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Chapter 1: Early Approaches to Index Number Theory 

 

1. Introduction 
 

There are three main purposes for which it is desirable to measure the average rate of 

change in consumer prices going from a base period 0 to a comparison period 1 for a well 

defined household or group of households that pertains to a well specified value 

aggregate (which defines which commodity transactions are in scope or to be included in 

the value aggregate): 

 

 As a summary measure of the overall rate of price change that the specified group 

faces over the two periods being compared for the value aggregate under 

consideration. Households in the specified group will generally be interested in 

this summary number as will governments and central bankers. 

 As a deflator for the value aggregate under consideration. Deflating the value 

ratio by the price index gives us the rate of growth of the corresponding quantity 

aggregate and this rate of growth can often be given a welfare change 

interpretation. Taking the household sector as a whole, the System of National 

Accounts requires a deflator for household expenditures. 

 As a compensation or indexation measure. Governments or private employers 

may want to index benefit or salary levels to ensure that the indexed entitlement 

                                                 
1
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or salary level in the current period is “equivalent” in some sense to the base level 

of entitlement or salary. The relevant value aggregates for this purpose should be 

based on the expenditures of the recipients of entitlements or of the employees in 

the indexation group.  

 

It can be seen that the first two uses are really complimentary aspects of the same 

problem, which is to decompose a ratio of value aggregates for two periods into a price 

change component times a quantity change component. However, constructing an index 

for the third purpose is more difficult, since a proportion of an entitlement or a salary can 

be saved rather than spent on consumer goods and services and so the determination of 

the relevant value aggregate is not so easy. Another significant problem is that alternative 

treatments of purchases of consumer durables can lead to very different entitlement 

indexes. 

 

Restricting attention to uses 1 and 2 above, it can be seen that the index number problem 

in dealing with demographic groups (e.g., pensioners) or with a restricted commodity 

classification (e.g., expenditures are restricted to an agreed on universe of “essential” 

commodities) is more or less the same as dealing with the entire household sector but the 

practical problem facing index number producers is the lack of data (or more accurately, 

the higher costs of collecting detailed expenditure and price data for demographic groups 

of households). 

 

In practice, the problems facing statistical agencies producing consumer price indexes are 

more complicated than indicated above. With respect to the first two uses listed above, 

the theoretical approaches to index number theory that will be explained in the first two 

Chapters of these Notes apply to situations where complete price and quantity 

information on the same N goods and services in the household aggregate is available for 

the two periods being compared. Unfortunately, this idealized situation does not apply to 

the real world for a number of reasons: 

 

 The existence of strongly seasonal commodities; i.e., these are commodities such 

as Christmas trees and clothing items such as swim suits that are available for 

only certain months of the year. Thus the list of commodities that are comparable 

changes from month to month. 

 The introduction of new products and the disappearance of older products that 

have been rendered obsolete by technical progress. Again, this means that the list 

of comparable commodities changes from month to month. 

 Product churn and temporary shortages of stock. Many retailers rotate their 

choice of brands that they will stock on their shelves for various reasons. Once 

again, this leads to a lack of comparability of products in the aggregate across 

months. 

 The existence of durable goods. Thus a particular household may purchase a 

consumer durable (such as a motor vehicle or a house) in the base period but not 

purchase it in the following period. However, the household will still enjoy the 

services of the previously purchased consumer durable in the comparison period. 
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All of the above problems lead to a lack of matching of purchases of products across the 

two periods being compared and this creates problems for all approaches to index number 

theory. We will attempt to deal with the above problems in these Notes.  

 

2. Overview of the Notes 
 

At the outset, it should be recognized that no consumer or producer price index will be 

conceptually perfect: data limitations and cost considerations will prevent the “perfect” 

index from being produced. However, it will be useful to introduce the various idealized 

types of index that have been suggested in the literature on index number theory over the 

past 200 years. These idealized indexes are called target indexes. There are four main 

approaches to the determination of the functional form for a target price index that 

compares the prices (and associated quantities) between two periods: 

 

 Fixed basket and averages of fixed basket approaches; 

 The test or axiomatic approach; 

 The stochastic approach and  

 The economic approach. 

 

The first three approaches listed above will be covered in this chapter;
2
 the economic 

approach is deferred until Chapter 2.
3
 

 

Practical consumer and producer price indexes are constructed in two stages: 

 

 A first stage at the lowest level of aggregation where price information is 

available but associated expenditure or quantity information is not available and 

 A second stage of aggregation where expenditure information is available at a 

higher level of aggregation. 

 

The aggregates that pertain to the first stage of aggregation are called elementary 

aggregates. Again, theories for “ideal” or “best” target indexes can be developed in this 

situation where price information is available but not quantity or expenditure information. 

The two approaches that have been developed in this context are: 

 

 The test approach and  

 The stochastic approach. 

 

Thus the theories for the target index in the elementary aggregate context parallel the 

theories developed when both price and quantity information is available, except that the 

                                                 
2
 The first three approaches can be applied in the consumer or producer price index context. The economic 

approach is a bit different in the producer and consumer contexts and these differences will be explained in 

Chapter 2. However, in most of these Notes, we will concentrate on the consumer or household context. 
3
 The material in this section largely parallels the material on index number theory that is laid out in the 

Consumer Price Index Manual; see the ILO/IMF/OECD/UNECE/Eurostat/The World Bank (2004; 263-

327). For brevity, in the future, we will refer to the CPI Manual as ILO (2004). A considerable part of the 

materials presented in these notes is drawn from an unpublished report, Diewert (2012).  
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fixed basket and economic approaches cannot be applied in the elementary index context. 

The remaining two approaches to the construction of elementary indexes (the test and 

stochastic approaches) will be discussed in Chapter 4 below.
4
 

 

All of the above theories for target indexes apply to situations where only the prices of 

two months (or quarters in the case of Australia and New Zealand) are being compared 

and the comparison formulae do not depend on the prices and quantities of any other 

month. This is termed bilateral index number theory since only two situations are being 

compared. However, in comparing prices (or aggregate quantities or volumes) across 

countries, it is necessary to make comparisons over more than two countries. This leads 

us into multilateral index number theory and it will be considered Chapter 3. It turns out 

that multilateral index number theory also plays an important role when making time 

series comparisons of prices as we shall see in Chapters 5 and 7.     

 

Unfortunately, the materials on bilateral and multilateral index number theory do not deal 

with all of the complications that are encountered when constructing a Consumer Price 

Index. When a practical Consumer Price Index is constructed, an annual expenditure 

basket pertaining to a past year is used at higher levels of aggregation and at the 

elementary level of aggregation; the prices of twelve consecutive months are compared 

with the corresponding prices in December or January. The resulting price index is 

known as a Lowe index in the literature and in Chapter 5, we will give an overview of this 

methodology. 

 

Chapter 6 discusses the problems that are associated with the existence of seasonal 

commodities.
5
   

 

The Consumer Price Index Manual recommended the use of maximum overlap 

superlative indexes
6
 in the context of producing useful month to month consumer price 

indexes with seasonal commodities. But the evidence in Feenstra and Shapiro (2003), 

Ivancic, Diewert and Fox (2011) and de Haan and van der Grient (2011) shows that these 

maximum overlap indexes can be subject to a tremendous chain drift problem. Thus in 

Chapter 7, a new method for constructing month to month indexes that avoids the chain 

drift problem due to Balk (1981), Ivancic, Diewert and Fox (2011) and de Haan and van 

der Grient (2011) will be discussed. This method is known as the Rolling Year GEKS 

method.
7
  

 

In Chapter 7, a new method due to de Haan and Krsinich (2012) for constructing 

elementary indexes will also be explained: the Rolling Year Time Product Dummy 

method (RYTPD method). This is a stochastic approach to elementary indexes that is an 

adaptation of a method suggested by Summers (1973). It is similar in spirit to the Rolling 

                                                 
4
 Most of the material in Chapter 4 is also presented in the ILO (2004; 355-371).  

5
 Much of the material in this section is also presented in the ILO (2004; 393-417). However, since this 

Consumer Price Index Manual material was written, some new evidence on seasonal indexes has become 

available due to Diewert, Finkel and Artsev (2009) and this new material is reviewed in Chapter 6.  
6
 Superlative indexes will be explained in Chapter 2. 

7
 If the window length is different from 12 or 13 months, then the method is known as the Rolling Window 

GEKS Method. 
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Year GEKS method, except that the Rolling Year TPD method uses only price 

information instead of both price and quantity information. 

 

Chapter 8 illustrates the methods proposed in Chapters 6 and 7 using an Israeli data set on 

fresh vegetables. This Chapter shows that the various methods proposed in Chapters 6 

and 7 to deal with seasonal commodities and the problem of chain drift can be 

implemented by statistical agencies, provided that they undertake a continuous household 

expenditure survey so that reasonably up to data monthly or quarterly expenditure data 

are available to construct families of CPIs.  

 

Finally, Chapter 9 concludes with some recommendations for statistical agency practices 

based on the contents of the previous chapters.  

 

In the following sections of this Chapter, we turn to the problem of choosing an explicit 

index number formula. In the following section, we will discuss three of the four main 

approaches that are in use today to justify various functional forms for the price index 

when complete price and quantity data for the value aggregate are available for a number 

of periods. As mentioned above, when the comparison of price changes is restricted to 

two periods, the price index that constructs an average measure of price change is called a 

bilateral index number formula. In the following sections of this Chapter, attention is 

restricted to two period comparisons but of course, if one period is held fixed (called the 

base period), then a bilateral price index formula can be used to make a sequence of price 

comparisons over a number of subsequent periods.  

 

3. Setting the Stage 
 

It will be useful to set the stage for the subsequent discussion of alternative approaches 

by defining more precisely what the index number problem is. 

 

We specify two accounting periods, t = 0,1 for which we have micro price and quantity 

data for N commodities pertaining to transactions by a consumer (or a well defined group 

of consumers). Denote the price and quantity of commodity n in period t by pn
t
 and qn

t
 

respectively for n = 1,2,…,N and t = 0,1. Before proceeding further, we need to discuss 

the exact meaning of the microeconomic prices and quantities if there are multiple 

transactions for say commodity n within period t. In this case, it is natural to interpret qn
t
 

as the total amount of commodity n transacted within period t. In order to conserve the 

value of transactions, it is necessary that pn
t
 be defined as a unit value 

8
; i.e., pn

t
 must be 

equal to the value of transactions for commodity n during period t divided by the total 

quantity transacted, qn
t
. For t = 0,1, define the value of transactions in period t as:   

 

(1) V
t
  n=1

N
 pn

t
 qn

t
  p

t
q

t
 

 

                                                 
8
 The early index number theorists Walsh (1901; 96), Fisher (1922; 318) and Davies (1924; 96) all 

suggested  unit values as the prices that should be inserted into an index number formula. This advice is  

followed in the Consumer Price Index Manual: Theory and Practice with the proviso that the unit value be 

a narrowly defined one; see the ILO (2004; 356).  
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where p
t
 (p1

t
,…, pN

t
) is the period t price vector, q

t
 (q1

t
,…, qN

t
) is the period t quantity 

vector and p
t
q

t
 denotes the inner product of these two vectors. 

 

Using the above notation, we can now state the following levels version of the index 

number problem using the test or axiomatic approach: for t = 0,1, find scalar numbers P
t
 

and Q
t
 such that 

 

(2) V
t
 = P

t
Q

t
. 

 

The number P
t
 is interpreted as an aggregate period t price level while the number Q

t
 is 

interpreted as an aggregate period t quantity level. The aggregate price level P
t
 is allowed 

to be a function of the period t price vector, p
t
 while the aggregate period t quantity level 

Q
t
 is allowed to be a function of the period t quantity vector, q

t
; i.e., we have 

 

(3) P
t
 = c(p

t
) and Q

t
 = f(q

t
)  ;  t = 0,1. 

  

However, from the viewpoint of the test approach to index number theory, the levels 

approach to finding aggregate quantities and prices comes to an abrupt halt: Eichhorn 

(1978; 144) showed that if the number of commodities N in the aggregate is equal to or 

greater than 2 and we restrict c(p
t
) and f(q

t
) to be positive if the micro prices and 

quantities pn
t
 and qn

t
 are positive, then there do not exist any functions c and f such that 

c(p
t
)f(q

t
) = p

t
q

t
 for all p

t
 >> 0N and q

t
 >> 0N.

9
  

 

This negative result can be reversed if we take the economic approach to index number 

theory. In this approach, we assume that the economic agent has a linearly homogeneous 

utility function, f(q), and when facing the prices p
t
 chooses q

t
 to solve the following cost 

minimization problem: 

 

(4) min q {p
t
q : f(q)  u

t
 = f(q

t
) } = p

t
q

t
  Y

t
 ;                                                           t = 0,1;                                            

 

where period t “income” Y
t
 is defined as p

t
q

t
. In this setup, it turns out that c(p) is the 

unit cost function that is dual
10

 to the linearly homogeneous utility function f(q) and we 

can define P
t
 and Q

t
 as in (3) with P

t
Q

t
 = c(p

t
)f(q

t
) = p

t
q

t
 for t = 0,1. Why does the 

economic approach work in the levels version of the index number problem whereas the 

test approach does not? In the test approach, both p
t
 and q

t
 are regarded as completely 

independent variables, whereas in the economic approach, p
t
 can vary independently but 

q
t
 cannot vary independently; it is a solution to the period t cost minimization problem (4). 

 

Even though the economic approach to the index number problem as formulated above 

“works”, it is not a practical solution that statistical agencies can implement and provide 

suitable aggregates to the public. In order to implement this solution, the statistical 

agency would have to hire hundreds of econometricians in order to estimate cost 

                                                 
9
 Notation: p >> 0N means all components of p are positive; p  0N means all components of p are 

nonnegative and p > 0N means p  0N but p  0N. Finally, pq  n=1
N
 pnqn. 

10
 See Diewert (1974) (1993b) for materials and references to the literature on duality theory. 



 7 

functions for all relevant macroeconomic aggregates and it is simply not feasible to do 

this. Thus we turn to our second formulation of the index number problem and it is this 

formulation that was initiated by Fisher (1911) (1922) in his two books on index number 

theory. 

 

In the second approach to index number theory, instead of trying to decompose the value 

of the aggregate into price and quantity components for a single period, we instead 

attempt to decompose a value ratio for the two periods under consideration into a price 

change component P times a quantity change component Q.
11

 Thus we now look for two 

functions of 4N variables, P(p
0
,p

1
,q

0
,q

1
) and Q(p

0
,p

1
,q

0
,q

1
) such that:

12
 

 

(5) p
1
q

1
/p

0
q

0
 = P(p

0
,p

1
,q

0
,q

1
)Q(p

0
,p

1
,q

0
,q

1
). 

 

If we take the test approach, then we want equation (5) to hold for all positive price and 

quantity vectors pertaining to the two periods under consideration, p
0
,p

1
,q

0
,q

1
. If we take 

the economic approach, then only the price vectors p
0
 and p

1
 are regarded as independent 

variables while the quantity vectors, q
0
 and q

1
, are regarded as dependent variables. 

 

In this second approach to index number theory, the price index P(p
0
,p

1
,q

0
,q

1
) and the 

quantity index Q(p
0
,p

1
,q

0
,q

1
) cannot be determined independently; i.e., if either one of 

these two functions is determined, then the remaining function is implicitly determined 

using equation (5). Historically, the focus has been on the determination of the price 

index but Fisher (1911; 388) was the first to realize that once the price index was 

determined, then equation (5) could be used to determine the companion quantity index.
13

  

This value ratio decomposition approach to index number is called bilateral index 

number theory and its focus is the determination of “reasonable” functional forms for P 

and Q. Fisher’s 1911 and 1922 books address this functional form issue using the test 

approach. 

 

We turn now to a discussion of the various approaches that have been used to determine 

the functional form for the bilateral price index, P(p
0
,p

1
,q

0
,q

1
). 

 

4. Fixed Basket Approaches to Bilateral Index Number Theory  
 

A very simple approach to the determination of a price index over a group of 

commodities is the fixed basket approach. In this approach, we are given a basket of 

commodities that is represented by the positive quantity vector q. Given the price vectors 

                                                 
11

 Looking ahead to the economic approach which will be explained in more detail in Chapter 2, P will be 

interpreted to be the ratio of unit cost functions, c(p
1
)/c(p

0
), and Q will be interpreted to be the utility ratio, 

f(q
1
)/f(q

0
). Note that the linear homogeneity assumption on the utility function f effectively cardinalizes 

utility. 
12

 If N = 1, then we define P(p1
0
,p1

1
,q1

0
,q1

1
)  p1

1
/p1

0
 and Q(p1

0
,p1

1
,q1

0
,q1

1
)  q1

1
/q1

0
, the single price ratio 

and the single quantity ratio respectively. In the case of a general N, we think of P(p1
0
,p1

1
,q1

0
,q1

1
) as being a 

weighted average of the price ratios p1
1
/p1

0
, p2

1
/p2

0
, ..., pN

1
/pN

0
. Thus we interpret P(p1

0
,p1

1
,q1

0
,q1

1
) as an 

aggregate price ratio, P
1
/P

0
, where P

t
 is the aggregate price level for period t for t = 0,1.   

13
 This approach to index number theory is due to Fisher (1911; 418) who called the implicitly determined 

Q, the correlative formula. Frisch (1930; 399) later called (5) the product test. 
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for periods 0 and 1, p
0
 and p

1
 respectively, we can calculate the cost of purchasing this 

same basket in the two periods, p
0
q and p

1
q. Then the ratio of these costs is a very 

reasonable indicator of pure price change over the two periods under consideration, 

provided that the basket vector q is “representative”. Thus define the Lowe (1823) price 

index, PLo, as follows: 

 

(6) PLo(p
0
,p

1
,q)  p

1
q/p

0
q . 

 

As time passed, economists and price statisticians demanded a bit more precision with 

respect to the specification of the basket vector q. There are two natural choices for the 

reference basket: the period 0 commodity vector q
0
 or the period 1 commodity vector q

1
. 

These two choices lead to the Laspeyres (1871) price index PL defined by (7) and the 

Paasche (1874) price index PP defined by (8):
14

 

 

(7) PL(p
0
,p

1
,q

0
,q

1
)  p

1
q

0
/p

0
q

0
 = n=1

N
 sn

0
(pn

1
/pn

0
) ;  

 

(8) PP(p
0
,p

1
,q

0
,q

1
)  p

1
q

1
/p

0
q

1
 = [n=1

N
 sn

1
(pn

1
/pn

0
)
1

]
1

 

 

where the period t expenditure share on commodity n, sn
t
, is defined as pn

t
qn

t
/p

t
q

t
 for n = 

1,…,N and t = 0,1. Thus the Laspeyres price index PL can be written as a base period 

expenditure share weighted average of the N price ratios (or price relatives), pn
1
/pn

0
.
15

 

The last equation in (8) shows that the Paasche price index PP can be written as a period 1 

(or current period) expenditure share weighted harmonic average of the N price ratios.
16

 

 

The problem with these index number formulae is that they are equally plausible but in 

general, they will give different answers. This suggests that if we require a single 

estimate for the price change between the two periods, then we should take some sort of 

evenly weighted average of the two indexes as our final estimate of price change between 

periods 0 and 1. Examples of such symmetric averages are the arithmetic mean, which 

leads to the Drobisch (1871) Sidgwick (1883; 68) Bowley (1901; 227)
17

 index, (1/2)PL + 

(1/2)PP, and the geometric mean, which leads to the Fisher (1922) ideal index, PF, 

defined as 

 

(9) PF(p
0
,p

1
,q

0
,q

1
)  [PL(p

0
,p

1
,q

0
,q

1
) PP(p

0
,p

1
,q

0
,q

1
)]

1/2
 . 

 

At this point, the fixed basket approach to index number theory has to draw on the test 

approach to index number theory; i.e., in order to determine which of these fixed basket 

                                                 
14

 Note that PL(p
0
,p

1
,q

0
,q

1
) does not actually depend on q

1
 and PP(p

0
,p

1
,q

0
,q

1
) does not actually depend on q

0
. 

However, it does no harm to include these vectors and the notation indicates that we are in the realm of 

bilateral index number theory. Note also that Drobisch (1871) proposed both the Laspeyres and Paasche 

indexes in passing but he dismissed them; Drobisch preferred a unit value index of prices (which is not 

useful when aggregating over commodities that are measured in heterogeneous units). 
15

 This result is due to Walsh (1901; 428 and 539). 
16

 This expenditure share and price ratio representation of the Paasche index is described by Walsh (1901; 

428) and derived explicitly by Fisher (1911; 365). 
17

 See Diewert (1992) (1993a) and Balk (2008) for additional references to the early history of index 

number theory. 
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indexes or which averages of them might be “best”, we need criteria or tests or 

properties that we would like our indexes to satisfy. 

 

What is the “best” symmetric average of PL and PP to use as a point estimate for the 

theoretical cost of living index? It is very desirable for a price index formula that depends 

on the price and quantity vectors pertaining to the two periods under consideration to 

satisfy the time reversal test.
18

 We say that the index number formula P(p
0
,p

1
,q

0
,q

1
)  

satisfies this test if 

 

(10)  P(p
1
,p

0
,q

1
,q

0
) = 1/P(p

0
,p

1
,q

0
,q

1
)  ; 

 

i.e., if we interchange the period 0 and period 1 price and quantity data and evaluate the 

index, then this new index P(p
1
,p

0
,q

1
,q

0
) is equal to the reciprocal of the original index 

P(p
0
,p

1
,q

0
,q

1
). 

 

Diewert (1997; 138) showed that the Fisher ideal price index defined by (9) above is the 

only index that is a homogeneous symmetric mean of the Laspeyres and Paasche price 

indexes, PL and PP, and satisfies the time reversal test (10) above. Thus our first 

symmetric basket approach to bilateral index number theory leads to the Fisher index (9) 

as being “best” from the perspective of this approach.
19

 

 

Instead of looking for a “best” average of the two fixed basket indexes that correspond to 

the baskets chosen in either of the two periods being compared, we could instead look for 

a “best” average basket of the two baskets represented by the vectors q
0
 and q

1
 and then 

use this average basket to compare the price levels of periods 0 and 1.
20

 Thus we ask that 

the nth quantity weight, qn, be an average or mean of the base period quantity qn
0
 and the 

period 1 quantity for commodity n qn
1
, say m(qn

0
,qn

1
), for n = 1,2,…,N.

21
 Price 

statisticians refer to this type of index as a pure price index and it corresponds to Knibbs’ 

(1924; 43) unequivocal price index. Under these assumptions, the pure price index can be 

defined as a member of the following class of index numbers: 

 

(11)  PK(p
0
,p

1
,q

0
,q

1
)  n=1

N
 pn

1
m(qn

0
,qn

1
) / j=1

N
 pj

0
m(qj

0
,qj

1
). 

 

                                                 
18

 The concept of this test is due to Pierson (1896; 128), who was so upset with the fact that many of the 

commonly used index number formulae did not satisfy this test (and the commensurability test to be 

discussed later) that he proposed that the entire concept of an index number should be abandoned. More 

formal statements of the test were made by Walsh (1901; 324) and Fisher (1922; 64). 
19

 Bowley was an early advocate of taking a symmetric average of the Paasche and Laspeyres indexes: “If 

[the Paasche index] and [the Laspeyres index] lie close together there is no further difficulty; if they differ 

by much they may be regarded as inferior and superior limits of the index number, which may be estimated 

as their arithmetic mean … as a first approximation.” Arthur L. Bowley (1901; 227). Fisher (1911; 418-

419) (1922) considered taking the arithmetic, geometric and harmonic averages of the Paasche and 

Laspeyres indexes.  
20

 Walsh (1901) (1921a) and Fisher (1922) considered both averaging strategies in their classic studies on 

index numbers. 
21

 Note that we have chosen the mean function m(qn
0
,qn

1
) to be the same for each commodity n. Marshall 

(1887) and Edgeworth (1925) recommended that m be the arithmetic mean whereas Walsh (1901) (1921a) 

recommended the use of the geometric mean. 
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In order to determine the functional form for the mean function m, it is necessary to 

impose some tests or axioms on the pure price index defined by (11). Suppose that we 

impose the time reversal test (10) and the following invariance to proportional changes 

in current quantities test: 

 

(12) P(p
0
,p

1
,q

0
,q

1
) = P(p

0
,p

1
,q

0
,q

1
) for all   > 0. 

 

Diewert (2001; 207) showed that these two tests determine the precise functional form 

for the pure price index PK defined by (11) above: the pure price index PK must be the 

Walsh (1901; 398) (1921a; 97) price index, PW
22

 defined by (13): 

 

(13)  PW(p
0
,p

1
,q

0
,q

1
)  n=1

N
 pn

1
(qn

0
qn

1
)
1/2

/j=1
N
 pj

0
(qj

0
qj

1
)
1/2

 . 

 

Thus the fixed basket approach to bilateral index number theory starts out with the 

Laspeyres and Paasche price indexes. Some form of averaging of these two indexes is 

called for since both indexes are equally plausible. Averaging these two indexes directly 

leads to the Fisher ideal index PF defined by (9) as being “best” while a direct averaging 

of the two quantity baskets q
0
 and q

1
 leads to the Walsh price index PW defined by (13) as 

being “best”. 

 

We turn now to another early approach to the index number problem. 

 
5. Stochastic and Descriptive Statistics Approaches to Index Number Theory 

 

The (unweighted) stochastic approach to the determination of the price index can be 

traced back to the work of Jevons (1865) (1884) and Edgeworth (1888) (1896) (1901) 

over a hundred years ago23. 
 

The basic idea behind the stochastic approach is that each price relative, pn
1
/pn

0
 for n = 

1,2,…,N, can be regarded as an estimate of a common inflation rate  between periods 0 

and 1; i.e., Jevons and Edgeworth essentially assumed that 

 

(14) pn
1
/pn

0
 =  + n  ;  n = 1,2,…,N 

 

where  is the common inflation rate and the n are random variables with mean 0 and 

variance 
2
. The least squares estimator for  is the Carli (1804) price index PC defined 

as 

                                                 
22

 Walsh endorsed PW as being the best index number formula: “We have seen reason to believe formula 6 

better than formula 7. Perhaps formula 9 is the best of the rest, but between it and Nos. 6 and 8 it would be 

difficult to decide with assurance.” C.M. Walsh (1921a; 103). His formula 6 is PW defined by (13) and his 9 

is the Fisher ideal defined by (9) above. His formula 8 is the formula p
1
q

1
/p

0
q

0
QW(p

0
,p

1
,q

0
,q

1
), which is 

known as the implicit Walsh price index where QW(p
0
,p

1
,q

0
,q

1
) is the Walsh quantity index defined by (13) 

except the role of prices and quantities is interchanged. Thus although Walsh thought that his Walsh price 

index was the best functional form, his implicit Walsh price index and the “Fisher” formula were not far 

behind. 
23

 For additional references to the early literature, see Diewert (1993a; 37-38) (1995b) and Balk (2008; 32-

36). 
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(15) PC(p
0
,p

1
)  n=1

N
 (1/N)(pn

1
/pn

0
). 

 

Unfortunately, PC does not satisfy the time reversal test, i.e., PC(p
1
,p

0
)  1/PC(p

0
,p

1
)
24

. 

 

Now assume that the logarithm of each price relative, ln(pn
1
/pn

0
), is an independent 

unbiased estimate of the logarithm of the inflation rate between periods 0 and 1,  say. 

Thus we have: 
 

(16) ln(pn
1
/pn

0
) =  + n  ;  n = 1,2,…,N 

 

where   ln and the n are independently distributed random variables with mean 0 and 

variance 
2
. The least squares or maximum likelihood estimator for  is the logarithm of 

the geometric mean of the price relatives. Hence the corresponding estimate for the 

common inflation rate  is the Jevons (1865) price index PJ defined as: 

 

(17) PJ(p
0
,p

1
)  n=1

N
 (pn

1
/pn

0
)
1/N

. 

 

The Jevons price index PJ does satisfy the time reversal test and hence is much more 

satisfactory than the Carli index PC. However, both the Jevons and Carli price indexes 

suffer from a fatal flaw: each price relative pn
1
/pn

0
 is regarded as being equally important 

and is given an equal weight in the index number formulae (15) and (17).
25

 Keynes 

(1930; 76-81) also criticized the unweighted stochastic approach to index number theory 

on two other grounds: (i) price relatives are not distributed independently and (ii) there is 

no single inflation rate that can be applied to all parts of an economy; e.g., Keynes 

demonstrated empirically that wage rates, wholesale prices and final consumption prices 

all had different rates of inflation. In order to overcome the Keynesian criticisms of the 

unweighted stochastic approach to index numbers, it is necessary to: 

 

 have a definite domain of definition for the index number and 

 weight the price relatives by their economic importance. 

 

Theil (1967; 136-137) proposed a solution to the lack of weighting in (15). He argued as 

follows. Suppose we draw price relatives at random in such a way that each dollar of 

expenditure in the base period has an equal chance of being selected. Then the probability 

that we will draw the nth price relative is equal to sn
0
  pn

0
qn

0
/p

0
q

0
, the period 0 

expenditure share for commodity n. Then the overall mean (period 0 weighted) 

                                                 
24

 In fact Fisher (1922; 66) noted that PC(p
0
,p

1
)PC(p

1
,p

0
)  1 unless the period 1 price vector p

1
 is 

proportional to the period 0 price vector p
0
; i.e., Fisher showed that the Carli index has a definite upward 

bias. Walsh (1901; 327) established this inequality for the case N = 2. Fisher urged users to abandon the use 

of the Carli index but his advice was generally ignored by statistical agencies until recently: “In fields other 

than index numbers it is often the best form of average to use. But we shall see that the simple arithmetic 

average produces one of the very worst of index numbers. And if this book has no other effect than to lead 

to the total abandonment of the simple arithmetic type of index number, it will have served a useful 

purpose.”  Irving Fisher (1922; 29-30).  
25

 Walsh (1901) (1921a; 82-83), Fisher (1922; 43) and Keynes (1930; 76-77) all objected to the lack of 

weighting in the unweighted stochastic approach to index number theory. 
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logarithmic price change is n=1
N
 sn

0
ln(pn

1
/pn

0
). Now repeat the above mental experiment 

and draw price relatives at random in such a way that each dollar of expenditure in period 

1 has an equal probability of being selected. This leads to the overall mean (period 1 

weighted) logarithmic price change of n=1
N
 sn

1
ln(pn

1
/pn

0
). Each of these measures of 

overall logarithmic price change seems equally valid so we could argue for taking a 

symmetric average of the two measures in order to obtain a final single measure of 

overall logarithmic price change. Theil (1967; 137) argued that a nice symmetric index 

number formula can be obtained if we make the probability of selection for the nth price 

relative equal to the arithmetic average of the period 0 and 1 expenditure shares for 

commodity n. Using these probabilities of selection, Theil's final measure of overall 

logarithmic price change is 

 

(18)  lnPT(p
0
,p

1
,q

0
,q

1
)  n=1

N
 (1/2)(sn

0
+sn

1
)ln(pn

1
/pn

0
). 

 

It is possible to give a descriptive statistics interpretation of the right hand side of (18). 

Define the nth logarithmic price ratio rn by: 

 

(19)   rn  ln(pn
1
/pn

0
)    for n = 1,…,N. 

 

Now define the discrete random variable, R say, as the random variable which can take 

on the values rn with probabilities n  (1/2)(sn
0
+sn

1
) for n = 1,…,N. Note that since each 

set of expenditure shares, sn
0
 and sn

1
, sums to one, the probabilities n will also sum to 

one. It can be seen that the expected value of the discrete random variable R is 

lnPT(p
0
,p

1
,q

0
,q

1
) as defined by the right hand side of (18). Thus the logarithm of the index 

PT can be interpreted as the expected value of the distribution of the logarithmic price 

ratios in the domain of definition under consideration, where the N discrete price ratios in 

this domain of definition are weighted according to Theil’s probability weights, n. 

 

Taking antilogs of both sides of (18), we obtain the Theil price index; PT.
26

 This index 

number formula has a number of good properties. In particular, PT satisfies the time 

reversal test (10) and the linear homogeneity test (12).
27

   

 

Additional material on stochastic approaches to index number theory and references to 

the literature can be found in Rao (1990) (1999) (2001) (2002) (2004), Selvanathan and 

Rao (1994), Diewert (1995b) (2004), Wynne (1997), Clements, Izan and Selvanathan 

(2006) and Balk (2008; 32-36) 

 

6. Test Approaches to Index Number Theory 
28

 

 

                                                 
26

 This index first appeared explicitly as formula 123 in Fisher (1922; 473). PT is generally attributed to 

Törnqvist (1936) but this article did not have an explicit definition for PT; it was defined explicitly in 

Törnqvist and Törnqvist (1937); see Balk (2008; 26).  
27

 For a listing of some of the tests that PT, PF, and PW satisfy, see Diewert (1992; 223). In Fisher (1922), 

these indexes were listed as numbers 123, 353 and 1153 respectively.  
28

 The material in this section is based on Diewert (1992) where more detailed references to the literature 

on the origins of the various tests can be found.  
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Recall equation (5) above, which set the value ratio, V
1
/V

0
, equal to the product of the 

price index, P(p
0
,p

1
,q

0
,q

1
), and the quantity index, Q(p

0
,p

1
,q

0
,q

1
). This is called the 

Product Test and we assume that it is satisfied. This equation means that as soon as the 

functional form for the price index P is determined, then (5) can be used to determine the 

functional form for the quantity index Q. However, a further advantage of assuming that 

the product test holds is that we can assume that the quantity index Q satisfies a 

“reasonable” property and then use (5) to translate this test on the quantity index into a 

corresponding test on the price index P.
29

 

 

If N = 1, so that there is only one price and quantity to be aggregated, then a natural 

candidate for P is p1
1
/p1

0
 , the single price ratio, and a natural candidate for Q is q1

1
/q1

0
 , 

the single quantity ratio. When the number of commodities or items to be aggregated is 

greater than 1, then what index number theorists have done over the years is propose 

properties or tests that the price index P should satisfy. These properties are generally 

multi-dimensional analogues to the one good price index formula, p1
1
/p1

0
. Below, we list 

twenty-one tests that turn out to characterize the Fisher ideal price index. 

 

We shall assume that every component of each price and quantity vector is positive; i.e., 

p
t
  > > 0N  and q

t
  > > 0N  for t = 0,1. If we want to set q

0
 = q

1
, we call the common 

quantity vector q; if we want to set p
0
 = p

1
, we call the common price vector p. 

 

Our first two tests are not very controversial and so we will not discuss them. 

 

T1: Positivity: P(p
0
,p

1
,q

0
,q

1
) > 0. 

  

T2: Continuity: P(p
0
,p

1
,q

0
,q

1
) is a continuous function of its arguments. 

 

Our next two tests are somewhat more controversial. 

  

T3: Identity or Constant Prices Test:   P(p,p,q
0
,q

1
) = 1. 

 

That is, if the price of every good is identical during the two periods, then the price index 

should equal unity, no matter what the quantity vectors are. The controversial part of this 

test is that the two quantity vectors are allowed to be different in the above test.
30

 

 

T4:     Fixed Basket or Constant Quantities Test: P(p
0
,p

1
,q,q) = i=1

N
 pi

1
qi /i=1

N
 pi

0
qi. 

             

That is, if quantities are constant during the two periods so that q
0
 = q

1
  q, then the price 

index should equal the expenditure on the constant basket in period 1, i=1
N
 pi

1
qi, divided 

by the expenditure on the basket in period 0, i=1
N
 pi

0
qi. 

 

                                                 
29

 This observation was first made by Fisher (1911; 400-406). Vogt (1980) also pursued this idea. 
30

 Usually, economists assume that given a price vector p, the corresponding quantity vector q is uniquely 

determined. Here, we have the same price vector but the corresponding quantity vectors are allowed to be 

different. 
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The following four tests are homogeneity tests and they restrict the behavior of the price 

index P as the scale of any one of the four vectors p
0
,p

1
,q

0
,q

1
 changes. 

  

T5:     Proportionality in Current Prices: P(p
0
,p

1
,q

0
,q

1
) = P(p

0
,p

1
,q

0
,q

1
) for    > 0. 

 

That is, if all period 1 prices are multiplied by the positive number , then the new price 

index is  times the old price index. Put another way, the price index function 

P(p
0
,p

1
,q

0
,q

1
) is (positively) homogeneous of degree one in the components of the period 

1 price vector p
1
. Most index number theorists regard this property as a very fundamental 

one that the index number formula should satisfy.  

 

Walsh (1901) and Fisher (1911; 418) (1922; 420) proposed the related proportionality 

test P(p,p,q
0
,q

1
) = . This last test is a combination of T3 and T5; in fact Walsh (1901, 

385) noted that this last test implies the identity test, T3. 

 

In our next test, instead of multiplying all period 1 prices by the same number, we 

multiply all period 0 prices by the number . 

 

T6: Inverse Proportionality in Base Period  Prices: P(p
0
,p

1
,q

0
,q

1
) =  

1
P(p

0
,p

1
,q

0
,q

1
) for  

  > 0. 

 

That is, if all period 0 prices are multiplied by the positive number , then the new price 

index is 1/ times the old price index. Put another way, the price index function 

P(p
0
,p

1
,q

0
,q

1
) is (positively) homogeneous of degree minus one in the components of the 

period 0 price vector p
0
. 

 

The following two homogeneity tests can also be regarded as invariance tests. 

  

T7:  Invariance to Proportional Changes in Current Quantities: P(p
0
,p

1
,q

0
,q

1
) = 

P(p
0
,p

1
,q

0
,q

1
) for all   > 0. 

 

That is, if current period quantities are all multiplied by the number , then the price 

index remains unchanged. Put another way, the price index function P(p
0
,p

1
,q

0
,q

1
) is 

(positively) homogeneous of degree zero in the components of the period 1 quantity 

vector q
1
. Vogt (1980, 70) was the first to propose this test and his derivation of the test is 

of some interest. Suppose the quantity index Q satisfies the quantity analogue to the price 

test T5; i.e., suppose Q satisfies Q(p
0
,p

1
,q

0
,q

1
) = Q(p

0
,p

1
,q

0
,q

1
) for    > 0. Then using 

the product test (5), we see that P must satisfy T7. 

 

T8:  Invariance to Proportional Changes in Base Quantities: P(p
0
,p

1
,q

0
,q

1
) = 

P(p
0
,p

1
,q

0
,q

1
) for all   > 0. 

 

That is, if base period quantities are all multiplied by the number , then the price index 

remains unchanged. Put another way, the price index function P(p
0
,p

1
,q

0
,q

1
) is 

(positively) homogeneous of degree zero in the components of the period 0 quantity 
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vector q
0
. If the quantity index Q satisfies the following counterpart to T8: 

Q(p
0
,p

1
,q

0
,q

1
) = 

1
Q(p

0
,p

1
,q

0
,q

1
) for all  > 0, then using (5), the corresponding price 

index P must satisfy T8. This argument provides some additional justification for 

assuming the validity of T8 for the price index function P. 

 

T7 and T8 together impose the property that the price index P does not depend on the 

absolute magnitudes of the quantity vectors q
0
 and q

1
. 

   

The next five tests are invariance or symmetry tests. Fisher (1922; 62-63, 458-460) and 

Walsh (1921b; 542) seem to have been the first researchers to appreciate the significance 

of these kinds of tests. Fisher (1922, 62-63) spoke of fairness but it is clear that he had 

symmetry properties in mind. It is perhaps unfortunate that he did not realize that there 

were more symmetry and invariance properties than the ones he proposed; if he had 

realized this, it is likely that he would have been able to provide an axiomatic 

characterization for his ideal price index. Our first invariance test is that the price index 

should remain unchanged if the ordering of the commodities is changed: 

 

T9:  Commodity Reversal Test (or invariance to changes in the ordering of commodities):   

 P(p
0*

,p
1*

,q
0*

,q
1*

) = P(p
0
,p

1
,q

0
,q

1
) 

 

where p
t*

 denotes a permutation of the components of the vector p
t
 and q

t*
 denotes the 

same permutation of the components of q
t 
for t = 0,1. This test is due to Irving Fisher 

(1922), and it is one of his three famous reversal tests. The other two are the time reversal 

test and the factor reversal test which will be considered below. 

 

T10:  Invariance to Changes in the Units of Measurement (commensurability test):   

 P(1p1
0
,...,NpN

0
; 1p1

1
,...,NpN

1
; 1

1
q1

0
,...,N

1
qN

0
; 1

1
q1

1
,...,N

1
qN

1
) = 

 P(p1
0
,...,pN

0
; p1

1
,...,pN

1
; q1

0
,...,qN

0
; q1

1
,...,qN

1
) for all  1 > 0, …, N > 0. 

 

That is, the price index does not change if the units of measurement for each commodity 

are changed. The concept of this test was due to Jevons (1884; 23) and the Dutch 

economist Pierson (1896; 131), who criticized several index number formula for not 

satisfying this fundamental test. Fisher (1911; 411) first called this test the change of 

units test and later, Fisher (1922; 420) called it the commensurability test. 

 

T11:  Time Reversal Test:  P(p
0
,p

1
,q

0
,q

1
) = 1/P(p

1
,p

0
,q

1
,q

0
). 

 

That is, if the data for periods 0 and 1 are interchanged, then the resulting price index 

should equal the reciprocal of the original price index. Obviously, in the one good case 

when the price index is simply the single price ratio; this test is satisfied (as are all of the 

other tests listed in this section). When the number of goods is greater than one, many 

commonly used price indexes fail this test; e.g., the Laspeyres (1871) price index, PL 

defined earlier by (7), and the Paasche (1874) price index, PP defined earlier by (8), both 

fail this fundamental test. The concept of the test was due to Pierson (1896; 128), who 

was so upset with the fact that many of the commonly used index number formulae did 

not satisfy this test, that he proposed that the entire concept of an index number should be 
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abandoned. More formal statements of the test were made by Walsh (1901; 368) (1921b; 

541) and Fisher (1911; 534) (1922; 64). 

 

Our next two tests are more controversial, since they are not necessarily consistent with 

the economic approach to index number theory. However, these tests are quite consistent 

with the weighted stochastic approach to index number theory discussed earlier in section 

3.3. 

  

T12:  Quantity Reversal Test (quantity weights symmetry test):  

          P(p
0
,p

1
,q

0
,q

1
) = P(p

0
,p

1
,q

1
,q

0
). 

 

That is, if the quantity vectors for the two periods are interchanged, then the price index 

remains invariant. This property means that if quantities are used to weight the prices in 

the index number formula, then the period 0 quantities q
0
 and the period 1 quantities q

1
 

must enter the formula in a symmetric or even handed manner. Funke and Voeller (1978; 

3) introduced this test; they called it the weight property. 

 

The next test is the analogue to T12 applied to quantity indexes: 

  

T13:  Price Reversal Test (price weights symmetry test):  

 

{i=1
N
 pi

1
 qi

1
/i=1

N
 pi

0
 qi

0
}/P(p

0
,p

1
,q

0
,q

1
) = {i=1

N
 pi

0
 qi

1
/i=1

N
 pi

1
 qi

0
}/P(p

1
,p

0
,q

0
,q

1
). 

 

Thus if we use (5) to define the quantity index Q in terms of the price index P, then it can 

be seen that T13 is equivalent to the following property for the associated quantity index 

Q: Q(p
0
,p

1
,q

0
,q

1
) = Q(p

1
,p

0
,q

0
,q

1
). That is, if the price vectors for the two periods are 

interchanged, then the quantity index remains invariant. Thus if prices for the same good 

in the two periods are used to weight quantities in the construction of the quantity index, 

then property T13 implies that these prices enter the quantity index in a symmetric 

manner. 

 

The next three tests are mean value tests. 

 

T14:  Mean Value Test for Prices: 

         mini {pi
1
/pi

0
 : i=1,...,N}  P(p

0
,p

1
,q

0
,q

1
)  maxi {pi

1
/pi

0
 : i = 1,...,N}. 

 

That is, the price index lies between the minimum price ratio and the maximum price 

ratio. Since the price index is supposed to be some sort of an average of the N price ratios, 

pi
1
/pi

0
, it seems essential that the price index P satisfy this test.  

 

The next test is the analogue to T14 applied to quantity indexes: 

      

T15:  Mean Value Test for Quantities: 

         mini {qi
1
/qi

0
 : i=1,...,N}  {V

1
/V

0
}/ P(p

0
,p

1
,q

0
,q

1
)  maxi {qi

1
/qi

0
 : i = 1,...,N} 
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where V
t
 is the period t value aggregate V

t
  n=1

N
 pn

t
qn

t
 for t = 0,1. Using (5) to define 

the quantity index Q in terms of the price index P, we see that T15 is equivalent to the 

following property for the associated quantity index Q: 

 

(20) mini {qi
1
/qi

0
 : i=1,...,N}  Q(p

0
,p

1
,q

0
,q

1
)  maxi {qi

1
/qi

0
 : i = 1,...,N}. 

  

That is, the implicit quantity index Q defined by P lies between the minimum and 

maximum rates of growth qi
1
/qi

0
 of the individual quantities. 

 

In section 4, we argued that it was very reasonable to take an average of the Laspeyres 

and Paasche price indexes as a single “best” measure of overall price change. This point 

of view can be turned into a test:      

 

T16:  Paasche and Laspeyres Bounding Test:  The price index P lies between the 

Laspeyres and Paasche indices, PL and PP, defined earlier by (7) and (8) above. 

 

The final four tests are monotonicity tests; i.e., how should the price index P(p
0
,p

1
,q

0
,q

1
) 

change as any component of the two price vectors p
0
 and p

1
 increases or as any 

component of the two quantity vectors q
0
 and q

1
 increases. 

 

T17:  Monotonicity in Current Prices: P(p
0
,p

1
,q

0
,q

1
) < P(p

0
,p

2
,q

0
,q

1
) if p

1
 < p

2
. 

 

That is, if some period 1 price increases, then the price index must increase, so that 

P(p
0
,p

1
,q

0
,q

1
) is increasing in the components of p

1
. This property was proposed by 

Eichhorn and Voeller (1976; 23) and it is a very reasonable property for a price index to 

satisfy. 

 

T18:  Monotonicity in Base Prices: P(p
0
,p

1
,q

0
,q

1
) > P(p

2
,p

1
,q

0
,q

1
) if p

0
 < p

2
.  

  

That is, if any period 0 price increases, then the price index must decrease, so that 

P(p
0
,p

1
,q

0
,q

1
) is decreasing in the components of p

0
 . This very reasonable property was 

also proposed by Eichhorn and Voeller (1976; 23). 

 

T19:  Monotonicity in Current Quantities: if  q
1
 < q

2
, then   

         {i=1
N
 pi

1
 qi

1
/ i=1

N
 pi

0
 qi

0
}/P(p

0
,p

1
,q

0
,q

1
) < {i=1

N
 pi

1
 qi

2
/ i=1

N
 pi

0
 qi

0
}/P(p

0
,p

1
,q

0
,q

2
). 

 

T20:  Monotonicity in Base Quantities: if  q
0
 < q

2
, then   

         {i=1
N
 pi

1
 qi

1
/ i=1

N
 pi

0
 qi

0
}/P(p

0
,p

1
,q

0
,q

1
) > {i=1

N
 pi

1
 qi

1
/ i=1

N
 pi

0
 qi

2
}/P(p

0
,p

1
,q

2
,q

1
).  

  

If we define the implicit quantity index Q that corresponds to P using (5), we find that 

T19 translates into the following inequality involving Q: 

 

(21)  Q(p
0
,p

1
,q

0
,q

1
) < Q(p

0
,p

1
,q

0
,q

2
) if q

1
 < q

2
. 
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That is, if any period 1 quantity increases, then the implicit quantity index Q that 

corresponds to the price index P must increase. Similarly, we find that T20 translates 

into: 

 

(22)  Q(p
0
,p

1
,q

0
,q

1
) > Q(p

0
,p

1
,q

2
,q

1
) if q

0
 < q

2
. 

 

 

 

That is, if any period 0 quantity increases, then the implicit quantity index Q must 

decrease. Tests T19 and T20 are due to Vogt (1980, 70). 

 

The final test is Irving Fisher’s (1921; 534) (1922; 72-81) third reversal test (the other 

two being T9 and T11): 

 

T21:  Factor Reversal Test (functional form symmetry test):    

          P(p
0
,p

1
,q

0
,q

1
) P(q

0
,q

1
,p

0
,p

1
) = i=1

N
 pi

1
qi

1
/ i=1

N
 pi

0
qi

0
 = V

1
/V

0
. 

 

A justification for this test is the following one: if P(p
0
,p

1
,q

0
,q

1
) is a good functional form 

for the price index, then if we reverse the roles of prices and quantities, P(q
0
,q

1
,p

0
,p

1
) 

ought to be a good functional form for a quantity index (which seems to be a correct 

argument) and thus the product of the price index P(p
0
,p

1
,q

0
,q

1
) and the quantity index 

Q(p
0
,p

1
,q

0
,q

1
) = P(q

0
,q

1
,p

0
,p

1
) ought to equal the value ratio, V

1
/V

0 
. The second part of 

this argument does not seem to be valid and thus many researchers over the years have 

objected to the factor reversal test.  

 

It is straightforward to show that the Fisher ideal price index PF defined earlier by (9) 

satisfies all 21 tests. Is this the only index number formula that satisfies all of these tests? 

The answer is yes: Funke and Voeller (1978; 180) showed that the only index number 

function P(p
0
,p

1
,q

0
,q

1
) which satisfies T1 (positivity), T11 (time reversal test), T12 

(quantity reversal test) and T21 (factor reversal test) is the Fisher ideal index PF defined 

by (9). Diewert (1992; 221) proved a similar result: namely that if P satisfied T1 and the 

three reversal tests T11-T13, then P must equal PF.  

 

Thus it seems that from the perspective of the above test approach to index number 

theory, the Fisher ideal index satisfies more “reasonable” tests than competing indexes 

and hence can be regarded as “best” from the viewpoint of this perspective. 

 

There is another perspective to the test approach to index number theory. The above 

approach looked at axioms or tests that pertained to situations where the price index was 

a function of the two price vectors, p
0
 and p

1
, and the two matching quantity vectors, q

0
 

and q
1
. In this framework, the two quantity vectors essentially act as weights for the 

prices. However, there is an alternative framework where the price index, say 

P
*
(p

0
,p

1
,e

0
,e

1
), is regarded as a function of the two price vectors, p

0
 and p

1
, and the two 
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matching expenditure vectors, e
0
 and e

1
.
31

 An axiomatic approach to the determination of  

the functional form for indexes of this type is developed in the ILO (2004; 307-309) and 

the Törnqvist index defined earlier by (18) emerges as “best” from the perspective of this 

second test approach to index number theory. Thus both the Fisher and Törnqvist indexes 

can be given strong axiomatic justifications.        

 

There is one final important test that should be added to the above list of tests and that is 

the following circularity test 
32

 which involves looking at the prices and quantities that 

pertain to three periods: 

 

T22:  Circularity Test: P(p
0
,p

1
,q

0
,q

1
) P(p

1
,p

2
,q

1
,q

2
) = P(p

0
,p

2
,q

0
,q

2
). 

 

If this test is satisfied, then the rate of price change going from period 0 to 1, 

P(p
0
,p

1
,q

0
,q

1
), times the rate of price change going from period 1 to 2, P(p

1
,p

2
,q

1
,q

2
), is 

equal to the rate of price change going from period 0 to 2 directly, P(p
0
,p

2
,q

0
,q

2
). If there 

is only one commodity in the aggregate, then the price index P(p
0
,p

1
,q

0
,q

1
) just becomes 

the single price ratio, p1
1
/p1

0
, and the circularity test T22 becomes the equation 

[p1
1
/p1

0
][p1

2
/p1

1
] = [p1

2
/p1

0
], which is obviously satisfied. The equation in the circularity 

test illustrates the difference between chained index numbers and fixed base index 

numbers. The left hand side of T22 uses the chain principle to construct the overall 

inflation between periods 0 and 2 whereas the right hand side uses the fixed base 

principle to construct an estimate of the overall price change between periods 0 and 1.
33

            

 

It would be good if our preferred index number formulae, the Fisher, Walsh and 

Törnqvist indexes (PF, PW and PT), satisfied the circularity test but unfortunately, none of 

these indexes satisfy T22. Thus if any of these indexes are used by a statistical agency, 

then the question arises: should the sequence of index values be computed using fixed 

base indexes or chained indexes? The remainder of this section will attempt to address 

this question. 

 

The first point to note is that fixed base indexes cannot be used for long periods of time in 

today’s dynamic economy where new commodities appear and older ones become 

obsolete. Under these conditions, it becomes increasingly difficult to match commodity 

prices over long periods of time and index number theory is dependent on a high degree 

of matching of the prices between the two periods being compared. However, this 

possible lack of matching does not rule out using fixed base indexes for shorter periods of 

time, say over a year or two.  

                                                 
31

 Component n of the period t expenditure vector e
t
 is defined as en

t
  pn

t
qn

t
 for n = 1,...,N and t = 0,1. Thus 

if the price components pn
t
 are known, then a knowledge of either the quantity components qn

t
 or the 

expenditure components en
t
 will determine prices, quantities and expenditures in both periods.  

32
 The test name is due to Fisher (1922; 413) and the concept was originally due to Westergaard (1890; 

218-219). 
33

 Thus when the chain principle is used, the price index P(p
t
,p

t+1
,q

t
,q

t+1
) is used to update the period t index 

level to construct the period t+1 index level, whereas the fixed base system constructs the period t+1 index 

level relative to period 0 directly as P(p
0
,p

t+1
,q

0
,q

t+1
), where the period 0 level is set equal to 1. Fisher 

(1911; 203) introduced this fixed base and chain terminology. The concept of chaining is due to Lehr 

(1885) and Marshall (1887; 373).  
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The main advantage of using chained indexes is that if prices and quantities are trending 

relatively smoothly, chaining will reduce the spread between the Paasche and Laspeyres 

indexes.
34

  These two indexes each provide an asymmetric perspective on the amount of 

price change that has occurred between the two periods under consideration and it could 

be expected that a single point estimate of the aggregate price change should lie between 

these two estimates. Thus the use of either a chained Paasche or Laspeyres index will 

usually lead to a smaller difference between the two and hence to estimates that are closer 

to the “truth”. Since annual data generally has smooth trends, the use of chained indexes 

is generally appropriate at this level of aggregation; see Hill (1993; 136-137).  

 

However, the story is different at subannual levels; i.e., if the index is to be produced at 

monthly or quarterly frequencies. Hill (1993; 388), drawing on the earlier research of 

Szulc (1983) and Hill (1988; 136-137), noted that it is not appropriate to use the chain 

system when prices oscillate or “bounce” to use Szulc’s (1983; 548) term. This 

phenomenon can occur in the context of regular seasonal fluctuations or in the context of 

sales. The price bouncing problem or the problem of chain drift can be illustrated if we 

make use of the following test due to Walsh (1901; 389), (1921b; 540) (1924; 506):
35

  

 

T23: Multiperiod Identity Test:  P(p
0
,p

1
,q

0
,q

1
)P(p

1
,p

2
,q

1
,q

2
)P(p

2
,p

0
,q

2
,q

0
)  = 1. 

 

Thus price change is calculated over consecutive periods but an artificial final period is 

introduced where the prices and quantities revert back to the prices and quantities in the 

very first period. The Walsh test T23 asks that the product of all of these price changes 

should equal unity. If prices have no definite trends but are simply bouncing up and down 

in a range, then the above test can be used to evaluate the amount of chain drift that 

occurs if chained indexes are used under these conditions. Chain drift occurs when an 

index does not return to unity when prices in the current period return to their levels in 

the base period; see the ILO (2004; 445). Fixed base indexes operating under these 

conditions will not be subject to chain drift.  

 

It is possible to be a bit more precise under what conditions one should chain or not chain. 

Basically, one should chain if the prices and quantities pertaining to adjacent periods are 

more similar than the prices and quantities of more distant periods, since this strategy 

will lead to a narrowing of the spread between the Paasche and Laspeyres indexes at each 

link. Of course, one needs a measure of how similar are the prices and quantities 

pertaining to two periods. A practical problem with this similarity linking approach is: 

exactly how should the measure of price or quantity similarity be measured?
36

 For annual 

                                                 
34

 See Diewert (1978; 895) and Hill (1988) (1993; 387-388). Chaining under these conditions will also 

reduce the spread between fixed base and chained indexes using PF, PW or PT as the basic bilateral formula.  
35

 This is Diewert’s (1993a; 40) term for the test. Walsh did not limit himself to just three periods as in T23; 

he considered an indefinite number of periods. If tests T3 and T22 are satisfied, then T23 will also be 

satisfied.  
36

 This similarity approach to linking bilateral comparisons into a complete set of comparisons across all 

observations has been pioneered by Robert Hill (1999a) (1999b) (2001) (2004) (2009). For an axiomatic 

approach to similarity measures, see Diewert (2009). We will address the similarity approach in more detail 

in Chapter 3. 
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time series data, it turns out that for various “reasonable” similarity measures, chained 

indexes are generally consistent with the similarity approach to linking observations. 

However, for subannual data, it is generally better to use fixed base indexes in order to 

eliminate the problem of chain drift.  

 

We conclude this subsection with a discussion on how well our best indexes, PF, PW and 

PT defined by (9), (13) and (18) above, satisfy the circularity test, T22. Fisher (1922; 277) 

found that for his annual data set, the Fisher ideal index PF satisfied circularity to a 

reasonably high degree of approximation. It turns out that this result generally holds 

using annual data for PW and PT as well. It is possible to give a theoretical explanation for 

the approximate satisfaction of the circularity test for these three indexes. Alterman, 

Diewert and Feenstra (1999; 61) showed that if  the logarithmic price ratios ln (pn
t
/pn

t-1
) 

trend linearly with time t and the expenditure shares si
t
 also trend linearly with time, then 

the Törnqvist index PT will satisfy the circularity test exactly.
37

  Since many economic 

time series on prices and quantities satisfy these assumptions approximately, the above 

exactness result will imply that the Törnqvist index PT will satisfy the circularity test 

approximately. But Diewert (1978; 888) showed that PT, PF and PW numerically 

approximate each other to the second order around an equal price and quantity point and 

so these three indexes will generally be very close to each other using annual time series 

data. Hence since PT will generally satisfy the circularity test to some degree of 

approximation, PF and PW will also satisfy circularity approximately in the time series 

context using annual data. Thus for annual economic time series, PF, PT and PW will 

generally satisfy the circularity test to a high enough degree of approximation so that it 

will not matter whether we use the fixed base or chain principle. However, this same 

conclusion does not hold for subannual data that has substantial period to period 

fluctuations in prices. For fluctuating subannual data, chained indexes can give very 

unsatisfactory results; i.e., Walsh’s multiperiod identity test will be far from being 

satisfied. Under these conditions, fixed base indexes or multilateral methods should be 

used.
38

 

 

It should be mentioned that additional materials on the basket, stochastic and test 

approaches to index number theory can be found in the excellent volume by Balk (2008). 
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