that we distinctly denote     (          

  , meaning government debt held by sector i. This specific presentation for 

government is also done for the sake of convenience, as the rest of the paper will 

use as an example of quantity shock changes in government debt holdings by the 

other sectors. Total assets held by sector i meets the equality                  

     . 

A simplified w-t-w framework Figure 1 

 

SN: Non-financial sectors; S12K: Commercial banks; S121: Central bank; S13: Government. 

     :debt liabilities of sector j held by sector i ;   : debt issued by government and held by sector i;    : assets other than debt held by 

sector i;    : total assets held by sector i 

   A matrix algebra presentation of the latest equality is: 
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 Where t is the vector  

  
  
  

 , Z the matrix  

            
            
            

 , 1 a 3x1 unitary 

vector and    

  

  

  

 ,    

  

  

  

 . 

Let us now define the elements      
    

  
 , representing the (stock of) financing 

provided by sector i to sector j per unit of (stock of) investment of j. We call the 

matrix    

            
            

            

  the diffusion matrix, its elements representing how 

the investment of the various sectors react to the investment of others (in order to 

finance them).    

Basic manipulation of (1) using the diffusion matrix gives us             

and the expression 

                (1)
6
 

(1) resembles the input-output model,        being the inverse of Leontief 

and the diffusion matrix A corresponding to the technical coefficient matrix in that 

model (Leontief, 1941). Whereas Leontief deals with input per unit of output, we 

consider here financing per unit of investment, but the overall logic behind the two 

representations is the same one. 

The elements in the diffusion matrix in our model have interesting 

interpretations in terms of well-known financial ratios. Thus,      and      are the 

ratios of financing from non-banks and banks, respectively, to the investment of the 

non-financial sectors (also assuming that        , i.e. that the central bank does 

not directly finance the non-financial sectors). The ratios      ,       and      

represent the mix of financing sources for bank investment, indicating how banks 

resort to public funding (typically deposits), interbank financing and central bank 

support, respectively. The sum of the latter ratios,                 ,   is the bank 

leverage ratio, reflecting the capital position of the banking system.      and       

express, as ratios to total central bank investment, the recourse to general public 

financing (banknotes) and commercial banking financing (central bank reserves) by 

the central bank. 

In the rest of the paper we will work with a specific diffusion matrix 

representing a stylised economy: 

   
         
          
      

  

We will also examine a concrete quantity shock, the purchase by the central 

bank of government debt previously held by commercial banks, i.e. a case of 

 

6
 As the sum of elements in the columns of A are smaller than 1, then all eigenvalues have module lower 

than 1 and         exists. 
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quantitative easing. In terms of the vector g above, we have that our shock in 

unitary terms is:  

    
 
  
 
  

And applying (1) we obtain: 

            
 
  
 
   

            
            
            

   
 
  
 
   

    
     
    

  

We see that once the w-t-w structure is considered, as done via the inverse of 

Leontief, the effects of the shock are more complicated than just a reduction and an 

increase in the investment by commercial banks and central banks offsetting each 

other. Central bank investment increases almost one-to-one as expected, but a 

perhaps unexpected small positive effect is exerted on the investment of the non-

financial sector, and the investment of commercial banks does not decay as much 

as would immediately follow from the selling of government debt. 

 Part of the explanation for the latter lies in the fact that banks would have 

received central bank reserves as an immediate counterpart for the debt selling. 

However, the portfolio allocation forces embedded in the w-t-w structure causes 

the bank reserve increases to not totally offset the decline in government debt, and 

a genuine reduction in total bank assets by 36% of the initial quantity shock occurs. 

The central bank would have financed the acquisition of government debt precisely 

with the reserves acquired by the banks, but as the latter is lower than the former 

part of the financing of the debt acquisition is ultimately provided by the non-

financial sector (via banknotes). From the point of view of the non-financial sectors, 

this would have been in substance a portfolio shift (into banknotes) away from 

deposits with banks, mirroring the overall decrease in bank financing needs due to 

the overall reduction in bank investment. 

These are the individual changes in investment and financing derived from the 

shock, and other than the shock itself: 

 

    
                
                
        

 ,                

 Note that, overall, the ultimate financing of the government debt would come 

from the non-financial sector before and after the shock. However, the shock shifts 

such financing from transiting via deposits invested by banks into government debt, 

to travel partially via banknotes, and partially still via deposits, but now invested in 

central bank reserves which are in turn invested in government debt. The latter is a 

sort of third-order investment channel for non-financial sector to finance 

government debt.    

   More in general, the changes in investment and financing triggered by shocks 

are governed by the set of direct and indirect relationships embedded in the w-t-w 

diffusion matrix, including intricate investment/ financing paths of any order, even 

beyond the third-order one referred to above for our example. In the next section 
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we propose a decomposition of the shocks that separates these individual n-order 

effects.  

3. Shock dynamics 

On the basis of the power series representation of the inverse of Leontief, the total 

change in investment produced by a shock can be expressed as follows: 

                                              (2) 

The shock effect gets decomposed into (i) the shock itself -the vector    

indicating the original changes in investment-, (ii) the investment effort needed to 

finance such original investment change – the vector      -, (iii) the investment 

effort needed to finance the investment effort needed to finance the original 

investment change –the vector       - …. and so on into infinite n-order 

investment efforts.  

Figure 2 presents the decomposition into the first 15 orders in the case of our 

example. 

n-order effects on sector investment    
         
          
      

      
 
  
 
  

Figure 2 

 

 

 

  

 The shock itself -or first order effect- consists in a reduction of investment by 

banks and an increase by the central bank. The second-order effect reflects a 

reduction of investment by the non-financial sectors and the central bank as banks 

have reduced their financing requirements. However, the second-order effect is 

positive for banks as a result of increasing investment in central bank reserves. In 

more detail, this latter effect for banks is derived as 

1 2 3 4 5 6 7 15

S1N 0.000 -0.300 0.225 -0.014 0.064 0.019 0.026 … 0.003

S12K -1.000 0.450 -0.073 0.110 0.018 0.040 0.020 … 0.003

S121 1.000 -0.050 0.023 -0.004 0.006 0.001 0.002 … 0.000

order
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           =0.45 

 where it can be seen that the positive result derives from the fact that the 

dependency of the central bank on reserves (70%) is larger than the dependency of 

banks on interbank financing (25%). Although theoretically possible, it is difficult to 

imagine an economy where this ranking of dependencies does not hold. 

The third-order effect for banks turn again negative as a result of the reduction 

in non-financial sector investment and its corresponding financing needs in the 

previous second-order round of effects: 

                                    
    
    
     

         

  Key for this result is the relatively high dependency of the non-financial 

sectors on bank financing (50%) compared with the recourse to interbank financing 

by banks (25%). However, the fact that the second-order effects are more 

pronounced for banks than for the other two sectors dampens the effect of this 

differential in ratios and brings the overall result close to cero. 

The non-financial sectors experience in turn again a positive third-order effect 

as a result of the previous positive second-order effect in bank investment: 

          

                                   
    
    
     

        

The high dependency of banks on deposits and the like (60%), and the fact that 

the second-order positive effect for banks is large are behind this result. 

The alternation of rounds where first the effect on banks is negative and the 

effect on the non-financial sector is positive, and then the reverse happens, would in 

principle repeat itself as one sector catches up the behaviour of the other in the 

previous round. However, this would end up vanishing due to the dampening effect 

mentioned for banks when discussing the third-order effect, as the successive odd 

rounds deliver bank effects closer and closer to zero to eventually become positive. 

This happens as soon as in the fifth round of effects in our example. 

It is important to note that the succession of rounds here described does not 

imply a temporal sequence. They result from the power series representation of the 

inverse of Leontief, which has no implication in terms of time dynamics. The n-order 

effects are to be considered as taking place simultaneously, and the dynamics 

provided to be qualified as “local” (no-time related).  

It can nevertheless be argued that a simultaneous adjustment is not possible in 

the real world, and that the decomposition contains some information on a 

temporal adjustment path. Without discussing whether this is true or not, it must be 

stated that the temporal dynamics would likely be dominated by how the w-t-w 

structure adapts to the shock, and on how such adaptation evolves in time. None of 

these aspects are subject of this paper. 

The Leontief decomposition provides a tool for better understanding the 

effects of the shocks in investment and financing by sector. However, the resulting 
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description of the propagation process is still complicated and does not clearly 

reveal the forces behind the different reactions of the sectors to the shocks. For 

instance, it is not evident why the n-order effects (n> 1, indirect effects) in the 

central bank are so small, nor there is a clear structural feature that can be pointed 

out as causing this and that could be used for making comparisons across 

economies. 

In the next section we take a step further to tackle this and we express the 

sector propagation paths as linear combinations of eigenvectors of the diffusion 

matrix. This would enable us to better characterise the dynamics, and to summarise 

it with fewer information.             

4. Analytical representation of shock propagation  

The n-order effects are the result of applying the diffusion matrix A as an operator 

on the vector containing the (n-1)-order effects, as follows: 

            

Where the vector          contains the (n-1)-order effects. 

Let us call   ,   the matrix of eigenvectors and diagonal matrix of eigenvalues 

of A  -which we assume as diagonalizable, as in our example- respectively, so 

that              and                 (see for instance Meyer, 2000). This 

allows the following representation of the n-effects: 

                        (3) 

The vector           

  
  
  
  contains the components of the shock vector    

expressed in the base of eigenvectors. As             

            
            
            

  

and    

    
    
    

  in our 3x3 example, (3) can also be expressed as follows: 

          
        

    
    
    

    
        

    
    
    

    
        

    
    
    

  (3.a) 

The individual n-order effects being expressed as a linear combination of the 

eigenvectors of the diffusion matrix, weighted by the interaction of the 

corresponding eigenvalues with the components of the shock in the base formed by 

the eigenvectors. Figure 3 presents the eigenvectors of our numerical example. 
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Eigenvectors of    
         
          
      

  
Figure 3 

 

 

 

SN: Non-financial sectors; S12K: Commercial banks; S121: Central bank 

   : eigenvector i ;  
 
              

This presentation would allow us better understanding the features that govern 

the propagation effects and link them to network centrality, as well as perform 

dimensionality reduction to simplify the presentation of the shock dynamics. 

Figure 4 shows the decomposition of the effects on the banking sector (S12K) 

for n>1 (indirect effects). 

Eigenvector decomposition of (n>1)-order effects. Banks (S12K).  

   
         
          
      

      
 
  
 
  

Figure 4 

 

Equation for eigenvalue 0.76 (blue line)  
 

                              

Equation for eigenvalue -0.40 (red line)  
 

                                

Equation for eigenvalue -0.01 (green line)  
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The dynamics after the shock is decomposed into a persistent positive sub-

effect (blue line in Figure 4), and two sign-oscillating sub-effects (red, green) 

inducing the alternation of positive and negative effects described in section 3. The 

nature of the signs as oscillating or not depends on the sign of the corresponding 

eigenvalue, those with positive value (0.76 in our case) delivering a constant sign 

contribution which depends on the sign of the product of the component of the 

shock in the eigenbase (0.16 in our example) and the sector component in the 

eigenvector associated to the eigenvalue (0.73, delivering an overll positive sign 

path). 

The size of the sub-effects depends on the corresponding module
7
 of the 

eigenvalues, the components of the eigenvectors and the components of the shock. 

The persistence of the n-order effects depends on the module of the eigenvalue. 

Thus, the sub-effects linked to the eigenvalue -0.01 (blue line in Figure 4) are 

extremely small and disappearing fast, to the extent that they can be totally ignored 

for characterising the shock dynamics. 

Moreover, the sub-effects linked to -0.40 (red line) start being the largest 

contributions to the n-order effects due to the large impact of the module of the 

eigenvector and shock components, but soon diminish to be clearly outweighed by 

the sub-effects linked to the first, more persistent, larger-module eigenvalue (0.76, 

blue line). The different persistence of the sub-effects can be seen in Figure 5 

showing the accumulation of effects. 

Accumulated (n>1)-sub-effects in eigenvector decomposition. Banks (S12K).  

   
         
          
      

      
 
  
 
  

Figure 5 

 

 

SN: Non-financial sectors; S12K: Commercial banks; S121: Central bank; S13: Government. 

 

As indicated, the third eigenvalue can be totally disregarded, and the second 

eigenvalue only contributes to the first few n-order effects in a sizeable manner. 

Actually, the overall dynamics after the negative shock is clearly dominated by the 

 

7
 Note that eigenvalues, eigenvectors and shocks in the base of eigenvectors are in general complex 

numbers if we allow for diffusion matrices that are diagonalizable in the complex plane. 
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positive sub-effects of the first eigenvalue. This also provides an explanation to why 

the final total effect of the shock is not as negative as the shock itself.  

Similar roles are played by the various eigenvalues for the other two sectors, for 

which a similar simplification of the dynamics can be constructed. More in general, 

higher order non-defective diffusion matrices can be reduced to the dynamics 

caused by the few eigenvalues with the highest module
8
. Moreover, the most 

persistent dynamics is always provided by the eigenvalue with the largest module, 

whose associated eigenvector, and the eigenvalue itself, have some interesting 

properties that will be discussed in the next section for certain types of diffusion 

matrices. 

We can use the decomposition to try and answer the question we put forward 

above on the very low (n>1)-order effects for the central bank. The matrix of the 

absolute value of the eigenvectors is: 

  

        
            
            
            

  

The third row,                 corresponds to the central bank and 

contains the (absolute value of the) coefficients that are multiplicated by powers of 

the eigenvalues to yield the paths of the sub-effects for that sector. We observe that 

the values corresponding to the eigenvalues of higher modules are extremely low 

(0.05 for eigenvalue 0.76, 0.08 for -0.40), while the larger value, 0.61, is associated to 

an eigenvalue of very low module, -0.01. That means that the persistent sub-effects 

stemming from the large-module eigenvalues have a small size (small component in 

the eigenvectors), and large size sub-effects (the large component, 0.61) disappear 

fast because the corresponding eigenvalue is very small
9
.  

The specific central bank sub-effect paths followed would be different (in terms 

of the relative amplitude of the sub-effects) depending on the precise shock and its 

corresponding components in the base of eigenvectors, but the features described 

in the previous paragraph would still apply. They are a consequence of the 

algebraical characteristics of the diffusion matrix and the role of the sector in the 

network of relationships embedded in the w-t-w structure. Section 5 looks into this, 

in particular in relation with the eigenvector associated to the largest-module 

eigenvalue. 

 

8
 This induces a dimensionality reduction similar to Principal Components Analysis (see for instance Abdi 

and Williams, 2010).  

9
 Note that the choice of the specific components of the eigenvectors is arbitrary, and that components 

that are a factor of those here used for a given eigenvalue constitute a suitable eigenvector for such 

eigenvalue as well. That doesn´t mean that the size of the sub-effects are arbitrary, as the 

components of the shocks in the base of eigenvectors would also be different and get divided by 

the same factor by which the eigenvectors have been multiplied.   
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5. Shock propagation and network centrality 

The w-t-w data can be seen as a network of interrelationships in which the nodes –

the elements interlinked in the network- are institutional sectors and the edges –the 

links between nodes- are asset/liability links. The edges in the network would be 

“weighted” by the amounts involved in every asset/liability relationship
10

. 

In network analysis, eigenvector centrality is a measure of the influence of the 

various nodes in the network. It consists in an array of scores for nodes that satisfy 

the principle that higher scores are assigned to nodes that are highly connected to 

nodes that in turn have high scores themselves. It is therefore a metrics of a 

recursive nature capturing second, third and higher orders of influence in the 

network. The concept is therefore particularly well suited to emphasising the 

importance of indirect links in measuring interconnectedness
11

.   

The “eigenvector centrality” scores correspond to the components of an 

eigenvector associated to a specific eigenvalue of the weight matrix (the matrix 

representation of the network). The specific eigenvalue, called Perron-Fobrenius 

eigenvalue, is the one of maximum module, which can be proved to be real and 

positive for non-negative “irreducible matrices”, i.e. for matrices that can be 

associated to strongly connected directed networks/graphs (graphs that present 

direct or indirect connections between any pair of nodes), and unique for a 

subsector of such matrices, called “primitive matrices”, whose associated graphs 

present paths between nodes of lengths that are coprimes (it is a sufficient 

condition for a irreducible matrix to be primitive to have a positive value in its 

diagonal). Moreover, it is guaranteed for irreducible matrices that an eigenvector 

can be chosen associated to the Perron-Fobrenius eigenvalue with all components 

strictly positive (Perron-Frobenius Theorem)1213
. 

Turning to the diffusion matrix A of our example, the most persistent path for 

banks (and also for the other two sectors), identified in blue in Figures 4 and 5, is 

nothing but the one associated to the Perron-Frobenius eigenvalue as just defined 

for eigenvector centrality for the network associated to A (which is a primitive 

matrix). The associated eigenvector components are both the size of the persistent 

 

10
 For network representations of w-t-w data, see for instance Castrén and Rancan (2013) and Antoun de 

Almeida (2015). Also see w-t-w graphs for the euro area in European Central Bank (2018b). 

11
 See an example of the use of this concept of centrality with w-t-w data in Girón and Matas-Mir (2017). 

12
 For a reference, see for instance Newman (2010). 

13
 The specific characteristic of a Perron-Fobrenius eigenvector that makes it suitable for measuring 

centrality is the following property: for any vector   , it exists a Perron-Fobrenius eigenvector,    , 

such as 

       
 

 
 
 

    ,  

Where    ,    are the Perron-Fobrenius eigenvalue and the weight matrix (matrix representing the 

network edge weights) respectively. In particular for    , the unitary vector, it results that 

              
 

 
 
 

 
   

 
   for all    components of the eigenvector. 

Put it somewhat less formally, it exists an integer sufficiently large q, such as           

        
 
     for any       , i.e. the components (centrality scores) in    are approximately distributed as 

the row sums of the (sufficiently large) power of the weight matrix. 
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propagation sub-effect for each sector and the centrality score for each sector. They 

are essentially the same thing. 

We know from the Perron-Fobrenius Theorem that such maximum-module 

eigenvalue is a unique positive real number for matrices with certain characteristics. 

As a consequence, the sing of the associated most-persistent sub-effect is constant, 

not oscillating for all sectors and all diffusion matrices of the same kind as A (non-

defective primitive matrices), not only a specific characteristic of our concrete 

example. Moreover, we also know from the Theorem that the components of the 

associated eigenvectors are all of the same sign (usually taken positive). The specific 

sing of the Perron-Frobenius sub-effects by sector entirely depends then on the 

sign of the shock components in the basis of eigenvectors.  

We can claim that the relative size by sector of the most persistent sub-effect is 

fundamentally nothing but the expression of the relative centrality of the sectors 

(the components in the Perron-Frobenius eigenvector). Being the most persistent, 

these Perron-Frobenius sub-effects dominate the indirect (n>1)-order effects of the 

shocks. We can therefore also claim that the accumulated size of indirect effects 

responds to the sector centrality.  

Coming back to the question in section 3 on the small size of the indirect 

effects for the central bank in our example, we can now say that this is due to its low 

centrality in the w-t-w network, and that the structural parameter that indicates this 

is its (low) score in eigenvector centrality
14

.    

6. Summary and further developments 

In this paper we have illustrated, on the basis of a simplified example, the use of a 

Leontief representation for w-t-w financial matrices. This serves in particular to 

study the propagation dynamics of quantity shocks in investment and financing by 

making use of a Leontief power series expansion.  

Assuming certain regularities in the w-t-w algebraic structure, the dynamics is 

decomposed into contributions by the eigenvectors of the diffusion matrix, the 

matrix containing the ratios of financing by counterpart sector per unit of 

investment by sector measured in stock terms. The dynamics of the direct and 

indirect effects emerge as linear combinations of declining trajectories associated to 

the eigenvalues of the matrix, weighted on the components of the shocks in the 

base of eigenvectors. The trajectory weights change from sector to sector on the 

basis of the components of the eigenvectors associated to the corresponding 

eigenvalues/trajectories. 

The decomposition in sub-effects allows for a reduction of dimensionality as 

only the few largest eigenvalues do have a sizeable contribution to the overall 

dynamics. Moreover, beyond the few first indirect effects, the dynamics is 

 
14

 Note that this should not be understood as a cause-effect relationship by virtue of which an 

independent feature regarding centrality causes the size of the indirect effects. Actually the 

definition itself of eigenvector centrality is making reference to the algebraic structure of the matrix 

behind the network, and therefore implicitly referring to the decomposition we proposed in section 

4. Centrality and size of the indirect propagation effects are actually two ways of referring to the 

same thing.  
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dominated by the Perron-Frobenius eigenvalue, the one with largest module and 

inducing the most persistent trajectory. The components of the eigenvector of this 

eigenvalue are therefore key to understanding the distribution of indirect effects 

across sectors. These components are a well-known network centrality metrics: 

eigenvector centrality. 

The proposed framework can be used to decompose effects caused by quantity 

shocks of any nature. The shock used as a way of example in this paper is described 

as a case of central bank quantitative easing affecting the volume of assets held by 

the relevant sectors, but any other kind of shock affecting the distribution of stock 

value can be considered, including price shocks. Given that the dynamics provided 

are of local nature -i.e. they are not describing temporal adjustment paths- it might 

be argued that the representation is more appropriate to characterise price shocks, 

as their propagation can be thought as close to instantaneous. The Leontief 

approach would then provide an analytical tool for combining sector account data 

(w-t-w matrices) and macroprudential analysis of risk dependencies and price shock 

propagation.  

Future research should tackle the lack of temporal dimension in the description 

of the propagation process. While large structural changes in the w-t-w 

relationships would be difficult to model, very short-term changes might be studied 

on the basis of the literature on eigenvalue perturbations. Thus, bounds can be 

established for the changes in eigenvalues -and therefore in the associated 

trajectories- exerted by perturbations in line with the Bauer-Fike Theorem (see for 

instance Wei et al., 2006), from which boundaries for time paths might be derived. 

Moreover, Bauer-Fike bounds depend on the eigenvector structure of the (diffusion) 

matrix, which would allow making statements regarding the relative stability of the 

propagation features of comparable diffusion matrices. 

Beyond the use to characterise propagation effects, the Leontief representation 

can be used to extract other relevant information from the w-t-w data. The annex to 

this note proposes, for example, a usage for look-trough algorithms. Once the 

specific Leontief representation is implemented, and provided that the supporting 

matrices meet the regularities indicated in this paper, the same techniques here 

used for propagation can also be used in those other contexts, allowing as well for 

eigenvector decomposition, dimensionality reduction and linkages with network 

centrality.   



 Restricted 

 

Name of publication 17 
 

References 

Abdi, H., and Williams, L.J. (2010). "Principal component analysis" Wiley 

Interdisciplinary Reviews: Computational Statistics. 2 (4): 433–459 

Antoun de Almeida, L. (2015), “A Network Analysis of Sectoral Accounts: Identifying 

Sectoral Interlinkages in G-4 Economies” IMF Working Papers WP/15/111 

Boutillier M., Lévy N. and Oheix V. (2007), “Financial intermediation in developed 

countries: heterogeneity, lengthening and risk transfer”, EconomiX Working paper, 

No. 22 

Cardillo, A and Coletta, M (2017), “Gli investimenti delle famiglie attraverso i 

prodotti italiani del risparmio gestito”, Banca d’Italia Ocassional Papers, 409  

Castrén, O. and Rancan, M. (2013), “Macro-Networks: an Application to Euro Area 

Financial Accounts”, ECB Working Papers No. 1510 

European Central Bank (2018, a), Euro Area Accounts, Who-to-whom detail, web 

http://sdw.ecb.europa.eu/reports.do?node=1000002345 

European Central Bank (2018, b), Financing and Investment Dynamics, Euro Area 

Statistics, web https://www.euro-area-statistics.org/financing-and-investment-

dynamics?cr=eur&lg=en 

Eurostat (2013), “European System of Accounts. ESA 2010” 

Gadsby, R. and Girón, C. (2009) "Institutional Investors in the Euro Area Accounts", 

Chapter in "The IFC's contribution to the 57th ISI Session, Durban, August 2009" 

(edited in 2010); IFC Bulletin No. 33, BIS 

Girón, C. and Matas-Mir, A. (2017), “Interconnectedness of shadow banks in the 

euro area”, IFC Bulletin No. 46, BIS 

Leontief, W. (1941), “The Structure of American Economy, 1919-1939”, Oxford 

University Press, New York 

Marionnet D. (2009), “The final financial investment of French households”, OECD 

Statistics Working Papers 2009/02 

Meyer, C. (2000), “Matrix analysis and applied linear algebra”, SIAM 

Newman, M.E.J. (2010), “Networks: An Introduction”, Oxford University Press 

Pavot, J, (2017), “The Final destination of Household financial wealth”, presentation 

at the Banca d’Italia Conference 'How Financial Systems Work: Evidence from 

Financial Accounts' (Rome, 30 November, 1 December 2017) 

Tsujimura, K. and Mizoshita, M. (2003), "Asset-Liability-Matrix Analysis Derived from 

Flow of-Funds Accounts: the Bank of Japan's Quantitative Monetary Policy 

Examined," Economic Systems Research, 15 (1), 51—67 

Wei, Y ; Li, X; Bu, F and Zhang, F (2006) “Relative perturbation bounds for the 

eigenvalues of diagonalizable and singular matrices – Application of perturbation 

theory for simple invariant subspaces” in “Linear Algebra and its Applications” 419 

765–771 

  



Restricted  

 

18 Name of publication 
 

Annex: “look through” algorithms 

Look through analysis aims at unveiling indirect exposures of investors to final 

debtors. Most of the literature focuses on indirect exposures via institutional 

investors
15

, but also via all financial institutions
16

. The look-trough analysis typically 

lies on available detailed granular data, but it might also require the use of iterative 

algorithms to cover for the absence of such data for some instruments or sectors. 

The algorithms make use of shares of holdings as resulting from w-t-w macro data, 

assuming that such holdings can be proportionally applied to calculate indirect 

exposures. This annex proposes a Leontief kind of representation of w-t-w data that 

can serve to generalise such algorithms. 

Let us call      
    

  
 to the ratios of assets of sector i to sector j (    ) to the total 

assets of sector i (   ) for a given (set of) asset(s). The matrix             -where 

some         are set to zero when a given indirect exposure is disregarded (because 

no sufficient risk pass-through exists)- and the vectors                  , of total 

asset by counterpart sector, can be used to calculate the first-order indirect 

exposures of sector i as       . 

The sum of direct and first-order indirect exposures would be                

             , the term             capturing direct exposures that have been 

reallocated as first-order indirect exposures (1 being a unitary vector, and   being 

the Hadamard operator). 

An example helps understand the mechanics of this calculation. Let us assume 

a five-sector economy where only one sector gives rise to indirect exposures (say 

the financial sector). Then, for instance:  

   

 

 
 

            
            
            

        
        
        

            
            

        
         

 
 

 

   To calculate direct and first-order indirect exposures of a sector (say 

households) with a total asset vector                     17 we apply 

the expression above to get: 

  

 

15
 Gadsby and Girón (2009), Marionnet (2009), Cardillo and Coletta (2017) 

16
 Boutillier et al.(2007), Pavot, (2017) 

17
 This example is taken from a numerical illustration in Pavot (2017) 
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A more general pass-through matrix (with more than one sector inducing 

indirect exposures) could be:  

   

 

 
 

            
            
            

        
        
        

            
            

        
         

 
 

 

In which case … 

                          
                                  

                  

The second-order exposures respond to the expression             , i.e. the 

first-order indirect exposures of the first-order indirect exposures, and the sum of 

direct, first-order and second-order exposures is                     
   

                     , where                      are the sum of direct 

exposures reallocated as first-order indirect exposures and of the first-order indirect 

exposures in turn reallocated as second-order indirect exposures. 

In our first example we have: 
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And in the second: 
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In general, n-order exposures will be of the form        
  , and the sum of all 

exposures up to n-order 

                   
          

                        
            

When      ,the two sum members above contain the power series expansion 

of the inverse of Leontief in B, i.e. 

                                  (4) 

Applying (4) with     we obtain the final portfolio allocation 

                      for    we get                 . 

(4), with an appropriate choice of the elements in B, provides a generalisation 

of look-trough algorithms for asset allocation in accordance with ultimate 

exposures.  

Note that a similar generalisation can be derived for liabilities allocation vis-à-

vis ultimate investors through the expression: 

                            
       (5) 

Where          ,      
    

  
,       

    
 

    
 ,    is the total liabilities of sector j. 


